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Abstract: Currently, aircraft cabin operations such as the verification of taxi, take-off, and landing (TTL) cabin readiness 
are done manually. This results in an increased workload for the crew, operational inefficiencies, and a non-
negligible risk of human errors in handling safety-related procedures. For TTL, specific cabin readiness 
requirements apply to the passenger, to the position of seat components and cabin luggage. The usage of 
cameras and vision-based object-recognition algorithms may offer a promising solution for specific 
functionalities such as cabin luggage detection. However, building a suitable camera-based smart sensing 
system for this purpose brings many challenges as it needs to be low weight, with competitive cost and robust 
recognition capabilities on individual seat level, complying with stringent constraints related to airworthiness 
certification. This position paper analyzes and discusses the main technological factors that system designers 
should consider for building such an intelligent system. These include the sensor setup, system training, the 
selection of appropriate camera sensors and lenses, AI-processors, and software tools for optimal image 
acquisition and image content analysis with Deep Neural Network (DNN)-based recognition methods. 
Preliminary tests with pre-trained generalist DNN-based object detection models are also analyzed to assist 
with the training and deployment of the recognition methods.

1 INTRODUCTION 

In recent years artificial intelligence (AI) has strongly 
gained momentum, especially due to the remarkable 
advances obtained by one of its multiple expressions, 
which is machine learning, thanks to the emerging 
Deep Neural Networks (DNNs). Currently, DNNs 
constitute the basis for the most advanced computer 
vision and machine learning methodologies (Mahony 
et al., 2019). 

In the aircraft cabin environment, cameras are 
used as of today for overall cabin monitoring 
purposes. Current cabin video monitoring systems are 
characterized by restrained video and image analysis 
capabilities and are not conceived for specific 
purposes such as taxi, take-off, and landing (TTL) 
cabin readiness verification. Despite the recent 
progress for the optimal installation of surveillance 
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cameras to monitor different areas of aircrafts, in 
practice, the captured images are not being fully 
exploited. Moreover, different format images and 
cameras should need to be concealed to exploit the 
captured images, including AI to help the crew in 
handling safety procedures. 

Building a camera-based intelligent system for 
this purpose reaching the highest Technology 
Readiness Level (TRL) (Heder, 2017), i.e., TRL9, “an 
actual system proven in an operational environment”, 
requires satisfying many challenges. With the 
currently available DNN-based methodologies and 
equipment this process would start in TRL2, i.e., “a 
technology concept formulated”, and the next step 
would be to build a TRL3 “experimental proof of 
concept”. This transition from TRL2 to TRL3 is not 
evident, and relevant technological factors must be 
analyzed in detail. 
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Figure 1: Conceptual design of a camera-based intelligent system for digitalized on-demand aircraft cabin readiness 
verification, and examples of the kind of images that would be captured from cameras installed over the seats and the corridor. 

Figure 1 shows the conceptual design of such a 
system and the kind of images that would be captured 
from cameras over the seats and the corridor. In these 
examples, luggage is placed in different wrong areas 
for TTL, such as on the corridor’s floor and seats, and 
passengers can also occlude totally or partially the 
luggage depending on their locations and poses. 

The economic viability of the system requires to 
minimize the number of cameras to be installed. This 
means that each should cover the maximum possible 
area, e.g., two seat-rows. As it can be observed, the 
kind of lenses that allow this significantly distort the 
image content. Thus, the appearances of the 
visualized objects can be quite different depending on 
the image region where they are located and the 
camera position. All these factors are relevant for the 
design of the computer vision and machine learning 
algorithms (Zhao et al., 2019). Captured images 
would then be processed in AI-processors, which in 
our context, are edge computing devices that include 
AI-accelerator(s), i.e., a new generation of CPUs, 
GPUs, FPGAs, and alternative chips, specially 
designed for the optimal deployment of DNNs (Chen 
et al., 2020). 

An example of DNN-based approach that could 
be included in the system to handle the TTL-related 
use-cases would be the following. For instance, a 
DNN-based image classifier (Wang et al., 2019) 
could analyze incoming images to check whether they 
were “grabbed in night conditions” or not, and then 
choose suitable detectors for each case. DNN-based 
object detectors would localize bounding boxes of 
objects of interest in the image with their 
corresponding class (e.g., “suitcase”, “laptop”, etc). 
Alternatively, there are also detectors that segment 
objects at pixel-level, but their computational cost is 
prohibitive for AI-processors in our context, so we 

would not consider them (Zhao et al., 2019). Person 
detectors could work in the same way as object 
detectors, but could also be more sophisticated 
approaches, such as those that localize human body 
keypoints for body pose estimation. However, again, 
the computational cost of the latter is prohibitive for 
AI-processors in our context, so we would only 
consider the former (Dang et al., 2019). These could 
also be trained to classify some attributes (e.g., a 
description of their poses, such as “seated”, 
“crouched”, etc). Finally, visual relationship 
detectors (Agarwal et al., 2020) would describe the 
relations between objects (and people) localized in 
the image in some TTL-related use-cases (e.g., 
“pouch filled, not allowing enough safe evacuation”). 
Thus, the system would send alerts to the 
crewmembers when it detects cabin luggage in wrong 
areas for TTL, specifying where they happened. 

This position paper analyzes and discusses the 
main technological factors that system designers 
should consider for building such an intelligent 
system. The purpose of this work is not proposing a 
specific DNN-based approach that would allow 
building a camera-based system that could reach 
TRL9. Our motivation at this stage (TRL2) is to make 
system designers be aware of the relevant 
technological factors required for that and assist them 
with the TRL2 to TRL3 transition, as it involves 
making important decisions to build a successful 
solution. These include the sensor setup, system 
training, the selection of appropriate camera sensors 
and lenses, AI-processors, and software tools, for 
optimal image acquisition and image content analysis 
with DNN-based recognition methods. Preliminary 
tests with pre-trained generalist DNN-based object 
detection models are also analyzed to assist with the 
training and deployment of the recognition methods.  
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2 SENSOR SETUP AND SYSTEM 
TRAINING 

Two critical tasks to build a suitable vision-based 
system for automated image content analysis are the 
sensor setup and the system training. The former 
refers to choosing the right number of cameras, their 
locations, orientations, and parameters such as the 
field of view, to guarantee the complete coverage of 
the areas of interest, but also considering the 
economic viability. Regarding the system training, 
current state-of-the-art DNN-based methods need to 
be trained with very large datasets, with over 1M 
labeled images. Collecting such amount of labeled 
data can be challenging and even prohibitive. 

Training techniques that rely on the use of DNN 
models that have been pre-trained on generic data, 
such as “transfer learning” and “fine-tuning”, allow 
mitigating the lack of labeled data. Generic data 
means many kinds of objects “in the wild”, not highly 
specialized, and coming from different contexts, like 
those from generalist datasets such as ImageNet 
(Russakovsky et al., 2015), COCO (Lin et al., 2014) 
or Open Images (Kuznetsova et al., 2020). This way 
the pre-trained features would be adapted to the new 
data, potentially achieving meaningful 
improvements. Recently, Kolesnikov et al. (2020) 
revisited this kind of techniques and proposed a 
simple recipe, named “Big Transfer” (BiT), which 
exploits large scale pre-training to yield good 
performance on downstream tasks of interest. Even 
though best results are obtained by training the 
system with a large dataset specifically designed to 
train the DNNs with the expected kind of images, 
considering such pre-trained model-based training 
techniques is highly relevant for the development of 
the system. 

2.1 Simulation Tool 

A proper simulation tool can alleviate the effort and 
cost of these two tasks. Furthermore, the simulation 
tool can resolve legal or privacy issues, which often 
make the use of real data hard or impossible. 
However, there are no general simulation tools ready 
to solve them for all kinds of scenarios and use cases. 
Normally, ‘ad-hoc’ tools are built. They require 
integrating adequate 3D graphical assets, virtual 
camera models, and illumination functionalities 
configured employing user-friendly parameters. 

For the camera setup task, the tool would allow 
visualizing directly the 3D scene from the virtual 
camera viewpoints, with camera-related effects, such 
as the geometric distortion introduced by the lens, 

while changing in real-time their parameters. For the 
labeled dataset generation, the tool would allow 
configuring scenes for a given camera setup, with a 
wide and balanced range of plausible situations of 
interest randomly generated. It would involve the 
required 3D graphical assets, which should be quickly 
captured from the virtual camera viewpoints, along 
with the adequate annotations and noise, for training. 

Domain Adaptation techniques could be applied 
to guarantee successful training with data that 
combines synthetic and real images, as real-world 
images are more complex than simulated ones. These 
techniques try to solve the domain shift that exists 
between different groups of data, for example by 
learning domain-invariant features (Pinheiro, 2018, 
Chen et al., 2018) or translating the data from a 
domain to another one (Inoue et al., 2018). 

The basis of the simulation tool could be a 3D 
computer graphics software such as 3DS Max or 
Blender or a game engine such as Unreal or Unity, 
which not only allow managing 3D graphical assets, 
virtual cameras, and illumination conditions 
interactively but also controlling all of these utilizing 
programming scripts. Each of these has its pros and 
cons, however, with any of them it is necessary to face 
the same kind of challenges: 

 What kind of parameters should be used to 
configure the scenes? 

 How should these parameters be expressed to 
be user-friendly? 

 What kind of strategy should be applied to 
generate a wide and balanced range of plausible 
situations of interest, randomly? 

 How can the captures from virtual camera 
viewpoints be done quickly, taking into 
account that the rendering time could be an 
important bottleneck in this process? 

 What kind of strategy should be adopted to 
apply noise to the labeled data for the 
appropriate training of the system. 

When designing a simulation tool that responds 
appropriately to all these challenges, relying on data 
formats such as VCD (Vicomtech, 2020), can be 
helpful. It is a flexible labeling structure that 
addresses modern requirements for ground truth 
description, including multi-sensor object, action, and 
scene-level annotations, open-source APIs to manage 
content, and connectivity with ontologies. 

2.2 Camera Sensor and Lens Selection 

To build or choose the ideal camera for optimal image 
acquisition, it is necessary to define all the relevant 
and impacting parameters that affect the image 
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quality. These include optical lens parameters (spatial 
resolution, deep of field and luminosity), sensor 
specifications (quantum convert, pixels and format), 
and the camera interface (connectors and protocols). 

The objects detected by the camera need to 
occupy a certain number of pixels on the image to be 
recognized by DNN-based computer vision 
algorithms. This number of pixels is commonly 
named as object size, which depends on the distance 
between the optical unit and the object, as well as the 
spatial resolution of the camera. The latter depends on 
the smallest measurable gap between black and white 
bands expressed in frequency = line / mm. 

The depth of field is the distance between the 
closest and farthest objects in the optical system that 
results in a sufficiently sharp image. A camera can 
only focus sharply at one specific distance. But the 
transition from sharp to unsharp is gradual, and the 
term “acceptably clear image” is generally imprecise 
because it is subjective, but in our context, it should 
be the minimum of spatial resolution before an object 
becomes undetectable. What defines if an image is 
optically sharp enough, is the circle of confusion, also 
known as the disk of confusion, circle of 
indistinctness, blur circle, or blur spot. It is an optical 
spot caused by a cone of light rays from a lens not 
coming to a perfect focus when imaging a point 
source. In our case, an airplane cabin is a small space 
where the camera should have sufficient resolution 
from top to bottom of the seats considering all with a 
fixed focal lens. 

The luminosity of an object is a measurement of 
its intrinsic brightness and is defined as the amount of 
energy the object emits in a fixed time. In our case, 
the luminosity would come mainly from the sun and 
cabin lighting. The area of measurement should cover 
a larger area with a huge delta of illumination. We 
need to verify that the camera would be able to 
produce enough contrast, and an exploitable 
measurement for the computer vision and machine 
learning algorithms. 

Starting from the lowest possible illumination 
within the framework of the measurement, it is 
necessary to define the surface of the sensor and the 
number of apertures of the lens, according to the 
quantum conversion rate, to check whether the 
camera would be able to measure with sufficient 
resolution. Knowing the value of the illumination of 
a surface we can measure with a resolution test if the 
camera can produce a sufficiently sharp image. 

A minimum of spatial resolution is necessary to 
be able to see at a desired level of detail. This level of 
detail is discretized by the pixel matrix of the sensor. 
An aspect ratio is a proportional relationship between 

an image’s width and height. Essentially, it describes 
an image’s shape. Aspect ratios are written as a 
formula of width to height, like this: 3:2. Most 
common sensors have an aspect ratio of 16:9 or 4:3. 
For our application, the minimal resolution would be 
defined by the spatial resolution and format 
benchmarking according to the technical needs to 
operate the computer vision and machine learning 
algorithms. The best aspect ratio is 4:3 because the 
optimal deployment of DNNs in AI-processors 
usually is achieved for square images. To be able to 
process them, images should be padded with black 
areas to make it square or cropped if it fills the space 
to be analyzed. 

Regarding the communication protocol, there is a 
large panel of choice (fiber optic with CML protocol, 
3G-SDI, FireWire, USB 3.0, Ethernet-PoE, and CAN 
bus). There would no need for full-duplex 
communication because the cameras either would 
send or receive data but not at the same time. All 
protocols that can transport more than 35 Mbps of 
data over a plane length would fit. For instance, a 
good option to send the video flow to the AI-
processor could be using 3G-SDI over fiber optic 
cables. 

3 ALGORITHMS DEPLOYMENT 

To fulfill the system’s requirements including those 
related to airworthiness certification, our criteria for 
the AI-processor scouting is that it should be 
compact, fanless, powerful enough, efficient, with the 
highest possible support for deploying cutting-edge 
DNN-based computer vision and machine learning 
algorithms, easily integrable in the system’s 
architecture, low-cost and easily replaceable by 
upgraded versions without affecting the software 
development, if required. 

To support the AI-processor scouting process we 
rely on MLPerf Inference (Reddi et al., 2019), which 
is a relevant benchmark suite in the machine learning 
community for measuring how fast machine learning 
systems can process inputs and produce results using 
a trained DNN model. It was designed with the 
involvement of more than 30 organizations as well as 
more than 200 machine learning engineers and 
practitioners to overcome the challenge of assessing 
machine learning-system performance in an 
architecture-neutral, representative, and reproducible 
manner, despite the machine learning ecosystem’s 
many possible combinations of hardware, machine-
learning tasks, DNN models, data sets, frameworks, 
toolsets, libraries, architectures, and inference 
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engines. The design and implementation of MLPerf 
Inference v0.5 consider image classification and 
object detection vision tasks with heavyweight and 
lightweight DNN models in different scenarios such 
as multi-stream processing, relevant in our context. In 
such a scenario, a traffic generator sends a set of 
inferences per query periodically (between 50 and 
100 ms). 

Among the performance results published in 
MLPerf Inference v0.5, the NVIDIA Jetson AGX 
Xavier shows good potential for our purpose. It is an 
embedded system-on-module (SoM), thus, compact, 
with powerful and efficient GPU/CPU and 
connectivity capabilities, leveraged by NVIDIA’s 
TensorRT software tool for high-performance DNN 
inference. 

More recently, Libutti et al. (2020) proposed some 
adaptations to MLPerf to handle new USB-based 
inference accelerators, more specifically, Intel 
Movidius Neural Compute Stick 2 (with an Intel 
Movidius Myriad X VPU) and Google Coral USB 
accelerator (with a Google Edge TPU). They 
evaluated the ability of these USB-based devices to 
fulfill the requirements posed by applications in terms 
of inference time and presented a mechanism to 
measure their power consumption. Their results show 
good potential too for our purpose. 

VPUs and Edge TPUs can also be found in other 
kinds of hardware architectures (e.g., AI-accelerator 
cards) with faster transmission speeds than USB 3.0, 
and the software tools that power them, i.e., 
OpenVINO for Intel chips and TensorFlow Lite 
supported by the Edge TPU compiler for Google 
chips, like in the case of TensorRT, have remarkable 
resources and active communities online, as well. 
Hence, these are examples of potentially good options 
to consider for the development and deployment of 
the algorithms and DNN models. 

3.1 Preliminary Tests with Pre-trained 
Generalist DNN Models 

The recognition of cabin luggage in an airplane is an 
“open-world problem”, with almost infinite different 
objects, textures, shapes to be recognized. This is very 
difficult to solve employing an automated solution. 
Human errors are a problem, but a machine attracting 
the attention of humans to false alerts (i.e., false 
positives) is a problem too, and not presenting alerts 
when necessary (i.e., false negatives) is even worse. 
A TRL9 system should effectively assist 
crewmembers with the verification of TTL cabin 
readiness. This means that it should have a very high 
accuracy, ideally perfect. In case a certain failure rate 

is unavoidable, the sensitivity of the system should 
prioritize the elimination of false negatives, even 
though some false positives might arise. 

In the introduction we described a series of TTL-
related use-case situations that could be tackled with 
different kind of DNN-based methods, such as image 
classifiers, object/person detectors and visual 
relationship detectors. We remark that it was only an 
example of a DNN-based approach to build the 
system, and that alternative approaches could be 
proposed. For instance, considering that the cameras 
are stationary, temporal context information could be 
used (Beery et al., 2020), to reduce the number of 
false positives. Furthermore, binary content-based 
image classifiers could be applied to areas of interest 
to classify whether TTL cabin readiness is complied 
or not. Incremental learning strategies (Yang et al., 
2019) could also be added to readjust the system once 
deployed, leveraging the observed false positives and 
negatives to improve the accuracy through time. 

Currently, the major open-source deep learning 
frameworks are TensorFlow and PyTorch, which 
count with big support not only from the companies 
that develop and maintain them (Google and 
Facebook, respectively) but also from researchers and 
practitioners around the world. Thus, there are many 
pre-trained generalist DNN TensorFlow and PyTorch 
models available on the Internet, especially for image 
classification and object/person detection tasks with 
generalist datasets, which can also be converted to 
3rdparty inference engines for the optimal 
deployment of DNNs in AI-processors like those 
relevant in our context (e.g., for NVIDIA’s TensorRT 
and Intel’s OpenVINO). 

Testing pre-trained generalist DNN models for 
object/person detection with images such as those 
shown in Figure 1, could be seen as quite simple, but 
it can help us clarify important aspects for the design 
and development of the TRL3 DNN-based approach 
for the system, like: 

 How do image transformations like resizing 
and rotating affect the pre-trained generalist 
DNN responses? 

 Considering lens distortions and that the aspect 
ratios of the DNN’s input and the image can be 
quite different, is it convenient to process the 
full image or cropped image regions? 

For these preliminary tests, we have chosen the 
SSD-MobileNet-v1-FPN model, which has a good 
trade-off between accuracy and performance among 
those publicly available at the TensorFlow Object 
Detection API webpage (Huang et al., 2017), trained 
with the generalist COCO dataset. Nevertheless, the 
object detection field is constantly progressing, and 
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newer more accurate, efficient and smaller DNN 
models are being proposed, such as EfficientDet (Tan 
et al., 2020), released on March 18, YOLO-v4 
(Bochkovskiy et al., 2020), released on April 23, and 
the controversial YOLO-v5 (Jocher, 2020), released 
on June 9, and will probably continue so during the 
following months and years. Similar tests could be 
done with these models too for the same purpose. 

We have processed images such as those shown 
in Figure 1 in two ways: (1) the full image with 
padding added to maintain the aspect ratios (the DNN 
expects square input sizes), and (2) the image cropped 
in 7 regions, also with the same kind of padding for 
each region. In both cases, the object detector 
receives images at different sizes (640x640, 
1280x1280 and 1920x1920 for full images; 640x640 
and 960x960 for cropped images) and orientations 
(0º, 90º, 180º and -90º). Figure 2 and Figure 3 show 
some examples of the obtained detection results. 

In the COCO dataset images are not as distorted 
as in these images, and therefore, objects/people seen 
from the camera over the corridor are better detected, 
as they are further away and less distorted. It can also 
be observed that the bounding boxes in some cases 
are correctly placed for the object’s real boundaries, 
but the classification is incorrect. This behavior was 
expected since COCO contains many classes out of 
our context (e.g., “car”, “sink”, “toilet”, “stop sign”, 
“mouse”, “traffic light”, “toaster”, etc.), and therefore 
the DNN has learned “noisy” visual features from 
them and has more chances to misclassify. Overall, 
the class that is better detected is that of “person”, 
even when people are partially occluded and located 
in more distorted image regions. 

Another interesting behavior is that some objects 
are correctly detected in some image orientations but 
not in others. Probably this happens because the data 
for training was not sufficiently balanced for this 
factor, and thus, the learned visual features for some 
objects work better for some orientations compared to 

others. It can also be observed that the chosen input 
size also plays an important role as, depending on it, 
bigger and/or smaller objects/people can be missed. 
The reason for other misdetections could also be 
because COCO does not contain so many top view 
perspectives of objects/people. 

Regarding the convenience of processing cropped 
image regions instead of the full image directly, in 
principle, the advantage that it might have is that the 
input sizes of the regions can be bigger and with less 
padding areas when processed by the DNN, 
compared to when processing the full image directly. 
However, the analyzed preliminary tests do not reveal 
a clear advantage of the former for the detection 
accuracy. This factor would need further 
investigation with more data and quantitative 
measurements, trying to seek a good trade-off 
between accuracy and performance, leveraging batch 
processing techniques. 
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Figure 2: Tests with synthetic full images from cameras 
over the seats and the corridor with the COCO-trained SSD-
MobileNet-v1-FPN model (Huang et al., 2017). 
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Figure 3: Tests with synthetic images cropped into 7 regions from cameras over the seats and the corridor with the COCO-
trained SSD-MobileNet-v1-FPN model (Huang et al., 2017). 
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4 CONCLUSION AND FUTURE 
WORK 

In this position paper, we have analyzed and 
discussed the main technological factors that system 
designers should consider for building a camera-
based smart sensing system for digitalized on-
demand aircraft cabin readiness verification. Our 
purpose is to make system designers be aware of the 
relevant technological factors for that and assist them 
with the TRL2 to TRL3 transition while designing 
their DNN-based approaches that would allow 
building camera-based systems that could reach 
TRL9. These include the sensor setup, system 
training, the selection of appropriate camera sensors 
and lenses, AI-processors, and software tools for 
optimal image acquisition and image content analysis 
with DNN-based recognition methods. 

For the sensor setup and system training, we 
consider that a proper simulation tool would be 
helpful, along with Domain Adaptation techniques to 
guarantee successful training with data that combines 
synthetic and real images. Thus, we have reviewed 
which are relevant considerations to build the 
simulation tool and proposed relying on a metadata 
specification format for the description of scenes and 
data sequences, such as VCD (Vicomtech, 2020). We 
also consider that training techniques that rely on the 
inclusion of DNN models that have been pre-trained 
on generic data, like BiT (Kolesnikov et al., 2020), 
are beneficial to mitigate the lack of labeled data. 

We have also analyzed which are the important 
and impacting parameters that affect the image 
quality, to build or choose the ideal camera for 
optimal image acquisition, and how they should be 
measured. 

Regarding the selection of AI-processors and 
software tools for the optimal deployment of DNNs, 
we have established criteria to fulfill the system’s 
requirements and analyzed some remarkable systems 
based on the MLPerf Inference benchmark suite 
(Reddi et al., 2019). 

Finally, we have presented some preliminary tests 
with a pre-trained generalist DNN-based 
object/person detector with the kind of images that 
would be captured from cameras installed over the 
seats and the corridor. In summary, based on these 
tests, we conclude that DNN models should be 
trained: (1) with balanced data, using closer content 
to the kind of expected images for each camera 
placement (i.e., over the seats and the corridor) and 
the use cases, with all kind of orientations, (2) with 
the minimal required set of appropriate object classes 
only, to avoid learning noisy object/person visual 

features for detection and classification, and (3) 
exploring the possibility of cropping the image into 
regions, such as those used for the experiments, to 
learn their specific image characteristics. Then, 
trained DNN models should be deployed with 
appropriate image sizes for each camera placement 
(i.e., over the seats and the corridor) and using 
dynamic batch processing to make the most of the AI-
processors. 

Future work will involve developing a prototype 
with an IMX226 sensor and an FPGA card to design 
our camera architecture, an NVIDIA Jetson AGX 
Xavier SoMs, and FPGAs to process images. Besides, 
we will include a DNN-based detection approach 
tailored to the TTL-related use cases, leveraging the 
considerations presented here. In particular, we plan 
training the system with real-world and simulated 
data by applying domain adaptation techniques to 
learn domain-invariant features, including temporal 
context information and incremental learning 
strategies. 
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