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Abstract: Blood vessel extraction in digital retinal images is an important step in medical image analysis for abnormal-
ity detection and also obtaining good retinopathy diabetic diagnosis; this is often referred to as the Retinal
Blood Vessel Segmentation task and current state-of-the-art approaches all use some form of neural networks.
Designing neural network architecture and selecting appropriate hyper-parameters for a specific task is chal-
lenging. In recent works, increasingly more complex models are starting to appear, but in this work, we present
a simple and small model with a very low number of parameters with good performance compared with the
state of the art algorithms. In particular, we choose a standard Genetic Algorithm (GA) for selecting the pa-
rameters of the model and we use an expert-designed U-net based model, which has become a very popular
tool in image segmentation problems. Experimental results show that GA is able to find a much shorter archi-
tecture and acceptable accuracy compared to the U-net manually designed. This finding puts on the right track
to be able in the future to implement these models in portable applications.

1 INTRODUCTION

Diabetes is a serious and commonly occurring disease
that can lead to early death (Ogurtsova et al., 2017)
or vision loss (Ciulla et al., 2003). Damaging to and
accumulation of blood vessels in the eye can increase
the risk of the blindness of diabetes better known as
Diabetic Retinopathy (DR). Specifically, the occur-
rence of hard exudates close to the fovea is one of the
main threats to blindness, but timely diagnosis and
laser photo-coagulation can help to reduce the spread
of DR in the retina. However, DR is not recognizable
before the first diagnosis of diabetes, early screening
of DR requires specialists to examine manually the
retinal images.

Nowadays, image processing and machine learn-
ing techniques are used to assist specialists in the
analysis of abnormalities in the retina and in the
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retinopathy diabetic diagnosis. These techniques are
used to extract blood vessels from the retinal images
and this process is often referred to as the Retinal
Blood Vessel Segmentation task. To address this task,
all state of the art techniques use some form of Neural
Networks (NN).

The Convolutional NN (CNN) (LeCun et al.,
1995), is an updated version of the traditional NN and
became the preferred choice to address these types of
interesting problems. Even though CNNs have been
successfully applied to solve a wide range of image
processing tasks, its success came with an increase
in its complexity. Therefore, designing a CNN archi-
tecture and selecting its appropriate hyper-parameters
for a specific task is not trivial.

In this project, we design two sets of experi-
ments to design CNN architectures to address the
Retina Blood Vessel Segmentation task; i) manually
designed, and ii) automatically designed. For the first
experiment, we use as a baseline an expert-designed
CNN (Xiancheng et al., 2018), and manually derive
other designs from it. For the automatic choice, we
select a standard Genetic Algorithm (GA) to automat-
ically select the parameters of a CNN architecture.
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Furthermore, we explain in detail how to implement
GA to address this task.

Experimental results show that the architectures
proposed by the GA, not only reach competitive per-
formance results against the baseline and other state
of the art approaches but even are able to find much
shorter CNN architectures. These results confirm that
it is worth applying an optimizer such as GA to take
better the available computational resources. Further-
more, reducing the CNN architecture complexity mo-
tivates us to follow our research line and address other
related research questions to contribute to implement-
ing these models, in a not too distant future in portable
applications.

The structure of this paper is as follows: the back-
ground is presented in Section 2. Section 3 is dedi-
cated to the description and discussion of the experi-
mental setup, then Section 4 is the results, and finally,
Section 5, contains our conclusions and future work.

2 BACKGROUND

In this section, we explain the basic concepts related
to the Retina Blood Vessel Segmentation task in sub-
section 2.1, diabetic retina in subsection 2.2, the con-
cepts of CNNs focusing on a particular version named
as U-net in subsection 2.3, and finally we explain the
algorithm related to a standard GA in subsection 2.4.

2.1 Iris Segmentation

The first step is to detect, from a given image the in-
ner and outer boundaries of an iris; i) pupillary, and
ii) limbic, correspondingly. This process helps in ex-
tracting features from the discriminative texture of the
iris while excluding the surrounding regions.

Even though in this project, we do not perform any
pre-processing, and instead we use an already pre-
processed image dataset, we give a brief description
of the process to address this task in order to give con-
text for our work.

There are several methods to address the iris seg-
mentation task, they can be classified into; Boundary-
based methods (Roy and Soni, 2016), pixel-based
methods (Parikh et al., 2014), active contour and cir-
cle fitting-based methods (Chai et al., 2015), and
CNN-based methods (Liu et al., 2016).

2.2 Diabetic Retina

Once obtained the region of interest, the next step is
to analyze the retina looking for any vessel abnor-
malities. A normal retina is depicted at the left hand

sub-figure in the Figure 1, taken from (Vision, 2020),
where we can observe the blood vessels without any
notorious damage. Whereas, at the right hand sub-
figure in the Figure 1, we can observe a typical retina
showing the characteristic abnormalities related to di-
abetic retinopathy, the earliest signs of this disease are
little spots usually red or white color, they can only be
detected by a trained eye from a specialist.

Figure 1: Images taken from the retina, on the left a normal
retina, and on the right a retina damaged by diabetes.

2.3 U-Net

Nowadays, the current state of the art approaches used
to address the blood vessel segmentation task are all
some form of NNs. Among the wide range of NNs
architectures proposed in the literature, U-net (Ron-
neberger et al., 2015a) is a modification of a fully
CNN, which according to the authors is able to de-
liver good prediction based on even few data sets.

The U-net architecture is an encoder-decoder ar-
chitecture, the encoder takes the input features and
creates a smaller dimensional of them, while the de-
coder takes the features from the encoder, and gives
the best match to the actual input or planned output.

The U-net consists of two main parts; i) contract-
ing path and ii) expansive path, located at the left and
right side correspondingly. The contracting path per-
forms a down-sampling, whereas the expansive path
performs an up-sampling.

The major advantage of this architecture is its abil-
ity to take into account a wider context when making
a prediction from the actual image pixel by pixel and
specifically applied to the retinal blood vessel seg-
mentation.

Nevertheless, designing a U-net is not a trivial
task, for this reason, in this project we use a standard
GA to automatically design U-net architectures.

2.4 Genetic Algorithm

The GA is inspired by the theory of the evolution by
natural selection. GAs resemble the process of nat-
ural selection by selecting the fittest individuals and
reproduction in order to produce offspring of the next
generation (Davis, 1991).
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In order to use GA as an optimizer, we must de-
sign the encoding first of a typical solution from a
given problem. Using similar jargon from the biolog-
ical evolution, we say that the individuals I represent
solutions for a given problem, and we can define I
composed in general by three elements; I = (P,G,S),
where P stands for the phenotype, G for the genotype,
and S for the score.

The observable properties of the individual I is
known as the phenotype P, i.e. U-net architecture.
Say, we have a set of five parameters to optimize;
[p1,p2,p3,p4,p5]. Even though, this array of param-
eters are not the full solution, we will refer to it as to
the phenotype; then P = [p1,p2,p3,p4,p5].

Using P, we can build a solution and evaluate its
quality trough a function, which will we refer as to
the fitness function, because it assigns a quality score
to P, named as fitness score S.

In order to create new solutions, we need to re-
combine the information from a set Q of I, named as
population. To recombine easily the information from
the current solutions, we encode P, in a similar way,
as the DNA encode the information of a living organ-
ism. Nevertheless, there are several ways to encode
P, we use the more frequent and easy way of to im-
plement; a bitstring.

Then, the task is to encode P using an array
of bits, we name this encoding as the genotype G,
which encodes a solution with an array of genes
[g1,g2,g3,g4,g5] same length as P. When using a bit-
string to encode a solution, then each gi is composed
by an array of bits [b1,b2, ...,bk], where k is the max-
imum number of bits used to encode the choices of
a given parameter. If g1 has four choices, then us-
ing just a pair of bits is enough to represent all of the
choices; g1 = [b1,b2], where g can take any of four
choices; g1=00, g1=01, g1=10, g1=11. Following this
example, we can build G to encode fully P.

GA choose with more probability individuals I
from the population Q, which have higher S to recom-
bine between them their G or just to mutate some po-
sition in G, creating in this way new solutions. The
process is repeated until some stop criterion is met as
shown in the Algorithm 12.

Through the evolutionary process, one expects to
see increasingly better solutions until ideally an opti-
mal or near optimal one appears.

3 EXPERIMENTAL SETUP

The goal of this work is to build deep learning models
to address the retinal blood vessel segmentation task.
We address this problem with two different experi-

Algorithm 1: Genetic Algorithm.
Input: G = [g1,g2, ...,gn] // Genotype
Output: P = [p1, p2, ..., pn] // Phenotype

1 Ii← (G,P,S)
2 S =∅
3 Qt=0← Ii // Initial population
4 while t < m // m = max generations
5 do
6 Evaluate each phenotype P ∈ Qt−1
7 S(Ii)← eval(Pi) assign fitness score
8 Select parents from Qt−1 using S
9 Genetic operations on Gi of selected parents

10 Qt ← (G,P) offspring (new pop)
11 t← t +1

12 Return Ii from Qt with the best S.

ments, namely the manual and automatic design of the
U-net architecture using a very well known dataset.

3.1 Dataset

In our experimental setup, we use the Digital Retinal
Images for Vessel Extraction (DRIVE, ), consisting
of 40 retinal images in total, 20 for training, and 20
for testing, obtained for a diabetic retinopathy screen-
ing program conducted in the Netherlands. Retinal
diseases can be detected by the size, shape, widening,
branching patterns, and angles of vessel bend.

3.2 Manual Design

The manual design of a U-net architecture is not
trivial, and expert knowledge about architecture is
required. The baseline for this set of experiments
named as Exp-1, is taken from (Ronneberger et al.,
2015b), taking the source code from (Unet-code, ) and
updating it to meet the requirements of the dependen-
cies new versions.

In general, the parameters used to run each U-net
architecture are as follows: Number of epochs: 150,
Kernel size: (3,3), Pooling type: ‘MaxPooling’, and
‘sgd’ as the optimizer. In experiments Exp-2 to Exp-
4, we manually changed the U-net architecture to get
fewer possible combinations of reduced depths, and
reduced number of the filters in order to decrease the
number of parameters required for training and test-
ing. Exps-1, 2, and 3 all have similar configurations
as shown in Table 1, those U-net architectures differ
only on the parameters related to the filters shown in
Table 2, but all of them use 16 filters. In Exp-2, in
order to get an idea of how the number of filters was
affecting the accuracy performance, we reduced the
number of filters to half from the baseline U-net ar-
chitecture used in Exp-1, as shown in the second row
of Table 2.
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Table 1: U-Net parameters selected manually. Experiments 1,2, and 3, have similar configuration and differ only on the
parameters related to the filters shown in Table 2.

D P1 P2 P3 P4 K1 K2 K3 K4 O

Exp-1,2,3 4 MaxPooling MaxPooling MaxPooling MaxPooling (3,3) (3,3) (3,3) (3,3) sgd
Exp-4 2 MaxPooling MaxPooling MaxPooling MaxPooling (3,3) (3,3) (3,3) (3,3) sgd

Table 2: U-Net filter parameters selected manually. The first and last values are related to the input Lin and output Lout image
correspondingly, F8, F11, and F14 are mirrors of F7, F5, and F3 correspondingly. The symbol # stands for the filter position
not used.

Lin F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 Lout

Exp-1 3 32 64 64 128 128 256 256 256 512 256 128 256 128 64 128 64 64 3
Exp-2 3 16 32 32 64 64 128 128 128 256 128 64 128 64 32 64 32 32 3
Exp-3 3 16 16 16 32 32 64 64 64 128 64 32 64 32 16 32 16 16 3
Exp-4 3 32 64 64 128 # # # # # # 128 256 128 64 128 64 64 3

In Exp-3, fewer filters are changed by keeping
their number the same at level 1, but reducing them
to half in the levels below as shown in the third raw of
Table 2. In Exp-4, we entirely removed the final two
layers in the U-net architecture and hence running the
experiment with 2 layers and just 10 filters; as shown
in the fourth raw of Table 2.

3.3 Automatic Design

We used a GA-based approach to automatically de-
sign U-net architectures using the parameters shown
in Table 3, where there are two values for the num-
ber of epochs used to optimize the hyper-parameters
of the U-nets. In the training process, we used just
20 epochs to pre-optimize each U-net evolved by GA
and at the end of the run, we choose the best U-net and
then we use 150 epochs to get a full hyper-parameter
optimization of the U-net and get a fair comparison
against the manual designed U-nets.

The genome is showed in Table 4, the list of pa-
rameters to optimize are: Depth (D), Filter Filter (F),
Pooling Type (T ), Kernel Type (K), and the Optimizer
(O).

The genotype G is composed by the following set
of genes: [D,F,T,K,O]. The size of the genotype is
fixed to a total of 55 bits; 2 bits for D, 3 bits for F ,
just one for T , 2 for K, and 2 for O.

The maximum level D is 4, then there are four
choices; D = 1,D = 2,D = 3,D = 4. Therefore, the
gen for D is composed by just 2 bits [b1,b2] to encode
all choices; 00=1, 01=1,10=2, 11=3.

The parameter D is very important because it con-
trols the size of the U-net architecture, and the use
of the rest of the parameters too. For instance, with
D = 4, then the full range of parameters is consid-
ered to build the U-net. But, if D < 4 then some of
the parameters are not considered. Say D = 2, then

we have P1,P2,K1,K2, but F5 to F10 are not considered
as shown in Table 6, where the unused positions are
marked with the symbol #.

Similarly, the rest of the parameters are encoded
using enough bits according to the available choices
for each of them as shown in Table 4 and Table 3
shows the main parameters used to run the GA-based
experiments.

Table 5 summarizes the parameters selected by
GA, it can be noted how GA prefers shorter U-net
architectures with D = 2. In general, GA prefers
the pooling type; ‘AveragePooling’, and ‘adam’ as
the optimizer, whereas the choices when the U-net is
manually designed are ‘MaxPooling’ and ‘sgd’ cor-
respondingly. Another interesting observation is that
GA prefers bigger sizes of the kernels K with (9,9) as
the most used.

Table 3: List of the main parameters used to run GA.

Parameter Value
Runs 1 per exp
Total Generations 20
Population Size 10
Crossover Rate 0.7
Mutation Rate 0.1
Epochs 20 (Training)
Epochs 150 (Best)

Table 6 show the filters selected by the GA-based
experiments, where the first observation is that the fil-
ters F5 to F10 are not used because of D = 2. Exp-6
takes the lowest values for the filters F in the contract-
ing path, whereas Exp-8 takes the lowest values in the
expansive path. In general, Exp-5 uses the largest val-
ues of the filters. One interesting difference is that in
the GA-based experiments the filters are not acting as
‘mirrors’ from other filters as in the manually-based
experiments.
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3.4 Evaluation

We evaluated the models from both sets of experi-
ments using several metrics: Accuracy (ACC), Sen-
sitivity, Specificity, Precision.

Sensitivity =
T P

T P+FN
(1)

Speci f icity =
T N

T N +FP
(2)

Accuracy =
T P+T N

T P+T N +FP+FN
(3)

Precision =
T P

T P+FP
(4)

where TP is the number of the true positive samples,
TN is the number of the true negative samples, FP is
the number of the false positive samples, FN is the
number of the false negative samples. Nevertheless,
ACC is used to guide the search when using GA, and
the Area Under the Curve (AUC) of Receiver Operat-
ing Characteristic (ROC) is used to get a comparison
with several state of the art methods. The AUC-ROC
curve is TP-FP plot that commonly used for classifi-
cation problems and represents the degree or measure
of separability and shows how much a model is capa-
ble of distinguishing between classes. The higher the
AUC, the better the model is at predicting.

3.5 Tools

The source code used in this work is taken from
the (Unet-code, ), this code is originally coded in
Python 2 and in order to meet the requirements of the
current TensorFlow version and its dependencies, we
updated the version to work with Python 3.7.4. We
used the evolutionary tool; Distributed Evolutionary
Algorithms (DEAP, ) coded in Python (Fortin et al.,
2012).

4 RESULTS

In this section, we discuss the results from both sets
of experiments; manual and automatic design of U-
net architectures to address the retinal blood vessel
segmentation task. A summary of this experimental
results is shown in Table 7, and a comparison against
the state of the art method is shown in Table 8 using
the result AUC ROC performance from Exp-6.

The results in Table 7 are split into two sections:
Manual and GA-based. The GA-based results are ob-
tained from just one experimental run due to compu-
tational cost of training each individual. The results

from Sensitivity, Specificity, and Precision are given
as reference, but they were used neither to guide the
search nor to give a comparison against other meth-
ods.

For the set of experiments to manually design U-
net architectures, this performance is taken from just
one architecture and using the corresponding opti-
mizer using a certain number of epochs to tune-up the
U-net hyper-parameters. On the other hand, the GA-
based experiments use the same process to each U-net
to optimize its hyper-parameters, in this case, GA is
used to find optimal architectures but is not used as
hyper-parameter optimizer. In the GA-based exper-
iments there are two optimizations happening at the
same time; i) hyper-parameter optimization using ei-
ther sgd or adam, and ii) U-net architecture optimiza-
tion using GA. The performance in training is given
by TrainAcc showed in the first column of the Table 7,
which stands for the accuracy performance in train-
ing computed using the Equation 5, presented in the
subsection 3.4. The score obtained from the accuracy
measure is used as a fitness score from the best U-net
architecture on the GA-based experiments. Exp-3 got
the best training performance from the manual design
experiments, whereas Exp-6 is the winner of the GA-
based experiments, and the latter is the best from both
sets of experiments. But the difference is not really
significant. The accuracy performance using the test
set is given by TestAcc showed in the second column
of the Table 7. Exp-1 gets the best test performance
from the manual design experiments, and Exp-6 gets
better from the GA-based, Exp-1 in this case is the
winner, but again by a little margin. The following
results consider the overall best performance, Exp-1,
gets the overall best sensitivity performance and the
Figure 2 shows the U-net architecture from Exp-1 and
Exp-6. Exp-2 is the best on the specificity and on the
precision measure. Considering the AUC-ROC mea-
sure, Exp-1 and Exp-2 reach the same performance in
the manual design experiments, whereas Exp-6 and
Exp-7 got a tie getting the best performance from the
GA-based experiments. The performance obtained
from the U-net evolved by GA in Exp-6 can be ob-
served numerically from the Table 7. From the pre-
vious analysis, we can agree that the architectures
evolved by GA show competitive performance against
the U-nets designed manually.

Two interesting results from the experiments are
from the model size and time shown in the latter
columns in the Table 7. The first three experiments
from the manual set show a bigger size than Exp-4,
where the architecture was reduced to half, and it is
reflected in the size and the size is reduced by one
order of magnitude. This finding was our motivation
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Table 4: Genome composition showing the parameters and genes, making a genotype representation of a total of 55 bits
length.

Parameter Gens Choices Bit-string Bits Qty Size

Depth D { 1, 2, 3, 4 } [b1,b2] 2 1 2
Filter Size F1, ..., F17 { 8, 16, 32, 64, 128, 256, 384, 512 } [b3,b4,b5], ... , [b39,b40,b41] 3 13 39
Pooling Type T1, T2, T3, T4 {MaxPooling, AveragePooling } [b42], ... , [b45] 1 4 4
Kernel Type K1, K2, K3, K4 { (3,3), (5,5), (7,7), (9,9) } [b46,b47], ... , [b52,b53] 2 4 8
Optimizer O { sgd, adam, adamax, nadam } [b54,b55] 2 1 2

Table 5: U-Net parameters selected automatically (GA-based) for each experiment. Parameters related to the filters shown in
Table 6.

D P1 P2 P3 P4 K1 K2 K3 K4 O

Exp-5 2 AveragePooling AveragePooling AveragePooling AveragePooling (3,3) (5,5) (7,7) (9,9) adam
Exp-6 2 AveragePooling AveragePooling AveragePooling AveragePooling (9,9) (9,9) (9,9) (9,9) adam
Exp-7 2 MaxPooling MaxPooling AveragePooling MaxPooling (9,9) (9,9) (3,3) (3,3) adam
Exp-8 2 MaxPooling AveragePooling MaxPooling AveragePooling (9,9) (9,9) (5,5) (5,5) adam

Table 6: U-Net filter parameters selected automatically (GA-based). The first and last values are related to the input Lin and
output Lout image correspondingly. The symbol # stands for the filter position not used.

Lin F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 Lout

Exp-5 3 32 64 256 512 # # # # # # 512 1024 512 64 128 32 32 3
Exp-6 3 16 32 8 16 # # # # # # 16 32 16 32 64 32 32 3
Exp-7 3 64 128 16 32 # # # # # # 32 64 32 64 128 64 64 3
Exp-8 3 16 32 16 32 # # # # # # 32 64 32 16 32 16 16 3

Table 7: Experimental results, bold numbers are the best results in each setup and underlined numbers are the best results
from both setups.

Experiment TrainAcc TestAcc Sensitivity Specificity Precision AUC ROC Model size TrainTime TestTime

Manual
Exp-1 0.9663 0.9549 0.7537 0.9843 0.8752 0.9776 4.2 MB 04:01:00 00:07:59
Exp-2 0.9664 0.9547 0.7486 0.9848 0.8780 0.9776 1.1 MB 02:02:00 00:05:59
Exp-3 0.9665 0.9547 0.7518 0.9843 0.8747 0.9774 5.0 MB 03:17:00 00:06:14
Exp-4 0.9653 0.9535 0.7480 0.9835 0.8688 0.9745 939.4 KB 02:02:00 00:06:01

GA-based
Exp-5 0.9526 0.9356 0.5967 0.9850 0.8532 0.9465 186 KB 01:00:00 00:05:45
Exp-6 0.9662 0.9534 0.7506 0.9829 0.8651 0.9751 557.3 KB 20:58:00 00:05:43
Exp-7 0.9668 0.9534 0.7501 0.9831 0.8662 0.9751 8.1 MB 21:02:00 00:06:06
Exp-8 0.9664 0.9525 0.7309 0.9849 0.8757 0.9742 557 KB 21:44:00 00:05:52

to use a GA to evolve U-net architectures. As can
be noted all U-net architectures evolved by GA from
Exp-5 to Exp-8 are always smaller than the architec-
ture of Exp-4. The U-net from Exp-5 got a reduc-
tion of more than 80% from the smaller manually de-
signed in Exp-4, and 95% reduction from Exp-1. This
reduction in size is reflected in the computational ef-
fort used as shown in the TrainTime column in Ta-
ble 7. Even though, the difference between the time
taken by Exp-2 or Exp-3 is not much against the time
taken by Exp-5; just half the time reduction on the
GA-based experiments, we need to recall that we are
using a set of U-nets during a certain number of gen-
erations when running GA. The last column of the
Table 7 the time taken for each U-net to deliver 20

images with a retinal blood vessel segmentation using
the test set is in average six minutes, considering just
one image the time taken is about 18 seconds.

Finally, in Table 8 shows the results from 9 previ-
ous related works using the result AUC-ROC perfor-
mance taken from (Unet-code, ), where the top results
are from (Xiancheng et al., 2018) and (Liskowski and
Krawiec, 2016). It can be noted that the prediction
performance from the GA-based Exp-6 is competitive
against those top results.
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Table 8: Comparison of the AUC ROC performance from
the manually designed U-net from Exp-1 and the GA-based
from Exp-6 both marked with an asterisk (*) against differ-
ent state-of-the-art methods, showing on the top the best.

Method AUC ROC

(Ronneberger et al., 2015b) 0.9790
(Liskowski and Krawiec, 2016) 0.9790
Exp-1 (Manual) 0.9776*
Exp-6 (GA-based) 0.9751*
(Melinščak et al., 2015) 0.9749
(Fraz et al., 2012) 0.9747
(Li et al., 2015) 0.9738
(Roychowdhury et al., 2014) 0.9670
(Osareh and Shadgar, 2009) 0.9650
(Soares et al., 2006) 0.9614
(Azzopardi et al., 2015) 0.9614

(a) Unet Exp-1

(b) Unet Exp-6

Figure 2: (a) U-net architecture manually designed from
experiment 1, (b) U-net architecture evolved through GA
from experiment 6.

5 CONCLUSIONS

In this research project, we address the retinal blood
vessel segmentation task using the benchmark from
the DRIVE images dataset. Current state of the art ap-
proaches all use some form of NNs which are increas-
ing its complexity, then manually designing them is
challenging. We implemented two sets of experi-
ments; manual and automatic design of U-net archi-
tectures. From the first experiment, we designed man-
ually a U-net with competitive results and half the size
of the baseline architecture used from previous re-
lated work. On the other hand, we use standard GA to

evolve U-net architectures. Furthermore, we explain
in detail how to implement GA to address specifically
this task, but can easily be extended to address other
problem domains. The experimental results show that
GA is able to find even smaller architectures from
our smaller manually designed U-net with a reduc-
tion in the size of more than 95% from the and getting
competitive accuracy performance against state of the
art methods. This finding puts on the right track to
be able in the future to implement these models in
portable applications. For future work, we are plan-
ning to increase the size of the population and num-
ber generations to see if GA is able to further improve
the performance on this problem. Furthermore, an ex-
tension of this work is to apply GA to evolve U-nets
considering different architecture types.
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