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Abstract: We propose two basic ways of merging various partial fuzzy rule-bases containing knowledge related to the
same process or dependency in general. The knowledge that is not at the disposal is considered undefined and
encoded using some dummy value. For simplicity, we use only one code for undefined membership value,
and we handle the undefined membership values using operations of variable-domain fuzzy set theory, i.e., the
theory that allows fuzzy sets to have undefined membership values. Moreover, we study one of the essential
properties in fuzzy modeling–a graded property of functionality. We provide estimations for degrees of the
functionality of input models and merged models of partial fuzzy rule-bases.

1 INTRODUCTION

In this contribution, we focus on fuzzy models of IF–
THEN rules due to their natural ability to handle the
gradualness of expert knowledge. Models of vari-
ous fuzzy IF–THEN rules (Mamdani and Assilian,
1975; Hájek, 1998) are closely related to the domain
of definition. For example, we often deal with many
rule bases in hierarchical systems such as in (Del-
gado et al., 2003; Kóczy et al., 2003; Magdalena,
2019; Nolasco et al., 2019), or in ensemble techniques
(Scherer, 2012; Štěpnička et al., 2016; Fletcher et al.,
2020), which can generally differ in the domains. It
means that each particular rule base (a set of fuzzy
IF–THEN rules) has its domain, and outside of it is
considered to be undefined.

The problem of merging rule bases from differ-
ent domains (Lughofer, 2011; Casillas et al., 2013;
Latkowski and Mikołajczyk, 2004; Peters et al., 2004)
arose from the practical need to join rule-bases based
on various expert knowledge, given data, or fact base
etc. Roughly speaking, it consists in unifying the do-
mains into a common one and extending the member-
ship functions of particular fuzzy sets by filling in an
appropriately chosen membership degree such that an
output merged rule-base keeps non-conflicting knowl-
edge and preserves properties owned by both input
rule-bases.

Since in some cases, we want to carry information
about undefined parts of input models; consequently,
none of the standard membership degrees would

be applicable for filling in. Here, variable-domain
fuzzy set theory (VFST) introduced in (Běhounek and
Daňková, 2020a) is applicable. It provides essential
tools for handling fuzzy sets with undefined member-
ship values.

Note that there are also other approaches to handle
undefined membership values, such as in (Štěpnička
et al., 2019; d’Allonnes and Lesot, 2017). An ad-
vantage of an inference system involving operations
of VFST is robustness in the sense of being able to
handle some exceptions automatically. Generally, ex-
ceptions have various sources, e.g., an integer divide
by zero or using too much memory. In our case, ex-
ceptions related to undefined values are relevant.

In VFST, various ways of merging rule-bases
from two different domains are definable as an al-
ternative to the know approaches. In the following,
we will investigate which avoids artifacts and behaves
as expected. Moreover, we will present the notion
of functionality and study its properties w.r.t. merged
rule-bases.

The paper is organized as follows. In Sec-
tion 2, we recall notions of partial fuzzy sets and
relations, two essential extensions of residuated lat-
tice operations, and other necessary notions mostly
from (Běhounek and Novák, 2015; Běhounek and
Daňková, 2020a). Conjunctive and disjunctive mod-
els of partial fuzzy rule-bases are presented in Sec-
tion 3. Next, in Section 4, we introduce basic merg-
ing techniques that use partial fuzzy set operations.
All presented notions are together with illustrative ex-
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amples that should help a reader with understanding.
The study of the transmission of functionality prop-
erty by merged models is in Section 5. Finally, the
main results and features of the used formalism are
summarized in Section 6.

2 BASIC NOTATIONS

Consider a complete residuated lattice

L = 〈L,∨,∧,�,⇒,0,1〉, (1)

and a single dummy element ∗ /∈ L representing an er-
ror code related to undefined truth degree. We extend
the operations of L to ∗ by the following truth tables:

• The Bochvar-style operations

cB β ∗
α α c β ∗
∗ ∗ ∗

(2)

where c ∈ {∧,∨,�,⇒}. Here, ∗ behaves as the
annihilator and it can be viewed as the representa-
tive of a fatal error.

• The Sobociński-style operations

cS β ∗
α α c β α

∗ β ∗
(3)

c ∈ {∧,∨,�} and

⇒S β ∗
α α⇒β α⇒0
∗ β ∗

(4)

These operations treat ∗ as the neutral element,
which means that they ignore ∗ as far as possi-
ble. The only suspicious operation is⇒S, where
⇒ is monotone in the second argument and anti-
tone in the fist one. These properties of⇒ lead to
inputting 0 instead of ∗ to compute α⇒∗ in (4).

Both names of classes of extensions are inspired by
{0,1,∗}-valued connectives in (Ciucci and Dubois,
2013).

Additionally, we introduce two basic bivalent or-
derings of truth values:

• The following ordering treats ∗ as a bottom ele-
ment:

≤∗ β ∗
α α≤ β 0
∗ 1 1

(5)

• And dually, we treat ∗ as a top element:

≤∗ β ∗
α α≤ β 1
∗ 0 1

(6)

Let L∗ = L∪{∗} and αi ∈ L∗ for each i ∈ I (where
I is an arbitrary index set). Then we define:
• The Bochvar infimum

∧
B

i∈I

αi =


∧
i∈I

αi if αi 6= ∗ for each i ∈ I;

∗ otherwise.

• The Bochvar supremum

∨
B

i∈I

αi =


∨
i∈I

αi if αi 6= ∗ for each i ∈ I;

∗ otherwise.

• The Sobociński infimum

∧
S

i∈I

αi =


∧
i∈I

αi 6=∗

αi if αi 6= ∗ for some i ∈ I;

∗ otherwise.

• The Sobociński supremum

∨
S

i∈I

αi =


∨
i∈I

αi 6=∗

αi if αi 6= ∗ for some i ∈ I;

∗ otherwise.

2.1 Partial Fuzzy Sets and Relations

Ordinary fuzzy sets are identified with their L-valued
membership functions, while the partial fuzzy sets
introduced by (Běhounek and Novák, 2015) allow
membership functions to be undefined. The member-
ship functions of partial fuzzy sets are total functions
from some universe of discourse to L∪{∗}. The ad-
ditional dummy value ∗ /∈ L allows us to capture the
domain of partial fuzzy set.
Definition 2.1. Let U be a universe of discourse,
XA ⊆ U , ∗ /∈ L, L∗ = L∪ {∗} and µA : XA → L be a
membership function from XA to a suitable structure L
of membership degrees.
1. A partial fuzzy set is a pair A = (XA,µA). This

fact is denoted by A ⊂∼ XA, XA is called the crisp
domain of A and we often write Dom(A) instead
of XA.

2. A partial fuzzy set A = (XA,µA) in a universe
U ⊇ XA is represented by a L∗-valued member-
ship function A on U , defined for each x ∈U as:

A(x) =

{
µA(x) if x ∈ XA;
∗ if x ∈U \XA.

(7)
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Fuzzy relations between two crisp sets A and B
are fuzzy sets on A×B, while the domain of a partial
fuzzy relation is intended to be a subset of A×B. It is
defined as follows:

Definition 2.2. Let A,B 6= /0.
We say that a partial fuzzy set R = (XR,µR) is a

partial fuzzy relation between A and B if XR ⊆ A×B
and µR : XR→ L.

If A = B, we speak of partial fuzzy relations on A.

Consider A,B ⊂ U . Due to Definition 2.1, L∗-
valued membership function of a partial fuzzy rela-
tion R between A and B is defined for each (x,y) ∈
U×U as:

R(x,y) =

{
µR(x) if x ∈ XR;
∗ if x ∈ (U×U)\XR.

(8)

Example 2.3. Let U = 〈0,1〉, XA = XB ⊆ U , A =
(XA,µA), B = (XB,µB) due to Figure 1. Then we
define partial fuzzy relations (A ×B B), (A ×S B),
(AoB B) and (AoS B) with the following represen-
tations on U :

(A×B B)(x,y) =df A(x)�B B(y), x,y ∈U, (9)
(A×S B)(x,y) =df A(x)�S B(y), x,y ∈U, (10)
(AoB B)(x,y) =df A(x)⇒B B(y), x,y ∈U, (11)
(AoS B)(x,y) =df A(x)⇒S B(y), x,y ∈U, (12)

depicted on Figures 2–5, respectively. Observe that
the domain of A×S B is (XA×U)∪ (U×XB).

Partial fuzzy relations A×B B and A×S B can be
viewed as two variants of Cartesian product of partial
fuzzy sets A and B.
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Figure 1: Fuzzy sets A (solid line) and B (dotted line) on
XA = XB = 〈0.3,0.8〉.

2.2 Partial Fuzzy Relational Operations

We have the following two main options to define re-
lational operations based on a various treatments of
undefined values:

• Bochvar intersection:

(RuB S)(x,y) =df R(x,y)∧B S(x,y)
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Figure 2: A×B B from Example 2.3.
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Figure 3: A×S B from Example 2.3.
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Figure 4: AoB B from Example 2.3.
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Figure 5: AoS B from Example 2.3.

• Sobociński intersection:

(RuS S)(x,y) =df R(x,y)∧S S(x,y)

• Bochvar strong-intersection:

(R∩B S)(x,y) =df R(x,y)�B S(x,y)

• Sobociński strong-intersection:

(R∩S S)(x,y) =df R(x,y)�S S(x,y)
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• Bochvar union:

(RtB S)(x,y) =df R(x,y)∨B S(x,y)

• Sobociński union:

(RtS S)(x,y) =df R(x,y)∨S S(x,y)

3 MODELS OF PARTIAL FUZZY
IF-THEN RULES

Let I be some index set. A collection R of rules

“IF x ∈ Ai THEN y ∈ Bi”,

where each Ai,Bi, i ∈ I is modeled by a partial fuzzy
set, is called partial fuzzy rules or partial fuzzy rule-
base. Fuzzy rules have two main models; we call
them disjunctive and conjunctive models of IF-THEN
rules due to a type of connective used to join rules. We
can write formally

DR =df
⊔
i∈I

(Ai×Bi), (13)

CR =df
l

i∈I

(Ai oBi), (14)

where Ai,Bi ⊂∼U ,

(A×B)(x,y) =df A(x)�B(y),
(AoB)(x,y) =df A(x)⇒B(y), for all x,y ∈U,⊔

and
d

are the usual union and intersection of fuzzy
sets based on lattice operations ∨ and ∧, respectively.

In case of partial fuzzy rules, disjunctive and con-
junctive models are defined as

DR
SB =df

⊔
S

i∈I

(Ai×B Bi), (15)

CR
SB =df

l
S

i∈I

(Ai oB Bi), (16)

respectively. These models are partial fuzzy sets with
the same domain

⋃
i∈I(Dom(Ai)×Dom(Bi)). In the

sequel, we will simply write D,C,DSB,CSB instead
of DR ,CR ,DR

SB,C
R
SB, respectively, provided that R is

clear from the context.
Notice that the introduced models use Bochvar

and Sobociński extensions that are very similar to ex-
tended operations that form the so-called Dragonfly
algebra (Štěpnička et al., 2019). They differ only at
values 0 and 1 because in Dragonfly algebra ∗ is sup-
posed to represent some degree lying between these
two values.

Example 3.1. Let U = 〈0,1〉, A1,A2,B1,B2 be partial
fuzzy sets with membership functions as on Figure 6
and

Dom(A1) = Dom(B1) = [0.2,0.7] (17)
Dom(A2) = Dom(B2) = [0.4,0.9] (18)

Then, the partial fuzzy relations DSB and CSB are
depicted on Figures 7 and 8, respectively.
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Figure 6: Partial fuzzy sets A1,A2 (solid line) and B1,B2
(dotted line).
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Figure 7: DSB model of partial fuzzy rules.
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Figure 8: CSB model of partial fuzzy rules.

In the following examples, we will overview other
possible combinations of extensions of operations
than in (15) and (16).

Example 3.2. Consider the same setting as in the pre-
vious example and define the following partial fuzzy
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relations:

DBS =df
⊔

B
i∈I

(Ai×S Bi) (19)

CBS =df
l

B
i∈I

(Ai oS Bi) (20)

In DBS and CBS, Sobociński and Bochvar extensions
of operations are reversed comparing with DSB and
CSB. Their domain is

2⋂
i=1

(Dom(Ai)×U)∪ (U×Dom(Bi)) (21)

DSB is drawn on Figures 7 for partial fuzzy sets
from Figure 6. As seen from this figure, DBS and
CBS cannot represent a functional dependence in ap-
propriate way. Outside

⋃2
i=1(Dom(Ai)×Dom(Bi)),

Sobociński-operations add relational dependencies by
means of partial fuzzy sets Ai,Bi, i = 1,2, which
changes significantly meaning and understandabil-
ity. Consequently, we do not include them in mod-
els of partial fuzzy rules. Observe that use of only
Sobociński-extension of operations leads to the same
problem as described above.
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Figure 9: DBS from Example.
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Figure 10: CBS from Example.

Example 3.3. Consider the same setting as in Ex-
ample 3.1 and define the following partial fuzzy re-

lations:
DBB =df

⊔
B

i∈I

(Ai×B Bi) (22)

CBB =df
l

B
i∈I

(Ai oB Bi) (23)

In DBB and CBB, only Bochvar extensions of opera-
tions are used, which leads to the following domain

2⋂
i=1

(Dom(Ai)×Dom(Bi)) (24)

Hence, these partial fuzzy relations can be viewed as
minimalist models of partial fuzzy rules, where infor-
mation outside of a common domain is refused. Such
information can be viewed as unreliable and therefore
it do not propagate into the models.
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Figure 11: CBB model of partial fuzzy rules.
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Figure 12: DBB model of partial fuzzy rules.

Due to deficiencies explained in the above ex-
amples, we focus only on the models given by (15)
and (16).

We define a sup-T composition of partial fuzzy re-
lations using Bochvar and Sobociński operations as
follows:
• Sobociński–Bochvar sup-T composition

(R◦SB S)(x,y) =df
∨

S
z∈U

(
R(x,z)�B S(z,y)

)
,

Notice that Dom(R ◦SB S) = Dom(R) ◦Dom(S) and
a sup-T composition of partial fuzzy relations is as
usual on the composition of the domains and other-
wise, it remains undefined.
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4 MERGING MODELS OF
PARTIAL FUZZY RULE-BASES

In this section, we will deal with disjunctive and con-
junctive models of partial fuzzy rule-bases given by
(15) and (16), respectively. Recall that these mod-
els are partial fuzzy relations. Therefore, we can ap-
ply partial fuzzy operations for merging several par-
tial fuzzy rule-bases describing the same dependency
into the single one. This process is visualized on Fig-
ure 13. The used operation with its corresponding ex-
tension determines the merging uniquely.

Figure 13: Merging of two rule-bases describing the same
dependency.

Sobociński extensions of operations ignores un-
defined inputs represented by ∗. Hence, using these
operations we unite various information from differ-
ent sources. We apply this fact and define a family of
unifying merging operations.
Definition 4.1. Let R ,S be partial fuzzy rule-bases
and R,S be their models, respectively. Moreover, let
M = R ∪S and o ∈ {u,t,∩,∪}.

Then, we say that a unifying merging of R and S
using operation o is M with a model

M =df R oS S. (25)

Analogously, we employ Bochvar extensions of
operations for incorporating information from various
sources, which is assumed to be unreliable outside a
domain of common knowledge.
Definition 4.2. Under the assumptions of Defini-
tion 4.1, we say that a strict merging of R and S using
operation o is M with a model

M =df R oB S. (26)

An extension to n models is straightforward.

Example 4.3. Assume two models R = (XR,µR) and
S= (XS,µS) of some partial fuzzy rule-bases R and S ,
respectively. For a simplicity, assume R consists of
3 rules, where Dom(Ai) = [0.3,0.8] and Dom(Bi) =
[0.3,0.9] for all i ∈ I = {1,2,3}, and moreover, S
consists of 3 rules, where Dom(A′j) = [0,0.6] and
Dom(B′j) = [0.2,0.95] for all j ∈ J = {1,2,3,4}.
Their disjunctive models are depicted on Figures 14
and 15.

Figure 16 shows a model of unifying merging of
R and S using u, i.e., RuS S. Similarly, Figure 17
depicts RtS S. A model of strict merging of R and
S using u (t) is the same as RuS S (RtS S) on the
intersection of domains XR ∩XS, and otherwise it re-
mains undefined. Hence, graphs of RuB S and RtB S
can be easily derived from Figure 16 and Figure 17,
respectively.
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Figure 14: R from Example 4.3.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 15: S from Example 4.3.
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Figure 16: RuS S.
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Figure 17: RtS S.

5 PRESERVATION OF GRADED
FUNCTIONALITY BY MERGED
MODELS

In this section, we will focus on a special kind of rule-
bases, i.e., the one that describes a functional depen-
dency. A functional dependency of a rule-base means
functionality property of the related model (fuzzy re-
lation). Provided that we work with partial fuzzy sets,
we have to introduce functionality into this frame-
work.
Definition 5.1. Let U 6= /0 be a universe of discourse,
X ,Y ⊂U , and R be a partial fuzzy relation between X
and Y . The functionality property of R w.r.t. ≈1,≈2
is defined as

Func≈1,≈2(R)≡df
∧

S
xx′yy′∈U

[(x≈1 x′�B

R(x,y)�B R(x′,y′))⇒B y≈2 y′] (27)
We say that R is functional to degree d if d =
Func≈1,≈2(R).

This definition stems from graded notion of func-
tionality for fuzzy sets by (Demirci, 2001; Daňková,
2018). Func≈1,≈2(R) is designed in agreement with
our intuitive expectations, i.e., its degree is computed
for all elements from the respective domains of partial
fuzzy relations ≈1,≈2, and R.

Provided that we deal with a partial fuzzy rule-
base R, it is necessary to construct partial fuzzy rela-
tions ≈1 and ≈2 from partial fuzzy sets {Ai}i∈I and
{Bi}i∈I , respectively, using Valverde’s representation
theorem (Valverde, 1985) modified for partial fuzzy
sets.
Theorem 5.2. Let I be some index set, {Ai}i∈I be a
family of partial fuzzy sets, and {ci}i∈I be a family of
elements such that ci ∈ XAi and Ai(ci) = 1 for each
i ∈ I, U be a common universe set such that XAi ⊆U
for all i ∈ I. Moreover, let

x≈ y =df
∧

S
i∈I

(Ai(x)⇔B Ai(y)). (28)

Then the following two statements are equivalent.
(1) A binary partial fuzzy relation≈ on

⋃
i∈I XAi is

such that

Ai(x) = x≈ ci, for all x ∈U. (29)

(2) For all i, j ∈ I∨
S

x∈U

(Ai(x)�B A j(x))≤
∧

S
y∈U

(Ai(y)⇔B A j(y)) (30)

where ≤ ∈ {≤∗,≤∗}.

Proof. We provide only a sketch of the proof. (1) fol-
lows from (2) by replacing undefined parts of {Ai}i∈I
by filling in the membership value 0. Then {Ai}i∈I
become total on U and we can apply Valverde’s rep-
resentation theorem for fuzzy sets. The resulting sim-
ilarity (reflexive, symmetric and transitive) relation≈′
is total on U . Let us define

Dom∗(A)(x) =df

{
1 if x ∈ XA;
∗ if x ∈U \XA.

(31)

Then Ai(x) = (x≈ ci) = (x≈′ ci)�B Dom∗(Ai)(x) for
all x ∈ U , where ∗ is either top or bottom element
w.r.t. ≤.

The reverse implication follows from the fact that
≈′ is similarity relation for which (30) is valid. For
the partial fuzzy sets {Ai}i∈I , the expressions on both
sides of (30) are computed over the same sets XAi ∩
XA j ⊆U for all i, j ∈ I. Hence, (30) is valid for partial
fuzzy sets {Ai}i∈I defined by (28).

In the sequel, we will study translation of func-
tionality property of merged partial fuzzy rule-bases.
Let us consider two partial fuzzy rule-bases R and S
with partial fuzzy sets {Ai,Bi}i∈I and {C j,D j} j∈J , re-
spectively. Their models DR ,CR ,DS ,CS are given by
(15) and (16). Moreover, let us define

x≈1 y =df
∧

S
i∈I

(Ai(x)⇔B Ai(y)) (32)

x≈2 y =df
∧

S
i∈I

(Bi(x)⇔B Bi(y)) (33)

x∼1 y =df
∧

S
i∈J

(Ci(x)⇔B Ci(y)) (34)

x∼2 y =df
∧

S
i∈J

(Di(x)⇔B Di(y)) (35)

for all x,y ∈U , k = 1,2, where U ⊇ XAi ,XBi ,XC j ,XD j ,
i ∈ I, j ∈ J.

Let F be one of the models of R and G be one
of the models of S . Then, we can prove the follow-
ing boundaries for graded functionality in the case of
strict merging of R and S using u and also ∩:

Func≈1,≈2(F)∧B Func∼1,∼2(G)

≤∗ Funcw1,w2(F uB G), (36)
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where wk=df (≈k)uB (∼k), k = 1,2.

Func≈1,≈2(F)�B Func∼1,∼2(G)

≤∗ Funcw1,w2(F ∩B G), (37)

where wk=df (≈k)∩B (∼k), k = 1,2.
The union operator is not applicable in the case of

functionality property provided that the domains of
partial fuzzy sets in the models are arbitrary. Easily,
we can find two functional fuzzy relations such that
their union is not functional. It can be proved for both
orderings ≤ ∈ {≤∗,≤∗} that if

⋃
i∈I XAi ∩

⋃
j∈J XC j =

/0 then

Func≈1,≈2(F)∧B Func∼1,∼2(G)

≤ Funcw1,w2(F tB G), (38)

is trivially valid, because (F tB G)(x,y) = ∗ for all
x,y ∈U . However, a unifying merging via t operator
leads to a non-trivial estimation based on the same
requirement as above, i.e., if

⋃
i∈I XAi ∩

⋃
j∈J XC j = /0

then

Func≈1,≈2(F)∧S Func∼1,∼2(G)

≤ Funcw1,w2(F tS G). (39)

Recall that the domain of Sobociński operations
∩S,uS,tS is the union of domains of the input partial
fuzzy sets. Therefore, if

⋃
i∈I XAi ∩

⋃
j∈J XC j = /0 then

the following inequalities are trivially valid for both
orderings:

Func≈1,≈2(F)∧S Func∼1,∼2(G)

≤ Funcw1,w2(F uS G), (40)

where wk=df (≈k)uS (∼k), k = 1,2,

Func≈1,≈2(F)�S Func∼1,∼2(G)

≤ Funcw1,w2(F ∩S G) (41)

where where wk=df (≈k)∩S (∼k), k = 1,2, and ≤ ∈
{≤∗,≤∗}.

As can be observed in Figure 16, if
⋃

i∈I XAi ∩⋃
j∈J XC j 6= /0 then it can happen that the output of

unifying merging is not functional anymore. Though
functionality comes with degrees, the functionality of
merged rule-basis can be of zero. There are several
ways to overcome this deficiency: we can specify
a particular rule base’s reliability and then incorpo-
rate it into the merging process; or erasing all knowl-
edge lowering the degree of functionality using, e.g.,
a newly designed merging operator.

Observe that in Definitions 4.1 and 4.2, we used
only partial fuzzy set operations. Consequently, it is
suitable for merging rule-bases describing the same
dependency between sets X and Y . Now, let us con-
sider that our rule-bases describe dependencies be-
tween sets X and Y in the case of R , and between

sets Y and Z in the case of S . Such rule-bases can be
joined as “serial” using sup-T composition of partial
fuzzy relations for which we can prove the following
estimation:

Func≈1,≈2(F)�B Func∼1,∼2(G)

≤ Funcw′1,w′2(F ◦SB G), (42)

where ≤ ∈ {≤∗,≤∗}, and w′k=df (≈k) ◦SB (∼k) for
k = 1,2. For simplicity of exposition, merging using
◦ was not included in formal definitions of merging
methods because it does not have strict either unify-
ing character. It can be viewed as a reasonable merg-
ing operator. Moreover, we have proposed only one
combination of Bochvar and Sobociński extensions
for sup-T composition. It is not in the scope of this pa-
per to investigate other ways of extensions. For prop-
erties of ◦SB, we refer to (Běhounek and Daňková,
2020b), and also consult (Štěpnička and Cao, 2018)
for other extensions of ◦ to partial fuzzy relations.

6 CONCLUSIONS

We have proposed two basic ways of merging rule-
bases describing the same dependency. Moreover, we
have studied a graded property of functionality, which
is one of the essential properties in fuzzy modeling.
We extended the so-called Valverde’s representation
theorem for partial fuzzy sets to build a bridge be-
tween partial fuzzy rule-bases and functional partial
fuzzy relations. Using this theorem, we were able
to move from partial fuzzy rule-bases to functional
partial fuzzy relations and then to provide estimations
for degrees of the functionality of input models and
merged models. Proofs of these estimations are left
for a full paper.

ACKNOWLEDGEMENTS

This research was supported by Czech Science Foun-
dation through the grant 20-07851S.

REFERENCES
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(2003). Interpolation in hierarchical rule bases. In
Rutkowski, L. and Kacprzyk, J., editors, Neural Net-
works and Soft Computing, pages 48–53, Heidelberg.
Physica-Verlag HD.

Latkowski, R. and Mikołajczyk, M. (2004). Data decom-
position and decision rule joining for classification of
data with missing values. In Peters, J. F., Skowron, A.,
Grzymała-Busse, J. W., Kostek, B., Świniarski, R. W.,
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Dolný, A. (2019). Missing values and dragonfly oper-
ations in fuzzy relational compositions. International
Journal of Approximate Reasoning, 113:149 – 170.

Merging Partial Fuzzy Rule-bases

251


