
Feature Selection using Binary Moth Flame Optimization with Time
Varying Flames Strategies

Ruba Abu Khurma1, Pedro A. Castillo2, Ahmad Sharieh1 and Ibrahim Aljarah1

1King Abdullah II School for Information Technology,
The University of Jordan, Amman, Jordan

2Department of Computer Architecture and Computer Technology, ETSIIT and CITIC,
University of Granada, Granada, Spain

Keywords: Moth Flame Optimization, MFO, Feature Selection, Classification, Flames Number, Optimization.

Abstract: In this paper, a new feature selection (FS) approach is proposed based on the Moth Flame Optimization (MFO)
algorithm with time-varying flames number strategies. FS is a data preprocessing technique that is applied to
minimize the number of features in a data set to enhance the performance of the learning algorithm (e.g classi-
fier) and reduce the learning time. Finding the best feature subset is a challenging search process that requires
exponential running time if the complete search space is generated. Meta-heuristics algorithms are promis-
ing alternative solutions that have proven their performance in finding approximated optimal solutions within
a reasonable time. The MFO algorithm is a recently developed Swarm Intelligence (SI) algorithm that has
demonstrated effective performance in solving various optimization problems. This is due to its spiral update
strategy that enhances the convergence trends of the algorithm. The number of flames is an important parame-
ter in the MFO algorithm that controls the balance between the exploration and exploitation phases during the
optimization process. In the standard MFO, the number of flames linearly decreases throughout the iterations.
This paper proposes different time-varying strategies to update the number of flames and analyzes their impact
on the performance of MFO when used to solve the FS problem. Seventeen medical benchmark data sets were
used to evaluate the performance of the proposed approach. The proposed approach is compared with other
well-regarded meta-heuristics and the results show promising performance in tackling the FS problem.

1 INTRODUCTION

Curse of dimensionality is a challenging problem for
data mining tasks (e.g classification and clustering).
It means increasing the number of dimensions (fea-
tures) in a data set (Khurma et al., 2020). This will
lead to having noisy features that are either redun-
dant (highly correlated with each other) or irrelevant
(weakly related to the target class). The major nega-
tive consequences of this phenomenon are the degra-
dation in the performance of the learning algorithm
and the increasing of the learning time.

Feature selection (FS) is a preprocessing stage in
a data mining process to minimize the number of
features and improve the performance of the learn-
ing process. This is done by excluding the uninfor-
mative features and producing a smaller version of a
dataset that includes only the most representative fea-
tures (Aljarah et al., 2018b).

The FS process consists of two primary processes:

searching for the best feature subset and evaluating
the generated feature subset (Khurma. et al., 2020).
Looking at the evaluation process, there are two main
approaches to determine the goodness of a candidate
solution: filter and wrapper approaches. Filters per-
form the evaluation based on the intrinsic characteris-
tics of the features and their dependencies with each
other and with the target class. In literature, there is
a wide range of examples on filters such as F-score,
Information Gain (IG) and Chi-Square (Tang et al.,
2014). In wrapper approaches, the evaluation deci-
sion depends on the learning process. The involve-
ment of learning in wrappers contributes to better per-
formance and slower optimization time in comparison
with filters.

Considering the search process, two main ap-
proaches can be used: complete and meta-heuristic
search (Mafarja et al., 2018). Complete search ap-
proach (i.e brute force) generates the entire feature
space and applies an exhaustive search to determine

Khurma, R., Castillo, P., Sharieh, A. and Aljarah, I.
Feature Selection using Binary Moth Flame Optimization with Time Varying Flames Strategies.
DOI: 10.5220/0010021700170027
In Proceedings of the 12th International Joint Conference on Computational Intelligence (IJCCI 2020), pages 17-27
ISBN: 978-989-758-475-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

17

the best feature subset from all candidate feature sub-
sets (possible solutions). This is time-consuming
and impractical with large feature spaces. Formally
speaking, for a dataset with N features, the corre-
sponding feature space size is 2N .

The meta-heuristic search approach mitigated the
complexity problem of large feature spaces by gener-
ating random solutions. Although this approach may
lose the exact optimal solution it may reach to promis-
ing (near) optimal solution in a reasonable time. Thus,
it gives up the exact optimal in exchange for faster
learning time.

A common taxonomy for meta-heuristic algo-
rithms (MHs) are based on the inspiration source from
nature that divided MHs into two main categories
Evolutionary Algorithms (EA) and Swarm Intelli-
gence (SI) (Khurma et al., 2020). EAs are inspired by
Darwin’s theory of evolution. EAs use optimization
operators to evolve solutions such as crossover, muta-
tion and elitism. The most popular EAs are Genetic
Algorithm (GA) (Oliveira et al., 2010) and Differen-
tial Evolution (DE) (Khushaba et al., 2011).

SI category includes algorithms that are inspired
by the social behaviour of creatures that live in groups
such as schools of fish, the swarm of wolves, flocks
of birds, colonies of bee, etc (Brezočnik et al., 2018).
SI algorithm usually mimics the survival strategy of
swarm members and how they exchange information
to find the food then convert that into a mathemat-
ical methodology for the SI algorithm. There are
many examples for SIs such as Gray Wolves Op-
timization(GWO) (Medjahed et al., 2016), Cuckoo
Search (CS) (Rodrigues et al., 2013) and Bat Algo-
rithm (BA) (Nakamura et al., 2012). SIs and EAs are
similar in that they are both follow the population-
based paradigm. The algorithm starts by initializing
a set of solutions (e.g. population) then the popula-
tion undergoes an iterative refining process that sim-
ulates either evolutionary or swarming behavior that
the algorithm was originally inspired by. Updating
solutions continues until a predefined stopping con-
dition is met. In any population-based algorithm,
there are two main phases for the optimization process
called exploration and exploitation (Khurma. et al.,
2020). These are conflicting milestones because the
optimizer in exploration searches globally to explore
different regions of the search space but in exploita-
tion, the search is made locally in the most promis-
ing region where the optimal solution is likely to be
found. A proper balance between exploration and ex-
ploitation will enhance the performance of the op-
timization process because a lot of exploration in-
creases the time of search and may lose the opti-
mal solution and excessive exploitation may lead to

stuck in local minima. Recently, MHs have been pro-
posed to solve various optimization problems includ-
ing the FS problem. MHs have been used to pro-
vide valid optimized solutions for the FS problem in
a wide range of applications such as Arabic hand-
written letter recognition (Tubishat et al., 2018), fa-
cial recognition (Mistry et al., 2017), financial diag-
nosis (Wang and Tan, 2017; Al-Madi et al., 2018),
and medical application (Wang et al., 2017). In the
medical applications, the FS-MH approach has been
efficiently applied to minimize the size of a medi-
cal data set without causing degradation in the per-
formance of a learner. Moreover, FS-MH maintains
the readability of the medical data set by providing
the physician with the most useful features that are
able to diagnose the patient’s status without affect-
ing the original meaning of those features. In lit-
erature, researchers worked to enhance the MHs by
applying different modification strategies: integrat-
ing new operators (e.g chaotic maps (Khurma. et al.,
2020), rough set (Inbarani et al., 2014) and Levy flight
(Zhang et al., 2016)), hybridization with other algo-
rithm (e.g filter (Yang et al., 2010), MH (Zawbaa
et al., 2018) and classifier (Aljarah et al., 2018a)),
using new initialization mechanism (Medjahed et al.,
2016) and adopting new update strategy such as the
time-varying strategy (Mafarja et al., 2017).

Moth Flame Optimization (MFO) is a recent SI
algorithm that was proposed in (Mirjalili and Lewis,
2013). MFO was originally developed to solve con-
tinuous optimization problems, then a binary version
called BMFO was proposed in (Reddy et al., 2018)
to solve the binary optimization problem such as FS.
Many modifications have been adopted to improve the
BMFO as a search algorithm in the FS process includ-
ing (Ewees et al., 2017; Zhang et al., 2016; Hassanien
et al., 2017; Sayed and Hassanien, 2018; Sayed et al.,
2016; Wang et al., 2017). For more information about
MFO, a reader can refer to the reviews (Mehne and
Mirjalili, 2020; Shehab et al., 2019). The MFO’s suc-
cess is mainly due to its spiral update strategy and
the adaptive parameters that control the adaptive con-
vergence of the algorithm and maintain the trade-off
between exploration and exploitation.

In MFO, moths represent the search agents that
change their positions in the search space. The best
positions obtained so far are called flames. To guar-
antee the exploitation around the best positions, MFO
applies an adaptive mechanism to decrease the num-
ber of flames over the course of iterations. Thus, there
will be N flames in the initial iterations that are equal
to the number of moths then due to the gradual decre-
ments, the moths will update their positions with re-
spect to one flame in the final iterations. In the stan-

ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications

18

dard MFO, the adjustment for the number of flames
is performed using a linear decreasing strategy. This
chapter proposes for the first time different updating
strategies to control the number of flames parame-
ter. The aim is to study the effect of using different
time variant functions for the number of flames on the
MFO optimization process in the feature space. The
main contribution of this paper is the enhancement of
the MFO capability as a wrapper FS by utilizing its
spiral update strategy in combination with the time-
varying flames strategy. The generated five variants
of BMFO are evaluated in terms of fitness value, clas-
sification accuracy, number of selected features and
processing time. The KNN classifier is used to assess
the accuracy of the different approaches when applied
on a seventeen benchmark medical data set. The ex-
perimental results show superior performance in tack-
ling the FS problem.

The paper is organized as follows: Section 2
presents an overview of the MFO algorithm. Section
3, describes the proposed approach. Section 4, shows
the experimental results. Finally, a conclusion and fu-
ture works are provided in Section 5.

2 MOTH FLAME OPTIMIZATION

Moth Flame Optimization (MFO) is a recent SI al-
gorithm that was developed in (Mirjalili and Lewis,
2013). The natural inspiration of MFO came from the
movements of moths at night. These moths travel in a
straight line and maintain a stable angle to the moon.
This movement strategy is called transfer orientation.
The transfer orientation is not useful if the source light
is close because the moth will try to maintain the same
angle with it, forcing it to move in a spiral way and
eventually die. Fig 1 shows the conceptual model of
the MFO algorithm.

Eq.1 describes mathematically the natural spiral
motion of moths around a flame where Mi represents
the ith moth, Fj represents the jth flame, and S is the
spiral function. Eq.2 formulates the spiral motion us-
ing a standard logarithmic function where Di is the
distance between the ith moth and the jth flame as de-
scribed in Eq.3, b is a constant value for determining
the shape of the logarithmic spiral, and t is a random
number in the range [-1, 1]. The parameter t = −1
indicates the closest position of a moth to a flame
where t = 1 indicates the farthest position between
a moth and a flame. To achieve more exploitation in
the search space the t parameter is considered in the
range [r,1] where r is linearly decreased throughout
iterations from -1 to -2. Eq.8 shows gradual decre-
ments of the number of flames throughout iterations.

Algorithm 1 shows the entire pseudo code of the MFO
algorithm.

Mi = S(Mi,Fj) (1)

S(Mi,Fj) = Di× ebt × cos(2π)+Fj (2)

Di = |Mi−Fj| (3)

Algorithm 1: Pseudo-code of the MFO algorithm.
Input:Max iteration, n (number of moths), d (number
of dimensions)
Output:Approximated global solution
Initialize the position of moths

while l ≤Max iteration do
Update flame no using Eq.8
OM = FitnessFunction(M);
if l == 1 then

F = sort(M);
OF = sort(OM);

else
F = sort(Ml−1,Ml);
OF = sort(OMl−1,OMl);

end if
for i = 1: n do

for j = 1: d do
Update r and t;
Calculate D using Eq.3 with respect to the
corresponding moth;
Update M(i, j) using Eqs.1 and Eqs.2 with
respect to the corresponding moth;

end for
end for
l = l + 1;

end while

2.1 Binary Moth Flame Optimization

The original MFO was designed to solve global op-
timization problems (Mirjalili, 2015). In such cases,
the individual elements are real values. Thus, the opti-
mizer’s task is to verify that the upper and lower limits
of each element are not exceeded in the initialization
and update processes. However, for binary optimiza-
tion problems, the case is different because each in-
dividual’s elements are restricted to either “0” or “1”.
To enable the MFO algorithm to optimize in a binary
feature space, the MFO needs to integrate some op-
erators with it. The most common binary operator
used to convert continuous optimizers into binary is
the transfer function (TF) (Mirjalili and Lewis, 2013).
The main reason for using TFs is that they are easy
to implement without affecting the essence of the al-
gorithm. In this paper, the used TF is the sigmoid

Feature Selection using Binary Moth Flame Optimization with Time Varying Flames Strategies

19

Figure 1: The conceptual model for the movement behaviour of moths.

function which was originally used in (Kennedy and
Eberhart, 1997) to generate the binary PSO (BPSO).
In the MFO algorithm, the first term of Eq.2 repre-
sents the step vector which is redefined in Eq.4. The
function of the sigmoid is to determine a probability
value in the range [0,1] for each element of the solu-
tion. Eq.5 shows the formula of the sigmoid function.
Each moth updates its position based on Eq.6 which
takes the output of Eq.5 as its input.

∆ M = Di × ebt × cos(2π) (4)

T F(∆ Mt) = 1/(1+ e∆ Mt) (5)

Md
i (t +1) =

{
0, if rand < T F(∆ Mt+1)

1, if rand > T F(∆ Mt+1)
(6)

2.2 Binary Moth Flame Optimization
for Feature Selection

For an FS problem, there are two important issues to
consider to establish a correct optimization process:
the representation of the individual and the evalua-
tion of it. Usually, the individual in the FS problem
is represented using a 1-d array. The value of each
element can be assigned to two values, either ”0” or
”1”. The value ”0” indicates that the feature is not
selected while the value ”1” indicates that the feature
is selected. The evaluation of the individual in an FS
problem depends on using a fitness function that max-
imizes the performance of a classifier and minimizes
the number of selected features simultaneously.

Eq.7 formulates the FS problem where αγR(D) is
the error rate of the classification produced by a clas-
sifier, |R| is the number of selected features in the re-
duced data set, and |C| is the number of features in the
original data set, and α ∈ [0,1], β = (1−α) are two
parameters for representing the importance of classifi-
cation performance and length of feature subset based
on recommendations (Faris et al., 2019).

Fitness = αγR(D)+β
|R|
|C|

(7)

3 THE PROPOSED APPROACH

The optimization process of the population-based
meta-heuristic algorithms has two conflicting mile-
stones: exploration and exploitation. In exploration,
the optimizer searches globally and explores several
regions of the search space to determine the most
promising region where a global solution might ex-
ist. In contrast, the optimizer in exploitation searches
locally within these regions to find the (near) global
optima. A good balance between exploration and ex-
ploitation will enable the optimizer to achieve better
convergence results in a reasonable time. Usually,
a meta-heuristic algorithm has one or more param-
eters that control the transition between exploration
and exploitation. The ideal behavior is to extend
the exploration phase in the early stages of the op-
timization process to navigate to more regions in the
search space and then seamlessly switch to the ex-
ploitation phase to focus on a specific region until it
comes very close to the optimal solution. In MFO,
the flames number is the parameter that controls the
balance between exploration and exploitation. In the
standard MFO algorithm, the number of flames is up-
dated using a linear decreasing formula. Different up-
date strategies are proposed in this paper for the first
time to guarantee the gradual decrements of the num-
ber of flames throughout iterations.

• Flames number with linearly decreasing strategy.
This is the standard formula used in the original
MFO algorithm. As appears in Eq.8, there will
be more exploration for the search space in the
early optimization stages while there will be more
exploitation in the final stages. The flames no is
decreased linearly across iterations (Shi and Eber-
hart, 1999). Flames no at each iteration is defined

ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications

20

as in Eq.8 where l is the current number of itera-
tion, N is the maximum number of flames and T
is the maximum number of iterations.

Flames no = round
(

N−
(

l
T

)
×
(

N−1
))

(8)

• Flames number with Non-linear coefficient de-
creasing strategy.
The Non-linear coefficient decreasing strategy is
proposed instead of the standard Linear updating
strategy (Yang et al., 2015). Flames no at each
iteration is defined as in Eq.9 where α is suggested
by the authors to be α = 1/π2.

Flames no = round
(

N−
(

l
T

)α

×
(

N−1
))

(9)

• Flames number with Decreasing strategy.
This strategy uses a nonlinear formula to decrease
the flames number over the iterations (Fan and
Chiu, 2007). Flames no at each iteration is de-
fined as in Eq.10.

Flames no = round
(

2
l

)0.3

(10)

• Flames number with Oscillating strategy.
The Oscillating strategy uses a sinusoidal function
to update flames number during the search pro-
cess instead of monotonically decreasing it (Kent-
zoglanakis and Poole, 2009). The flames number
at each iteration is defined as in Eq.11 where k is
set by the authors to 7.

Flames no = round
(

N−cos
(

2πl(4k+6)
T

)
×
(

N−1
))

(11)

• Flames number with Logarithmic strategy.
The Logarithmic decreasing strategy (Gao et al.,
2008) to update the flames number is shown in
Eq.12 where a is a constant that set to 1 by the
authors.

Flames no = round
(

N−
(

log10

(
a+

10l
T

)
×
(

N−1
))

(12)

4 EXPERIMENTAL SETUP AND
RESULTS

In this paper, seventeen medical data sets were used
to evaluate the proposed wrapper approaches. The

datasets were downloaded from well-regarded data
repositories: UCI, Kaggle and Keel. Table 1 lists
these data sets and shows their number of features,
instances, and classes. Table 2 shows the param-
eters setting of three well known meta-heuristic al-
gorithms: BGWO, BCS and BBA. These wrapper
based approaches were used to validate the proposed
approaches by conducting fair comparisons between
them. Therefore, all the experiments were executed
on a personal machine with AMD Athlon Dual-Core
QL-60 CPU at 1.90 GHz and memory of 2 GB
running Windows7 Ultimate 64 bit operating sys-
tem. The optimization algorithms have been all im-
plemented in Python in the EvoloPy-FS framework
(Khurma et al., 2020). The maximum number of it-
erations and the population size were set to 100 and
10 respectively. In this work, the K-NN classifier (K =
5(Aljarah et al., 2018a)) is used to assess the goodness
of each solution in the wrapper FS approach. Each
data set is randomly divided into two parts; 66% for
training and 34% for testing. To obtain statistically
significant results, this division was repeated 30 inde-
pendent times. Therefore, the final statistical results
were obtained over 30 independent runs. The α and
β parameters in the fitness equation is set to 0.99 and
0.01, respectively (Mafarja et al., 2020). The used
evaluation measures are fitness values (see Eq. 13),
classification accuracy (see Eq. 14), number of se-
lected features (see Eq. 15) and CPU time (see Eq.
16).

1
M

M

∑
j=1

Fit i (13)

where M is the number of runs, Fit i is the fitness value
of the best solution in the ith run.

1
M

M

∑
j=1

1
N

N

∑
i=1

(Ci = Li) (14)

where M is the number of runs for MFO to find the
optimal subset of features, N is the number of data
set instances, Ci is the predictive class, and Li is the
actual class in the labeled data.

1
M

M

∑
i=1

di

D
(15)

where M is the number of runs, di is the number of
selected features in the best solution from the ith run,
and D is the total number of features in the original
dataset.

1
M

M

∑
i=1

RTi (16)

where M is the number of runs, RTi is the running time
required for the ith run to be completed.

Feature Selection using Binary Moth Flame Optimization with Time Varying Flames Strategies

21

In this section, the impact of the number of
flames parameter using different time-varying update
strategies is studied. Furthermore, a comparison is
conducted between these strategies and three well-
regarded wrapper methods (e.g, BGWO, BCS and
BBA). The best results in tables are highlighted in
bold.

Considering Table 3, it can be seen that using
BMFO with a Linear strategy outperformed other ap-
proaches in 35% of the data sets, followed by the De-
creasing strategy that got the best results in four data
sets. The Decreasing strategy is a variant of the Non-
decreasing strategy that reduces the number of flames
during the optimization process based on the current
iteration. It doesn’t include the maximum number
of iterations. Other strategies reduce the number of
flames using the ratio of the current iteration (l) to the
maximum number of iteration (T). Logarithm came
third and Oscillating and Non-linear strategies came
last. Inspecting Table 7 and Fig 2, it can be seen, in
general, that the Linear-based BMFO approach out-
performed BGOW, BCS, and BBA in terms of classi-
fication accuracy across 41% of the data sets. BGOW,
BCS, and BBA obtained the best result in five, three
and two data sets respectively.

Because FS is a minimization optimization prob-
lem, the target is to achieve a minimal fitness value.
In other words, FS is seeking to determine the most
informative features that reveal the highest classifica-
tion accuracy. By comparing the BMFO strategies to-
gether in terms of fitness values, it can be seen in Ta-
ble 4 that the Linear strategy was the best on six data
sets then came the Logarithm and Oscillating strate-
gies which were the best on five and four data sets re-
spectively. Following them are the Nonlinear and De-
creasing approaches which were the best only on two
and one data sets respectively. From Table 8 and Fig
3, it appears that the best fitness values were obtained
by the BCS which outperformed the others across
53% of data sets. The Linear-based BMFO came next
and outperformed other approaches across 29% of the
data sets. The decline in the fitness results of BMFO
compared to BCS can be explained that they were not
superior to BCS either in minimizing the number of
selected features or maximizing the classification ac-
curacy. This is because the fitness function combines
the error rate and the size of the feature subset. Since
Linear BMFO is superior to other methods in terms
of classification accuracy, then it was not superior in
terms of the number of selected features. Fig 4 il-
lustrates the convergence behavior of all the studied
wrapper approaches on all data sets. Each subfigure
shows the changes in fitness value for each approach
across all iterations on a specified data set. In all data

sets, BMFO based approaches and BCS show the best
convergence trends. This can be realized from the
convergence curves that achieve the minimum fitness
values in the final iterations of the optimization pro-
cess. On the other hand, premature convergence and
entrapment in local minima can be guessed from the
convergence behavior of BGWO and BBA.

When examining the results of the number of se-
lected features recorded in Table 5, the Decreasing-
based BMFO was ranked first with the best results
reported across 41% of the data sets. However, Ta-
ble 9 shows that the BBA was the best approach to
reduce the dimensionality of the medical data sets.
BBA was superior to other approaches over 59% of
the data sets.

In this section, the running time is carefully an-
alyzed because this is a serious factor especially
when the data sets become larger. In Table 6, the
Decreasing-based BMFO achieved the smallest run-
ning time on eight data sets. Oscillating and linear
approaches came next, and they achieved the min-
imum running time on five and three data sets re-
spectively. Logarithm achieved the minimum running
time over the SPECTF Heart data set only. The Non-
linear approach was not the best across any of the data
sets. From Table 10, It can be observed that the De-
creasing BMFO approach achieved the shortest run-
ning time over twelve data sets. The BBA approach
achieved the minim running time over five data sets
while BGWO and BCS were not the best over any
data sets.

By taking all the results together, we conclude that
the update strategy of the number of flames affects
the robustness and the convergence of the BMFO al-
gorithm. In the proposed approaches, five strategies
were employed to update the number of flames in
the BMFO algorithm. The Linear strategy was able
to outperform other strategies in terms of classifica-
tion accuracy and fitness values, while the Decreas-
ing strategy obtained the best results in terms of the
number of selected features and average running time.
Here, we can remark that the enhanced performance
of the proposed approach is because the Linear strat-
egy enhanced the ability of the BMFO algorithm to
balance the exploration and exploitation. This is done
by gradually reducing the number of flames through-
out iterations. Also, allowing more exploration in the
early iterations, while exploitation is emphasized in
the later iterations. The results showed the competi-
tive performance of the proposed BMFO approaches
when compared to other well-regarded approaches.

ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications

22

Table 1: Description of the used data sets.

NO Dataset Name No features No instances No classes

1 Diagnostic 30 569 2
2 Original 9 699 2
3 Coimbra 9 115 2
4 BreastEW 30 596 2
5 Dermatology 34 366 6
6 Liver 10 583 2
7 Lymphography 18 148 4
8 Parkinsons 22 194 2
9 SPECT 22 267 2
10 HeartEW 13 270 2
11 Hepatitis 18 79 2
12 SAHeart 9 461 2
13 SPECTF 43 266 2
14 Heart 13 302 5
15 Diabetes 9 768 2
16 Colon 2000 62 2
17 Leukemia 7129 72 2

Table 2: Parameter settings.

Algorithm Parameter Value

GWO α [2,0]

BA Qmin Frequency minimum 0
Qmax Frequency maximum 2
A Loudness 0.5
r Pulse rate 0.5

CS pa 0.25
β 3/2

Table 3: Average classification accuracy from 30 runs for
all approaches.

NO Dataset Name Linear
Non-linear
coefficient

Decreasing Oscillating Logarithm

1 Diagnostic 0.907 0.906 0.906 0.904 0.907
2 Original 0.969 0.970 0.971 0.970 0.964
3 Coimbra 0.775 0.775 0.775 0.775 0.775
4 BreastEW 0.935 0.932 0.933 0.932 0.932
5 Dermatology 0.972 0.970 0.970 0.972 0.970
6 Liver 0.774 0.652 0.653 0.653 0.653
7 Lymphography 0.673 0.667 0.664 0.667 0.675
8 Parkinsons 0.776 0.776 0.776 0.776 0.776
9 SPECT 0.657 0.657 0.675 0.658 0.656
10 HeartEW 0.788 0.779 0.781 0.786 0.778
11 Hepatitis 0.824 0.821 0.818 0.815 0.844
12 SAHeart 0.627 0.627 0.627 0.627 0.627
13 SPECTF 0.768 0.764 0.771 0.766 0.764
14 Heart 0.741 0.759 0.742 0.754 0.758
15 Diabetes 0.725 0.726 0.726 0.725 0.725
16 Colon 0.652 0.645 0.644 0.638 0.632
17 Leukemia 0.852 0.845 0.849 0.859 0.849

Table 4: Average fitness values from 30 runs for all ap-
proaches.

NO Dataset Name Linear
Non-linear
coefficient

Decreasing Oscillating Logarithm

1 Diagnostic 0.038 0.041 0.040 0.050 0.037
2 Original 0.049 0.049 0.046 0.048 0.048
3 Coimbra 0.287 0.287 0.287 0.287 0.287
4 BreastEW 0.071 0.072 0.075 0.075 0.075
5 Dermatology 0.061 0.062 0.065 0.066 0.066
6 Liver 0.348 0.345 0.345 0.345 0.345
7 Lymphography 0.405 0.419 0.423 0.429 0.431
8 Parkinsons 0.348 0.348 0.348 0.348 0.348
9 SPECT 0.371 0.356 0.362 0.372 0.366
10 HeartEW 0.196 0.185 0.184 0.190 0.176
11 Hepatitis 0.202 0.202 0.202 0.202 0.202
12 SAHeart 0.406 0.408 0.408 0.408 0.408
13 SPECTF Heart 0.303 0.301 0.270 0.292 0.296
14 Heart 0.243 0.214 0.240 0.204 0.209
15 Diabetes 0.258 0.260 0.260 0.258 0.258
16 Colon 0.377 0.377 0.377 0.377 0.377
17 Leukemia 0.115 0.115 0.119 0.115 0.115

Table 5: Average number of selected features from 30 runs
for all approaches.

NO Dataset Name Linear
Non-linear
coefficient

Decreasing Oscillating Logarithm

1 Diagnostic 16.500 15.467 15.367 16.167 16.533
2 Original 4.400 4.567 4.733 4.600 4.333
3 Coimbra 3.667 4.000 4.000 4.033 4.033
4 BreastEW 19.433 19.700 19.500 19.733 20.233
5 Dermatology 22.167 22.167 21.600 21.567 22.567
6 Liver 3.967 4.000 4.000 4.000 2.467
7 Lymphography 9.367 9.233 8.733 9.067 9.333
8 Parkinsons 8.233 8.067 7.967 8.367 8.724
9 SPECT 14.167 13.333 13.733 14.300 13.867
10 HeartEW 7.767 7.433 7.167 7.667 7.333
11 Hepatitis 7.800 7.733 7.167 8.067 7.900
12 SAHeart 4.033 4.000 4.000 4.000 4.000
13 SPECTF 29.500 28.500 27.067 28.933 29.267
14 Heart 5.700 5.400 5.567 5.833 5.667
15 Diabetes 6.500 4.033 4.033 4.000 4.000
16 Colon 1082.067 1116.033 1150.433 1152.233 1115.657
17 Leukemia 3506.367 3510.667 3497.700 3491.767 3492.933

Table 6: Average computational time from 30 runs for all
approaches.

NO Dataset Name Linear
Non-linear
coefficient

Decreasing Oscillating Logarithm

1 Diagnostic 21.476 21.429 20.804 20.892 21.317
2 Original 23.241 23.362 22.498 22.566 23.321
3 Coimbra 7.918 8.021 7.912 7.884 8.054
4 BreastEW 23.493 23.644 22.984 22.922 23.677
5 Dermatology 16.038 16.090 15.785 15.755 16.126
6 Liver 13.724 13.875 13.439 13.423 13.668
7 Lymphography 9.146 9.0655 8.820 9.113 9.698
8 Parkinsons 10.572 10.637 10.387 10.410 10.525
9 SPECT 12.418 12.682 12.482 12.482 16.958
10 HeartEW 11.848 12.313 11.954 11.990 12.154
11 Hepatitis 7.423 7.423 7.322 7.345 7.377
12 SAHeart 16.354 17.100 16.519 16.562 16.958
13 SPECTF 13.866 14.204 13.837 13.874 13.597
14 Heart 12.165 12.075 11.867 11.892 12.012
15 Diabetes 24.727 24.937 24.224 24.216 24.894
16 Colon 76.932 73.013 70.149 75.816 73.726
17 Leukemia 265.892 260.067 251.403 266.039 264.390

Table 7: Comparison of Linear based MFO with other algo-
rithms based on the average accuracy values.

NO Dataset Name Linear BGWO BCS BBA
1 Diagnostic 0.907 0.904 0.896 0.760
2 Original 0.969 0.963 0.971 0.939
3 Coimbra 0.775 0.707 0.777 0.583
4 BreastEW 0.935 0.925 0.923 0.896
5 Dermatology 0.972 0.956 0.961 0.739
6 Liver 0.774 0.591 0.653 0.582
7 Lymphography 0.673 0.682 0.690 0.705
8 Parkinsons 0.776 0.799 0.776 0.786
9 SPECT 0.657 0.656 0.653 0.624
10 HeartEW 0.788 0.770 0.778 0.709
11 Hepatitis 0.824 0.805 0.826 0.838
12 SAHeart 0.627 0.647 0.627 0.622
13 SPECTF 0.768 0.767 0.760 0.748
14 Heart 0.741 0.723 0.769 0.645
15 Diabetes 0.725 0.750 0.725 0.664
16 Colon 0.652 0.655 0.632 0.645
17 Leukemia 0.852 0.856 0.853 0.715

Table 8: Comparison of Linear based MFO with other algo-
rithms based on the average fitness values.

NO Dataset Name Linear BGWO BCS BBA
1 Diagnostic 0.038 0.074 0.085 0.322
2 Original 0.049 0.069 0.042 0.079
3 Coimbra 0.287 0.276 0.287 0.557
4 BreastEW 0.071 0.075 0.068 0.093
5 Dermatology 0.061 0.090 0.070 0.436
6 Liver 0.348 0.407 0.345 0.414
7 Lymphography 0.405 0.405 0.433 0.431
8 Parkinsons 0.348 0.329 0.347 0.366
9 SPECT 0.371 0.358 0.374 0.351
10 HeartEW 0.196 0.194 0.154 0.290
11 Hepatitis 0.202 0.202 0.201 0.204
12 SAHeart 0.406 0.400 0.404 0.371
13 SPECTF 0.303 0.276 0.264 0.272
14 Heart 0.243 0.278 0.182 0.456
15 Diabetes 0.258 0.261 0.258 0.386
16 Colon 0.377 0.376 0.376 0.376
17 Leukemia 0.115 0.115 0.118 0.328

Feature Selection using Binary Moth Flame Optimization with Time Varying Flames Strategies

23

Figure 2: Comparison of time-variant BMFO approaches
with other optimizers in terms of the classification accuracy.

Table 9: Comparison of Decreasing based MFO with other
algorithms based on the average number of selected Fea-
tures.

NO Dataset Name Decreasing BGWO BCS BBA
1 Diagnostic 15.367 14.733 11.533 14.533
2 Original 4.733 5.667 3.933 3.633
3 Coimbra 4.000 4.333 4.133 4.600
4 BreastEW 19.500 15.600 14.933 12.500
5 Dermatology 21.600 17.267 16.667 14.367
6 Liver 4.000 3.533 4.000 2.467
7 Lymphography 8.733 9.767 7.000 6.600
8 Parkinsons 7.967 9.333 5.800 10.400
9 SPECT 13.733 10.667 10.400 9.000
10 HeartEW 7.167 7.100 6.200 5.467
11 Hepatitis 7.167 6.467 5.300 10.300
12 SAHeart 4.000 4.433 4.100 4.167
13 SPECTF 27.067 22.033 19.933 17.900
14 Heart 5.567 4.767 5.467 5.967
15 Diabetes 4.033 4.033 4.033 3.767
16 Colon 1150.433 970.867 961.867 974.233
17 Leukemia 3497.700 3495.567 3422.367 1241.767

Figure 3: Comparison of time-variant BMFO approaches
with other optimizers in terms of fitness values.

Table 10: Comparison of Decreasing based MFO with other
algorithms based on the average computational Time.

NO Dataset Name Decreasing BGWO BCS BBA
1 Diagnostic 20.804 23.426 41.084 21.125
2 Original 22.498 24.175 45.724 23.015
3 Coimbra 7.912 8.690 15.852 8.274
4 BreastEW 22.984 24.955 43.112 22.147
5 Dermatology 15.785 18.405 30.140 15.607
6 Liver 13.439 14.249 27.131 14.001
7 Lymphography 8.820 10.775 17.249 9.206
8 Parkinsons 10.387 13.064 20.188 10.628
9 SPECT 12.482 14.483 24.256 12.674
10 HeartEW 11.954 13.625 23.590 12.395
11 Hepatitis 7.322 9.331 14.065 7.556
12 SAHeart 16.519 17.198 33.451 17.170
13 SPECTF 13.837 18.002 25.759 13.597
14 Heart 11.867 13.562 23.625 12.324
15 Diabetes 24.224 25.043 49.313 24.964
16 Colon 70.149 274.127 73.273 55.723
17 Leukemia 251.403 964.913 245.912 189.204

5 CONCLUSIONS

This work presents a new wrapper based FS approach
based on an enhanced MFO algorithm. The enhance-
ment step is based on adopting the time-varying func-
tions for updating the number of flames. This parame-
ter plays an important role in controlling the transition
between exploration and exploitation phases during
the optimization process. Achieving a good balance
between exploration and exploitation will positively
affect the performance of MFO and contributes to im-
proved classification performance. In this paper, the
impact of five different updating strategies for flames
number is investigated. For evaluation purposes, sev-
enteen medical benchmark data sets are used. The
results show that the Linear update strategy that grad-
ually decreases the flames number can improve the
exploration and exploitation of the BMFO for FS
tasks. The reported results show that BMFO methods
achieve competitive results in comparison with other
well-regarded wrapper-based approaches in terms of
the classification accuracy, the fitness value, and the
running time.

ACKNOWLEDGMENTS

This work is supported by the Ministerio español de
Economı́a y Competitividad under project TIN2017-
85727-C4-2-P (UGR-DeepBio).

ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications

24

(a) Diagnostic (b) Original (c) Coimbra (d) BreastEW

(e) Dermatology (f) Liver (g) Lymph (h) Parkinsons

(i) SPECT (j) HeartEW (k) Hepatitis (l) SAHeart

(m) SPECTF (n) Heart (o) Diabetes (p) Colon

(q) Leukemia

Figure 4: Convergence curves for the time-variant BMFO and other wrapper-based approaches on the used medical data sets.

REFERENCES

Al-Madi, N., Faris, H., and Abukhurma, R. (2018).
Cost-sensitive genetic programming for churn predic-
tion and identification of the influencing factors in
telecommunication market. International Journal of
Advanced Science and Technology, pages 13–28.

Aljarah, I., AlaḾ, A.-Z., Faris, H., Hassonah, M. A., Mir-
jalili, S., and Saadeh, H. (2018a). Simultaneous fea-
ture selection and support vector machine optimiza-
tion using the grasshopper optimization algorithm.
Cognitive Computation, pages 1–18.

Aljarah, I., Mafarja, M., Heidari, A. A., Faris, H., Zhang, Y.,
and Mirjalili, S. (2018b). Asynchronous accelerating
multi-leader salp chains for feature selection. Applied
Soft Computing, 71:964–979.

Brezočnik, L., Fister, I., and Podgorelec, V. (2018). Swarm
intelligence algorithms for feature selection: A re-
view. Applied Sciences, 8(9):1521.

Ewees, A. A., Sahlol, A. T., and Amasha, M. A. (2017).
A bio-inspired moth-flame optimization algorithm for
arabic handwritten letter recognition. In Control,
Artificial Intelligence, Robotics & Optimization (IC-
CAIRO), 2017 International Conference on, pages

Feature Selection using Binary Moth Flame Optimization with Time Varying Flames Strategies

25

154–159. IEEE.
Fan, S.-K. S. and Chiu, Y.-Y. (2007). A decreasing inertia

weight particle swarm optimizer. Engineering Opti-
mization, 39(2):203–228.

Faris, H., Ala’M, A.-Z., Heidari, A. A., Aljarah, I., Mafarja,
M., Hassonah, M. A., and Fujita, H. (2019). An intel-
ligent system for spam detection and identification of
the most relevant features based on evolutionary ran-
dom weight networks. Information Fusion, 48:67–83.

Gao, Y.-l., An, X.-h., and Liu, J.-m. (2008). A parti-
cle swarm optimization algorithm with logarithm de-
creasing inertia weight and chaos mutation. In 2008
International Conference on Computational Intelli-
gence and Security, volume 1, pages 61–65. IEEE.

Hassanien, A. E., Gaber, T., Mokhtar, U., and Hefny, H.
(2017). An improved moth flame optimization al-
gorithm based on rough sets for tomato diseases de-
tection. Computers and Electronics in Agriculture,
136:86–96.

Inbarani, H. H., Azar, A. T., and Jothi, G. (2014). Super-
vised hybrid feature selection based on pso and rough
sets for medical diagnosis. Computer methods and
programs in biomedicine, 113(1):175–185.

Kennedy, J. and Eberhart, R. C. (1997). A discrete binary
version of the particle swarm algorithm. In Systems,
Man, and Cybernetics, 1997. Computational Cyber-
netics and Simulation., 1997 IEEE International Con-
ference on, volume 5, pages 4104–4108. IEEE.

Kentzoglanakis, K. and Poole, M. (2009). Particle swarm
optimization with an oscillating inertia weight. In Pro-
ceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 1749–1750.

Khurma., R. A., Aljarah., I., and Sharieh., A. (2020).
An efficient moth flame optimization algorithm us-
ing chaotic maps for feature selection in the medical
applications. In Proceedings of the 9th International
Conference on Pattern Recognition Applications and
Methods - Volume 1: ICPRAM,, pages 175–182. IN-
STICC, SciTePress.

Khurma, R. A., Aljarah, I., Sharieh, A., and Mirjalili, S.
(2020). Evolopy-fs: An open-source nature-inspired
optimization framework in python for feature selec-
tion. In Evolutionary Machine Learning Techniques,
pages 131–173. Springer.

Khushaba, R. N., Al-Ani, A., and Al-Jumaily, A. (2011).
Feature subset selection using differential evolution
and a statistical repair mechanism. Expert Systems
with Applications, 38(9):11515–11526.

Mafarja, M., Aljarah, I., Heidari, A. A., Hammouri, A. I.,
Faris, H., AlaḾ, A.-Z., and Mirjalili, S. (2018). Evo-
lutionary population dynamics and grasshopper opti-
mization approaches for feature selection problems.
Knowledge-Based Systems, 145:25–45.

Mafarja, M., Qasem, A., Heidari, A. A., Aljarah, I., Faris,
H., and Mirjalili, S. (2020). Efficient hybrid nature-
inspired binary optimizers for feature selection. Cog-
nitive Computation, 12(1):150–175.

Mafarja, M. M., Eleyan, D., Jaber, I., Hammouri, A., and
Mirjalili, S. (2017). Binary dragonfly algorithm for

feature selection. In New Trends in Computing Sci-
ences (ICTCS), 2017 International Conference on,
pages 12–17. IEEE.

Medjahed, S. A., Saadi, T. A., Benyettou, A., and Ouali, M.
(2016). Gray wolf optimizer for hyperspectral band
selection. Applied Soft Computing, 40:178–186.

Mehne, S. H. H. and Mirjalili, S. (2020). Moth-flame op-
timization algorithm: theory, literature review, and
application in optimal nonlinear feedback control de-
sign. In Nature-Inspired Optimizers, pages 143–166.
Springer.

Mirjalili, S. (2015). Moth-flame optimization algorithm: A
novel nature-inspired heuristic paradigm. Knowledge-
Based Systems, 89:228–249.

Mirjalili, S. and Lewis, A. (2013). S-shaped versus v-
shaped transfer functions for binary particle swarm
optimization. Swarm and Evolutionary Computation,
9:1–14.

Mistry, K., Zhang, L., Neoh, S. C., Lim, C. P., and Fielding,
B. (2017). A micro-ga embedded pso feature selec-
tion approach to intelligent facial emotion recognition.
IEEE transactions on cybernetics, 47(6):1496–1509.

Nakamura, R. Y., Pereira, L. A., Costa, K., Rodrigues, D.,
Papa, J. P., and Yang, X.-S. (2012). Bba: a binary
bat algorithm for feature selection. In 2012 25th SIB-
GRAPI conference on graphics, Patterns and Images,
pages 291–297. IEEE.

Oliveira, A. L., Braga, P. L., Lima, R. M., and Cornélio,
M. L. (2010). Ga-based method for feature selection
and parameters optimization for machine learning re-
gression applied to software effort estimation. infor-
mation and Software Technology, 52(11):1155–1166.

Reddy, S., Panwar, L. K., Panigrahi, B. K., and Kumar, R.
(2018). Solution to unit commitment in power sys-
tem operation planning using binary coded modified
moth flame optimization algorithm (bmmfoa): a flame
selection based computational technique. Journal of
Computational Science, 25:298–317.

Rodrigues, D., Pereira, L. A., Almeida, T., Papa, J. P.,
Souza, A., Ramos, C. C., and Yang, X.-S. (2013).
Bcs: A binary cuckoo search algorithm for feature se-
lection. In Circuits and Systems (ISCAS), 2013 IEEE
International Symposium on, pages 465–468. IEEE.

Sayed, G. I. and Hassanien, A. E. (2018). A hybrid sa-
mfo algorithm for function optimization and engineer-
ing design problems. Complex & Intelligent Systems,
pages 1–18.

Sayed, G. I., Hassanien, A. E., Nassef, T. M., and Pan,
J.-S. (2016). Alzheimerś disease diagnosis based on
moth flame optimization. In International Conference
on Genetic and Evolutionary Computing, pages 298–
305. Springer.

Shehab, M., Abualigah, L., Al Hamad, H., Alabool, H., Al-
shinwan, M., and Khasawneh, A. M. (2019). Moth–
flame optimization algorithm: variants and applica-
tions. Neural Computing and Applications, pages 1–
26.

Shi, Y. and Eberhart, R. C. (1999). Empirical study of parti-
cle swarm optimization. In Proceedings of the 1999

ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications

26

congress on evolutionary computation-CEC99 (Cat.
No. 99TH8406), volume 3, pages 1945–1950. IEEE.

Tang, J., Alelyani, S., and Liu, H. (2014). Feature selec-
tion for classification: A review. Data classification:
Algorithms and applications, page 37.

Tubishat, M., Abushariah, M. A., Idris, N., and Aljarah, I.
(2018). Improved whale optimization algorithm for
feature selection in arabic sentiment analysis. Applied
Intelligence, pages 1–20.

Wang, G.-G. and Tan, Y. (2017). Improving metaheuristic
algorithms with information feedback models. IEEE
Transactions on Cybernetics.

Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z.,
Huang, H., and Tong, C. (2017). Toward an opti-
mal kernel extreme learning machine using a chaotic
moth-flame optimization strategy with applications in
medical diagnoses. Neurocomputing, 267:69–84.

Yang, C., Gao, W., Liu, N., and Song, C. (2015). Low-
discrepancy sequence initialized particle swarm op-
timization algorithm with high-order nonlinear time-
varying inertia weight. Applied Soft Computing,
29:386–394.

Yang, C.-H., Chuang, L.-Y., Yang, C. H., et al. (2010). Ig-
ga: a hybrid filter/wrapper method for feature selec-
tion of microarray data. Journal of Medical and Bio-
logical Engineering, 30(1):23–28.

Zawbaa, H. M., Emary, E., Grosan, C., and Snasel,
V. (2018). Large-dimensionality small-instance set
feature selection: A hybrid bio-inspired heuristic
approach. Swarm and Evolutionary Computation,
42:29–42.

Zhang, L., Mistry, K., Neoh, S. C., and Lim, C. P.
(2016). Intelligent facial emotion recognition using
moth-firefly optimization. Knowledge-Based Systems,
111:248–267.

Feature Selection using Binary Moth Flame Optimization with Time Varying Flames Strategies

27

