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Abstract: The aim of this study is to decode the hemodynamic response evoked by six sound categories (generated from 

various speech and non-speech sounds) using functional near-infrared spectroscopy (fNIRS). fNIRS is used 

to examine the concentration changes of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) in the bilateral 

auditory cortex from 7 healthy subjects. For offline processing, linear discriminant analysis (LDA) classifier 

is utilized to classify various sound categories. For an online processing, general autoregressive linear model 

with iteratively reweighed least squares (AR-IRLS) algorithm for single trials is investigated. In the results, 

we found that the overall two-class classification accuracies were 71.3 ± 8.0% (offline) and 73.2 ± 14.7% 

(online) with two different schemes. The computation time for classification took less than two seconds, which 

demonstrates the potential of using an online AR-IRLS classification for decoding what people hear in daily 

life. 

1 INTRODUCTION 

FNIRS is non-invasive brain imaging method that 

uses safe levels of near-infrared light to penetrate the 

head and brain to record changes in the cerebral blood 

volume and oxygenation. In most studies, two or 

more wavelengths of light are recorded, which 

provide information to spatially and temporally 

distinguish both oxy-hemoglobin (HbO) and deoxy-

hemoglobin (Hb) changes via modified Beer-

Lambert law (Cope et al, 2006; Santosa, Fishburn, 

Zhai, Huppert 2019; Pollonini, L., et al 2014). Figure 

1 show one example of the HbO data from finger-

tapping task activation. Using a grid of optical light 

source and detector positions, fNIRS can record the 

spatial distribution of changes in hemoglobin during 

functional tasks, providing a measurement of 

underlying brain activity. The similar research about 

brain activity has been done with different tools 

(Simbolon et al, 2016, Turnip et al, 2016, Turnip and 

Simbolon, 2016). 

FNIRS has been shown to be promising tool in 

investigating sound and speech processing in these 

populations (Pollonini, L., et al 2014). Compared to 

functional magnetic resonance imaging (fMRI), 

fNIRS recordings are silent, cost less, and can be 

performed in an environment that is more conducive 

to specific studies. Applications of this technology 

have the potential to provide feedback for speech 

therapy or in the tuning of hearing aid devices (e.g., 

cochlear implants) at an early stage of development 

based on brain recordings. Several groups have 

demonstrated the use of fNIRS in measuring brain 

responses in deaf children with cochlear implants 

(Lawler, C. A., et al, 2015).  

 
Figure 1: Oxy-hemoglobin (HbO) of 2-s finger-tapping task 

with the range of interstimulus interval between 4 and 20 s 

(average = 12 s), which is averaged from 2,200 responses 

(Huppert, T. J. et al, 2006). The thin dotted line and thin 

dashed line represent 25 to 75 and 5 to 95 percentiles, 

respectively. The thick line shows the average (normalized) 

evoked response for 2-s task period (Pollonini, L., et al 2014). 
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The aim of the present study is to identify what 

humans hear upon a set of training data by measuring 

the task-evoked hemodynamic responses from the 

auditory cortex bilaterally. Six sound categories 

(English-speech, non-English-speech, annoying 

sounds, nature sounds, classical music, and gunshot 

sounds) are investigated. In our previous work using 

four sound categories (Hong and Santosa, 2016), we 

showed the potential of fNIRS to measure 

hemodynamic response from 18 subjects in offline 

scheme, which are temporally and spatially 

distinguishable. In those offline analyses, all the trials 

from the whole experiment were used in the 

classification and thus the approach is not suitable for 

an online brain-computer interface. In this work, we 

investigate the possibility of performing online 

processing using six different sound categories. The 

algorithm requires filtering (including removal of 

artifacts such as motion and systemic global 

response) and estimation should be performed as 

quick as possible to keep up with the data rate.  

In this work, a single trial general linear model is 

used base on our iterative autoregressive least squares 

algorithm (Barker, J. W., et al., 2013), which has been 

also extended for a real-time process (Barker, J. W., 

et al., 2016). This algorithm uses a two-stage 

autoregressive whitening model and robust 

regression to statistically account for false discoveries 

due to serially correlated errors due to systemic global 

response and motion artifacts and does not require 

additional pre-processing or filtering, which makes it 

ideal for real-time analysis. Using this algorithm, the 

auditory evoked hemodyamic responses to these six 

sound categories were estimated from fNIRS data in 

simulated online conditions (offline analysis but 

mimicking the conditions of online analysis). 

Furthermore, we interpret the confusion matrix in the 

LDA model for summarizing the performance of 

actual and predicted classifications done by the 

classification system. 

2 MATERIALS AND METHODS 

2.1 Stimuli 

A total of 7 subjects (age 27  3 years, 2 females, 2 

left-handed). All the subjects had normal hearing and 

no history of any neurological disorder. All subjects 

were informed about the nature and purpose of the 

respective experiments before providing their written 

consent. In the 6-class problem, each subject lay 

down on a bed. All subjects were asked to remain 

relaxed, to close their eyes and to avoid major bodily 

movements during the experiment. The subjects were 

asked to listen attentively to various audio-stimuli and 

to guess in their mind which category was heard for 

each stimulus. After the experiment, all were asked to 

verbally explain whether they were able to distinguish 

what they had heard precisely or not. The fNIRS-

experimentation of healthy subjects along with the 

entire experimental procedure was conducted in 

accordance with the Declaration of Helsinki and the 

guidelines approved by the Ethics Committee of the 

Institutional Review Board of Pusan National 

University. 

2.2 Audia Stimuli 

The audio-stimuli consisted of six different sound 

categories selected from a popular website 

(http://www.youtube.com). As shown in Table 1, the 

first and second categories entailed speech-hearing 

from a number of languages (i.e., English and several 

non-English) chosen from a language proficiency 

test. It is noted that the subjects were Indonesian, 

Korean, Chinese, Vietnamese, and Pakistani.  

Table 1: Audio categories (M: male, F: female) (Hong and 

Santosa, 2016) 

 Non-vocal hearing 

Trial English Non-English 

1 M Russian (F) 

2 F German (F) 

3 M French (F) 

4 MF* Bulgarian (MF*) 

5 F Italian (MF*) 

6 F Japanese (F) 

 

 Non-vocal hearing 

Trial Annoying 

sound 

Nature 

sound 

Music Gunshot 

1 Baby cry River Canon in D 10 times 

2 Car alarm Forest Canon in D 10 times 

3 Police siren Rain Canon in D 10 times 

4 Horror 

sound 

Jungle Canon in D 10 times 

5 Male 

scream 

Ocean Canon in D 10 times 

6 Nuclear 

alarm 

siren 

Waterf

all 

Canon in D 10 times 

*MF denotes male-female conversation 

Therefore, in this study, each participant 

understood only English among all other speech 

sound categories. Additionally, the non-English 

speech sound categories were Russian, German, 

French, Bulgarian, Italian, and Japanese. The third 
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and fourth categories were annoying sounds and 

nature sounds. Those stimuli are almost identical with 

the previous work as emotional category (Plichta, et al, 

2011). The fifth category was a segment of classical 

music (Canon in D by Pachelbel). The sixth category 

was gunshot sounds at a frequency of 1 Hz (i.e., 1 

gunshot sound every second). Each stimulus 

consisted of an audio duration of 10 sec followed by 

a quiet rest of 20 sec. In addition to the 24 and 36 

audio-stimuli, pre- and post-trials (classical music 

which is a different song with the fifth category) were 

added (neither of which was included in the data 

processing). Accordingly, the entire fNIRS recording 

took about 19 min. All audio-stimuli were digitally 

mixed using the Adobe Audition software (MP3-

format file: 16-bit quantification, 44.1 kHz sampling, 

stereo channel) and were normalized to the same 

intensity level (i.e., average RMS). Active noise-

cancellation earbuds (Sony MDR-NC100D) were 

utilized for acoustic stimulation of all subjects with 

the same sound-level setting. After each fNIRS 

recording session, all of the subjects reported that 

they were able to distinguish the sound items among 

the sound categories accurately in every trial. 

2.3 FNIRS Measurement 

Figure 2 shows the optode configuration of the 

continuous-wave fNIRS system (DYNOT: DYnamic 

Near-infrared Optical Tomography; NIRx Medical 

Technologies, Brooklyn, NY) for bilateral imaging of 

the auditory cortex in both hemispheres. The emitter-

detector distance was 23 mm, and the sampling rate 

was set to 1.81 Hz at two wavelengths (760 and 830 

nm). The optode configuration consisted of 3 × 5 

arrays (8 emitters and 7 detectors) with 22 channels 

(e.g. emitter-detector measurement pair) for each 

hemisphere. The two 22-channel sets were placed on 

the scalp covering the left (Channels 1-22) and right 

(Channels 23-44) temporal lobes. According to the 

International 10-20 system, Channels 16 and 38 were 

placed at T2 and T4 locations, respectively (Santosa, 

H., et al, 2014). It should be noted that, in the left 

hemisphere, both Broca’s area and Wernicke’s area 

were covered by this configuration. Finally, during 

the experiment, all of the lights in the room were 

switched off to minimize signal contamination from 

ambient light sources. 

The measured intensity data of the two wavelengths 

were converted to relative oxy-hemoglobin (HbO) 

and deoxy-hemoglobin (HbR) concentration changes 

using modified Beer-Lambert law (1. Cope, M. et 

al, 1998). All analyses were done using our NIRS 

Brain AnalyzIR toolbox (Santosa et al, 2018). Figure 

3 shows the screenshot of nirs.viz.nirsviewer to 

visualize the time series of raw data (690 nm) for two 

channels with its stimulus info. The menu commands 

(i.e., File, Data Management, Probe Registration, 

Data Analysis, Reports, Help) provide access to most 

operations available in the toolbox through the 

graphical interface for users who prefer not to use the 

command line. For example, this GUI will provide 

the ability to load NIRS files, edit subjects 

demographics, register probe, etc. The GUI also 

provides access to data structures (e.g.., raw, 

wavelength, hemoglobin data, etc.) and NIRS files 

(subject information from demographics). The 

stimulus design and signal from a particular channel 

can be viewed by selecting the corresponding source-

detector pairs in the probe configuration. In Figure 3, 

it shows two channels from 300 s data of 690 nm with 

the stimulus design of the task (“Task”). 

 
Figure 2. Optode configuration: The numbers represent the 

measurement channels, where Channels 16 and 38 coincide 

with T3 and T4 locations in the International 10-20 System 

(Sentosa et al, 2014). 

2.4 Pre-processing for Classification  

In our study, we employed the AR-IRLS algorithm as 

pre-processing for single trial in every channel of 

fNIRS data. The single-trial regression model used 

each trial as a separate regressor. The resulting 

regression coefficients (beta) of the HbO and HbR 

Online Decoding in the Auditory Cortex using Functional Near-infrared Spectroscopy

335



 

responses for each trial and their associated t-statistic 

estimates were used in the classification process.  
 

 
Figure 3: Graphical user interface of AnalyzIR toolbox 

(Sentosa et al, 2018). 

2.5 LDA Classification 

In this work, we examined two different schemes for 

classification: offline and online versions of 

classification model using LDA classifier. LDA 

performs better than support vector machine (SVM) 

for these sound categories activation using fNIRS 

particularly in 4-class problem as already shown in 

the previous works (Hong and Santosa, 2016). The 

offline model used the data from all trials for each 

subject in the subject level classification. Thus, the 

offline model can only be run after the scan is 

completed and makes use of the whole time course of 

data. To determine the offline classification accuracy, 

we used leave-one-out cross-validation for every 

subject. In comparison, the online classification 

model has been trained using all trials up to the 

current test trial. Thereafter, the training data were 

updated accordingly as time passed. For example, in 

4-class problem (total of 24 trials), when trial 23 was 

tested in the program, trials 1~22 were used as 

training data. Thus, the online version of the model 

mimics the conditions of real-time feedback, whereas 

the offline model represents the expected upper-limit 

of model performance. For both versions, all 

computation was done post-hoc and not in actual real-

time. 

 Beta- and t-values from every channel and every 

trial were used for features selection as the output 

from AR-IRLS algorithm. This method entails the 

following steps: i) For offline process (subject level), 

take one trial as testing data and the rest trials as 

training data. (ii) Repeat i) in all data, that is, 24 and 

36 iterations for 4-class and 6-class problem, 

respectively. iii) Compute the accuracy of each 

subject by comparing the predicted one with the 

group data. The classify function available in 

MatlabTM was used as a classifier. iv) Furthermore, 

the confusion matrix on the group data (confusionmat 

function available in MatlabTM) contains 

information about actual and predicted classification 

done by the previous classification system (leave-out-

out) was investigated. This confusion matrix allowed 

us to determine the best distinguishable classes in 

these sound categories. v) Based on the confusion 

matrix, we binned the four-class problem into two-

class problem (i.e., speech and non-speech sound 

categories) for online processing. It also confirmed 

the accuracy for those categories in subject level by 

comparing the classification performance with other 

possible categories. vi) For online process, train on 

the first-half data set (update accordingly as time 

passes) and test on the second-half data using LDA 

classifier. vii) Calculate the accuracy for each subject 

and its average. viii) Additionally, the dendrogram 

function available in MatlabTM was used as a binary 

cluster tree to see the hierarchy on the feature space 

of each category. This allowed us to examine the 

relationships and similarities in feature space between 

the different categories of sounds. The binary 

classification based on clusters was repeated 100 

times for each subject to calculate standard 

deviations. 

3 RESULTS 

3.1 Four-class Model (Previous Works) 

As seen in Figures 4 and 5, the obtained t-values were 

displayed as a map in order to illustrate the activation 

in the covered brain region; the intermediate values 

were interpolated with the Matlab function interp2 

using 22 t-values from 22 channels. On these t-maps, 

the numbers, the color in pixel, and the color bar in 

the lower-right corner indicate the channel numbers, 

signal intensity, and color scale of the t-value of that 

pixel, respectively. Figure 5 shows the activation map 

averaged over the 18 subjects, thus demonstrating the 

overall trends. 
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Figure 4: HbO in the left and right auditory cortices evoked 

by four different sound-categories (Subject 11): Active 

channels appear differently upon auditory stimuli (Hong 

and Santosa, 2016). 

 

Figure 5: The averaged HbO (over 18 subjects) in the left 

and right auditory cortices evoked by four different sound-

categories (Subject 11) (Hong and Santosa, 2016). 

Figure 6 compares the average HbO signals and 

the standard deviations over 18 subjects for English 

and non-English hearing in both hemispheres, while 

Figure 7 compares those annoying and nature sounds. 

The averaging was performed on 108 data points, that 

is 18 subjects multiply by 6 trials, for each category. 

The shaded areas along the mean values represent 

their standard errors. The number inside the figures 

indicate the peak values of the individual HbO 

response. For example, 0.1890 and 0.0888 in Figure 

7 are the peak values for nature and annoying sounds 

in the left hemisphere, respectively. 

 

Figure 6: The averaged HbOs (over 18 subjects) and their 

standard deviations for English and non-English speech 

(Hong and Santosa, 2016). 

Next, to investigate language-related 

classification capability, two-class classification 

problems were performed. Figures 8A and 8B plot the 

classification results for speech hearing (English vs. 

Non- English) and sound hearing (annoying sounds 

vs. natural sounds), respectively. In both cases, as can 

be seen, the classification performance was 

significantly above the chance (i.e., 50%) level. As 

shown in Figures 8A (speech hearing), the average 

classification accuracies using LDA were 71.03 ± 

8.72% (left) and 70.03 ± 8.97% (right) and those by 

SVM, 68.18 ± 8.30% (left) and 68.07 ± 7.59% (right). 

As shown in Fig. 8B (sound hearing), the average 

classification accuracies using LDA were 74.97 ± 

11.74% (left) and 71.80 ± 9.89% (right), and those by 

SVM, 72.34 ± 9.72% (left) and 72.15 ± 9.77% (right), 

respectively. The overall-averaged classification 

accuracies were 70.53 ± 8.79% (LDA) and 68.11 ± 

7.90% (SVM) for speech hearing and 73.39 ± 10.82% 

(LDA) and 72.24 ± 9.61% (SVM) for sound hearing. 
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Figure 7: The averaged HbOs (over 18 subjects) and their 

standard deviations for annoying and nature sounds (Hong 

and Santosa, 2016). 

3.2 Six-class Model  

In the second experiment (6-class problem), a total of 

7 subjects listened to six repetitions of each of six-

categories of sound stimulus (36 total trials). In 

addition to the four categories from 6-class problem, 

a gun-shot (GS) and music (M) were also presented. 

However, the classification performance in 6-class 

problem was not effective for BCI application. 

Contrary to expectations, the result (speech and non-

speech classification) from 6-class problem did not 

find a significant result for both offline and online 

schemes (near the chance levels). For offline 

processing, the average classification accuracies for 

two- and six-class classification were 56.8  11.0% 

and 20.6  3.9%, respectively. The two-class 

classification was the same class with 4-class problem 

(i.e., speech and non-speech sound categories). 

Moreover, for online processing, the average 

classification accuracy was 61.90  7.5% with 

maximum accuracy 72.2% in one subject (range 50.0 

- 66.7%) for the two-class problem. This finding was 

unexpected and suggests that the subject heard too 

many sound categories or class problem, and the 

program had difficulty in distinguishing them. 

 

 

Figure 8: Classification accuracies of two sound-categories: 

(1) Speech hearing (English vs non-English), (b) sound 

hearing (annoying vs natural sounds) (Hong and Santosa, 

2016). 

Next, to investigate the online classification 

capability, we performed the classification in every 

subject. Figure 12 shows the comparison between 

offline (black, plus-sign) and online processing (blue, 

cross-sign). The average classification accuracy was 

73.2  14.7% for online processing. For online 

processing, two cases showed the highest 

classification accuracies of 91.7% (e.g., Subs. 1 and 

10). It is noted that the classification in online 

processing only tested in the second half data by using 

trials 1-12 as initial training data. However, the online 

performance showed a comparable accuracy to the 

offline scheme. Notably, the computation time was 

suitable for brain-computer interface (BCI) 

applications. Specifically, the computation (or 

running) times was 1.39 sec for each trial including 

AR-IRLS as pre-processing and classification 

processes. 
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Figure 9: Confusion matrix (over 18 subjects): The 

performance of the classification model for four class 

problem. Numbers represent the counts of correct 

estimates; color in a pixel and color bar in the right corner 

indicate the percentage of those counts. 

 

Figure 10: Confusion matrix (over 7 subjects): The 

performance of the classification model for six class 

problem. Numbers represent the counts of correct 

estimates; color in a pixel and color bar in the right corner 

indicate the percentage of those counts. 

 

Figure 11: Classification accuracy: The comparison for 

different combinations of classes in every subject. Legends 

a and b-e show the performance for size- and four-class, 

respectively. 

 

Figure 12: Comparison of offline (plus0sign and solid-line) 

and online (cross-sign and dotted-line) performances: 

Individual accuracies for speech and non-speech categories 

in six class problem. It is noted that only the second-half 

data is tested for online processing. 

For the four-class models, we examined the 

relationship of the categories using hierarchical 

clustering based on the feature space of each category 

as shown in Figure 13. In the dendrogam plots, the 

relationship between each class is clustered based on 

a series of binary (two-way) classification decisions. 

The height of the branch/decision point on the y-axis 

indicates the distance separating the feature space of 

the two super-categories. The percentage shows the 

accuracy between the two super-categories. For 

example, English [E] can be separated from 

everything else (non-English [nE], nature sounds 

[NS], and annoying sounds [AS]) at 74.3  9.0% 

accuracy. The English sound is most closely related 

to the non-English sound as indicated by the higher 

position of the branch point on the graph. Similarly, 

we found that for the four-class problem, the 

annoying and nature sounds were more similar to 

each other than they were to the English and non-

English categories. 

A further limitation of this study was the very 

low of sample size in the experiment. Especially, this 

limitation made the classifier performance was 

getting worse in the 6-category model. In future 

studies, a possible means of increasing classification 

accuracy is to increase the number of trials. 

Moreover, to make the HRs (HbO and HbR) return to 

the baseline, a rest period of at least 20 sec is needed. 

It should be noted that a longer experimental time 

causes subject fatigue. This underscores the necessity 

of good environmental conditions for long-duration 

experimentation. Finally, use of an auditory paradigm 

to further develop the system to improve accuracy 

would enable valuable expansion of the proposed 
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online scheme for decoding what humans hear upon 

a set of training data. 

 

Figure 13: Hierarchical clustering: Dendogram for 4-class 

problem. The height (y-xis) indicates the distance 

separating the feature space of the two super-categories; the 

percentage numbers show the accuracy between those 

super-categories. 

4 CONCLUSIONS 

This paper demonstrated the feasibility of our 

proposed online method and discussed its 

potentialities for processing in decoding brain 

activity. This study used fNIRS signals evoked by 

audio-stimuli from multiple sound categories. To 

account for data processing in our online scheme, the 

AR-IRLS algorithm as pre-processing, feature-

selection, and classifier performance were discussed. 

Interestingly, the performance of online classification 

was higher than the chance levels in almost subjects. 

Finally, the authors conclude that the fNIRS signals 

evoked by audio-stimuli from multiple sound 

categories can be effectively utilized in an online 

decoding scheme. 
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