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Abstract: Amputation is defined as the loss of a limb.  Transtibial amputation is the amputation below the knee. The 

purpose of this research is to develop an Electromyography (EMG) based control to mimic the three positions 

of an ankle.  The EMG signals are extracted using eight channel Myo Armband on the tibialis muscles on 

eight subjects.  These signals correspond to the two extreme positions of an ankle and a rest position.  The 

features are extracted and K-Nearest Neighbour is used as a classifier to differentiate between the extreme 

positions with 98.75 % training classification accuracy.  The classified signals are then used to control the 

prosthesis which mimics the ankle movement. This research can be applied to rehabilitate the ankle and help 

the people with lower limb amputations. 

1 INTRODUCTION 

A prosthesis is an artificial device that is developed 

to replace the function of a lost limb. There are two 

major types of limb prostheses: Upper-extremity 

prostheses and Lower-extremity prostheses. Upper-

extremity prostheses include prostheses for trans-

radial amputation, trans-humeral amputation, wrist 

dis-articulation, elbow dis-articulation and shoulder 

dis-articulation. Whereas, lower-extremity prosthesis 

includes prostheses for hip disarticulation, 

transfemoral amputation, knee disarticulation, 

transtibial amputation, ankle disarticulation and 

partial foot amputation.  

Moreover, they can be divided into Active and 

Passive depending on the use of external power 

(Windrich et al., 2016). The passive prosthesis does 

not contain any electronic or mechanical moving part. 

These prostheses are mostly used for cosmetic 

purposes and provide the basic functions like 

pushing, pulling and supporting (Maat et al., 2018).  

An active prosthesis includes externally powered 

devices. They consist of sensors in contact with the 

skin, which pick up the signals from the skin and in 

turn control the devices/ actuators, which in turn 

controls the movement (Windrich et al., 2016). 

The intuitive control can be developed using 

different techniques like Surface Electromyography 

(sEMG)  (Anil and Sreeletha, 2019), Ultrasound 

imaging(González and Castellini, 2013), 

electroencephalography (EEG) (Bright et al., 2016), 

Force myography (FMG) (Cho et al., 2016), 

Implantable Myoelectric Sensors (Pasquina et al., 

2015) and Targeted Muscle Reinnervation 

(TMR)(Cheesborough et al., 2015).  Out of these 

techniques sEMG, ultrasound imaging, EEG, FMG 

are non-invasive techniques whereas, Implantable 

Myoelectric sensor and TMR are invasive 

techniques(Turnip, Soetraprawata and Kusumandari, 

2013). 

The Myoelectric signals are produced due to 

variations in the state of muscle fibre. The variation 

in electric potential in the motor neurons is detected 

by the electrodes as an EMG signal. So greater the 

variation/contraction will be, greater the amplitude of 

the recorded voltage will be. The EMG signals can be 

detected either by intrusive/intramuscular or non-

intrusive technique. The intrusive technique involves 

the use of needle EMG electrodes by inserting them 

into the muscle under examination. The advantage of 

this technique is that it reduces the muscle noise and 

thus produces more accurate results (Waris and 

Kamavuako, 2018). Whereas, the non- intrusive 

technique uses surface EMG electrodes which uses 

the surface-based detection technique for the EMG 

signal. This technique does involve more muscle 

noise but is preferred over the previous method as it 

does not involve any special formalities and 

procedure. Moreover, the latest research and 

technology has resulted in more sensitive sensors 

which can capture the signals from the skin much 
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very accurately without the need of inserting them 

(Del Vecchio et al., 2017).  

The aim of this research is to encounter all the 

issues faced due to passive prosthesis by developing 

a physical prototype of an ankle foot prosthetic active 

in nature to exhibit its benefits to a transtibial 

amputee. This includes development and 

implementation of methodology for EMG signal 

acquisition as well as classification and identification 

of intuitive signal for the lower limb prosthesis 

control. The prosthesis mimics the position of the 

ankle on the basis of the EMG signals that are 

classified using the KNN classifier.  

The conducted research has various applications 

in the field of Robotics, Bio-medical Industry and 

Health sector. Such as, to help people with transtibial 

amputations to become independent and in defence 

sector to help the soldiers with amputations to return 

to normal life. 

2 METHODOLOGY 

The methodology of this project is divided into four 

major stages. The first step includes acquisition of 

data from the subjects. In the second step, the 

acquired data is then processed and different 

statistical features are extracted and fed to the 

classifier. The third step includes the training of 

classifier on the extracted features and the last step 

involves the testing of the classifier on the real-time 

data. The methodology of this process can be seen in 

the figure 1.  

2.1 Data Acquisition 

Myo Armband was utilized for the purpose of signal 

acquisition. It consists of eight EMG electrodes and 

and an in-built bluetooth for data transmission. The 

use of multiple channels improves the accuracy. It 

also comprises of accelerometer and a gyroscope. The 

transmitted signals can be captured via Myo SDK on 

MATLAB. The figure 2 shows Myo Armband sensor.  

 

Figure 2: Myo Armband sensor. 

It was worn by the subject just below the knee that 

continuously read the muscle data and sent it via the 

in-built Bluetooth to the laptop present right next to 

the subject in form of a vector. The laptop’s Bluetooth 

received the incoming data and passed it to the 

MATLAB. Figure 3 and 4 shows position of sensor. 

 

 

 

 

 

Figure 1: Experimental setup. 

EMG based Control of Transtibial Prosthesis

75



 

Figure 3: Location of electrodes on muscles (frontal view.) 

 

Figure 4: Location of electrodes on muscles (dorsal view). 

The paradigm decided for this project is as follows: 

 Number of classes(actions) = 2 

 Number of subjects = 8 

 Number of male subjects = 6 

 Number of female subjects = 2 

 Age group = 20-25 years 

 Number of activities per subject per 

trial= 10 

 Total time for each trial = 30s 

 All subjects are healthy 

2.2 Feature Extraction and Accuracy 

The Myo Armband provides filtered signals so after 

receiving the data from Myo Armband, Savitzky-

Golay filter was applied to smoothen the signal 

(Christov, Raikova and Angelova, 2018). Figure 5 

shows un-filtered EMG signal whereas, Figure 6 

shows filtered EMG signal. 

 

Figure 5: Un-filtered EMG signal. 

 

Figure 6: Filtered EMG signal. 

After smoothing the signal, the features were 

extracted. The features help reducing the input data 

into less but useful data (Phinyomark, Khushaba and 

Scheme, 2018). They provide useful information 

about the signal; therefore, features need to be 

selected carefully. Different statistical features were 

extracted such as standard deviation, root mean 

square, mean absolute value, zero crossings, maxima 

and minima (Hong, Khan and Hong, 2018). The 

classifiers Linear discriminant analysis (LDA), 

Support Vector Machine (SVM) and k-nearest 

neighbours (KNN) were trained separately on each of 

the above feature. Maximum accuracy was achieved 

using Root Mean Square as a feature on KNN. 

2.3 Real-time Classification and 

Application Interface 

In this phase, the data is classified real-time on the 

trained classifier. It is also called Online 

classification. When the amplitude being calculated 

exceeds the threshold of 0.4, the wave is sent for 
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feature extraction and then the features are fed to the 

classifier. The classifier then classifies the gesture 

into respective class and then, based on the output 

class, the prosthetic foot moves up or down. The 

process is shown in figure 7.  

 

Figure 7: Application interface. 

3 MODELING AND SIMULATION 

3.1 Gesture 

There are two gestures i.e. up and down. The rest 

position was distinguished on the basis of amplitude. 

If the calculated amplitude was greater than 0.4 then 

it meant gesture and its features were extracted and 

passed on to the classifier. Otherwise, it meant rest 

(Reaz, Hussain and Mohd-Yasin, 2006). The total 

number of classes is two as seen in Figure 8-10. 

3.2 Data Collection 

The Data was collected via Myo Armband which 

continuously sent the data wirelessly to the laptop at 

the sampling frequency of 200 Hz. The data was 

received in the form of a nx8 vector where ‘n’ 

depends on the duration of the activity and eight 

represents number of electrodes. It was then plotted 

and processed using MATLAB. The Figure 11- 14 

shows the raw data obtained for rest, up and down 

gesture on each electrode as well as a combination of 

all the electrodes. 

 

Figure 8: Rest position. 

 

Figure 9: Up gesture. 

 

Figure 10: Down gesture. 

3.3 Classification 

The classifier was used to differentiate between the 

two classes on the basis of input features(Qureshi et 

al., 2016). A classifier was needed that could satisfy 

the following conditions: easy to understand, need 
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only acceptably short calculation time and have a 

more than decent predictive power(Simbolon et al., 

2016). Three classification algorithms Support 

Vector Machine (SVM), Linear Discriminant 

Analysis (LDA) and K-Nearest neighbour (KNN) 

were trained, tested and validated. 

 

Figure 11: Raw EMG signal for rest. 

 

Figure 12: Raw EMG signal for up gesture. 

 

Figure 13: Raw EMG signal for down gesture. 

 

Figure 14: Raw signals for rest, up and down gesture. 

In Support Vector Machine, each data item is 

plotted as a point in space where the dimension of the 

space depends on the number of features(Turnip et 

al., 2016). The classification is then performed by 

finding the hyper-plane that separates the classes 

well. The new data is then plotted in the same space 

and the category is decided on the basis of the side of 

the gap where they fall(Alkan and Günay, 2012). An 

offline accuracy of 88.7% was achieved using SVM. 

The LDA predicts the class of the set of data by 

calculating the probability for each class. The 

probability is estimated using the Bayes Theorem. 

The class with the highest probability is selected as 

the output class (Alam and Arefin, 2018).LDA is a 

general form of Fisher’s linear discriminant, which is 

used in statistics and pattern recognition 

problems(Naseer et al., 2016). An offline accuracy of 

96.4%was achieved using LDA. 

KNN is another method used for classification 

which makes use of the fact that the similar things 

exist in close proximity. The input data is assigned the 

class of majority of its closest neighbours. It is easy 

to implement and can be used for both the regression 

and classification problems. The advantages of this 

algorithm are that it doesn’t need to make various 

assumptions and to build a separate model(Altın and 

Er, 2016). The only con is that it becomes slower as 

the number of examples increase(Khan et al., 2018). 

An offline accuracy of 98.7% and an online accuracy 

of 90% was achieved. The KNN was chosen since it 

provided the highest classification accuracy and fast 

calculation time. The results can be seen in the Figure 

15.  

4 RESULTS 

When the muscle is at rest then the calculated 

amplitude is less than 0.4 and no action is performed  
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Figure 15: Percentage accuracy versus features on three different classifiers. 

at the output. So, if the foot is up then the prosthetic 

also stays up and if the foot is down then the 

prosthetic remains down at rest. 

When the calculated amplitude is greater than 0.4 

and a change in the muscle signals is detected, then 

the signal is sent for feature extraction and then to the 

classifier. Depending on the classification result, a 

command is generated. 

The output command generated from the 

MATLAB is sent to the Arduino using Arduino 

hardware support package on MATLAB. On the basis 

of the classified signal the MATLAB generates the 

forward, backward or rest command to Arduino 

which controls the actuator integrated with it and 

moves the ankle up, down or keeps it in rest state. 

In the Figure 16-18, one can observe the output of 

prosthetic foot against each of the gesture.  

 

Figure 16: Rest position. 

 

Figure 17: Up gesture. 

 

Figure 18: Down gesture. 

5 CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 

This paper presents an improved technique to control 

a transtibial prosthesis using EMG signals and 

machine learning algorithms.  
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The EMG signals were obtained using Myo 

Armband. Features such as root mean square were 

extracted and fed to the classifier and the classifiers 

were then trained, tested and validated on different 

features. It was found that using root mean square as 

a feature and KNN as a classifier gave maximum 

accuracy. An offline accuracy of 98.75% and an 

online accuracy of 90% was achieved(Anil and 

Sreeletha, 2019). 

However, the prosthesis can be made more 

natural-like by mimicking the human gait that can be 

done by increasing the number of output classes on 

the basis of the angle of the ankle joint.  

Moreover, the classifier performance can be 

improved by increasing the number of training data 

set. The combination of different features can also be 

implemented to increase the accuracy. The artificial 

neural networks or other deep learning techniques 

may be applied to improve the accuracy. 

Although, the prime objective of controlling the 

prosthetic was achieved, closed loop control must be 

introduced for precise and robust control of the joint. 

More work needs to be done to make the 

prosthesis portable by the introduction of single board 

computer like Beaglebone, Raspberry Pi and UDOO.  
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