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Abstract: In order to reduce the network congestion and data forwarding times, a hierarchical routing protocol based 
on energy consumption weight clustering scheme is proposed. Firstly, the concept of Energy Consumption 
Weight (ECW) is introduced. Then the clustering problem is modelled as a complete bipartite graph 
decomposition problem with maximum weights and a greedy clustering scheme based on ECW is presented 
to minimize the energy consumption of intra-cluster transmission. Subsequently, the Equal Reward 
Timeslots based Conjectural Multi-Agent Q-Learning (ERT-CMAQL) is applied to optimize routing and 
resource allocation in inter-cluster communication. Simulation results show that the proposed hierarchical 
routing scheme outperforms the flat routing protocol in terms of system energy consumption and packet 
transmission latency, and it effectively reduces the number of nodes involved in operation and decision-
making in the multi-agent learning scheme when the size of network is large. 

1 INTRODUCTION 

With the explosive growth of the communication 
divices, the scarcity of spectrum resource is 
becoming a severe problem. Cognitive Radio (CR) 
is a promising technology to break the static channel 
assignment policy and realize the Dynamic 
Spectrum Access (DSA). It enables the Secondary 
Users (SUs) to opportunistically access the spectrum 
that is not occupied by the licensed users for 
enhancing the spectrum utilization rate (Chen et al. 
2016). In order to expand the deployment scope and 
ensure the flexibility as well as robustness of the 
system, Cognitive Radio Network (CRN) usually 
adopts the distributed network architecture, and 
transmits data from the source node to the 
destination node in multi-hop manner. Therefore, it 
is of significant importance to take routing into 
consideration in CRN (Cesana et al. 2011).  

Reinforcement Learning (RL) has been widely 
used in the routing design in CRN since it does not 
require the priori information such as spectrum 
statistics and network topology. Furthermore, RL 
methods have good adaptability to the dynamic and 
unpredictable nature of CRN. A cross-layer routing 
protocol based on Prioritized Memories Deep Q-

Network (PM-DQN) was proposed in (Du et al. 
2018) to solved the joint routing and resource 
management problem in the large-scale CRN. 
However, it applied single- agent learning 
framework, which had low convergence speed and 
high signaling overhead. A conjecture-based multi-
agent Q-learning scheme was presented in  (Cao et 
al. 2014) to perform route selection in a partially 
observable environment. The routing problem was 
formulated as a stochastic game (SG) in 
(Pourpeighambar et al. 2017). Then, it was solved 
through a non-cooperative multi-agent learning 
method in which each secondary user (SU) 
speculated other nodes’ strategies without 
acquisition of global information. However, these 
works all adopted the flat routing protocol, in which 
the node density and information redundancy are 
high. Moreover, the number of hops in the data 
transmission is large, which leads to large energy 
consumption and high cost of establishing and 
maintaining routing. 

To improve energy efficiency and reduce 
network latency, hierarchical routing protocols have 
been studied and developed. The main idea of 
hierarchical routing protocols is to divide network 
nodes into different groups according to their 
geographical location and characteristic attributes, 
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which is called clustering. The author in (Baddour et 
al. 2009) adopted affinity propagation to classify 
SUs by similarity of sensing results. Nevertheless, 
there were too many clusters and the cluster size was 
particularly small in the sensing results based 
clustering algorithm, which was not conducive to 
network management and operation. A sensing 
factor based clustering scheme was built in (Qi et al. 
2018), which mapped the clustering problem to 
Constraint Maximum-Weight Edge Biclique (C-
MWEB) decomposition problem. However, it only 
considered the maximization of cooperative sensing 
accuracy of the PU channels instead of the overall 
energy consumption of intra-cluster communication. 

To improve energy efficiency and reduce 
network delay, in this paper we propose a 
hierarchical cross-layer routing protocol based on 
energy efficiency in multi-agent framework. Firstly, 
the SUs and PU channels are clustering into groups 
in CRN by maximizing energy consumption weight 
to minimize the energy consumption of intra-cluster 
communication. Then the multi-agent reinforcement 
learning algorithm is used to joint optimize the 
routing, channel access and power allocation of the 
cluster head for the reduction of transmission delay 
and system energy consumption. Simulation results 
show that the end-to-end performance of the 
proposed hierarchical routing scheme is significantly 
better than that of the flat routing protocol and the 
hierarchical routing protocol under the traditional 
clustering algorithm. 

 
 

2 SYSTEM MODEL 

2.1 Network Model and Frame 
Structure 

We consider a CRN consisting of N  SU nodes, in 
which the SUs in the set  1, , Nn n    coexist with 
M  PUs in the set  1, , Mv v   , and SUs use the 
authorized channels for data transmission when the 
PU channel is idle. SUs adopt cooperative spectrum 
sensing to improve the sensing accuracy. The signal 
of PUs can only cover SUs in a certain area due to 
their limited transmission power. Some SU nodes 
located in the remote area or in the hidden terminal 
position cannot effectively detect the signal of PUs. 
Their participation in cooperative spectrum sensing 
may lead to a decline in sensing performance. To 
improve the accuracy of channel detection for PUs 
and reduce the number of data forwarding, we 
introduce a hierarchical routing protocol based on 
clustering. As shown in Figure 1, SUs and PU 
channels are divided into K  clusters. In each cluster, 
SU nodes jointly sense the PU channels in the 
cluster and transmit the data to the destination node 
in a hierarchical form. Each cluster is denoted as 

 1, , KL L L  , where the cluster head of the cluster iL  

is represented as iH , and the member in the cluster 

iL  is denoted as i . In the data transmission, the 
member node sends data to the cluster head, and 
then the cluster head transmits data to the destination 
node via other cluster head nodes in the multi-hop 
manner. 
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Figure 1. Network model of the hierarchical routing protocol. 
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As shown in Figure 2, the frame structure of 
hierarchical routing protocol includes clustering 
stage, running stage and cluster maintenance stage. 
In the clustering stage, SU nodes and PU channels 
are divided into different clusters according to 
certain criteria. To prevent the degradation of the 
original clustering performance caused by the 
mobility of SU nodes or the change of the PU 
channel characteristics, it is necessary to adjust and 
maintain the clustering at a certain time, which is 
called the cluster maintenance stage. Running phase 
is the most critical part of the protocol, which is 
divided into spectrum sensing time slot, intra-cluster 
data transmission time slot and inter-cluster data 
transmission time slot. In the spectrum sensing 
stage, all the nodes in the cluster execute cooperative 
spectrum sensing and report the sensing results to 
cluster head for data fusion. After that, cluster 
member nodes communicate with the cluster head 
through time division multiplexing. Subsequently, 
the cluster head selects the corresponding relay node 
and channel according to its strategy to transmit data 
between clusters. 

In the intra-cluster data transmission stage, we 
assume that the transmit power of each cluster 
member node is a constant value P . Since only the 
information of the PU channel in the cluster can be 
obtained, the cluster member sends the data directly 
to the cluster head by selecting a certain PU channel 
in the corresponding cluster. In the inter-cluster data 
transmission stage, the cluster head obtains the 
channel status information and the location 
information of the cluster head in adjacent cluster by 
request signaling and response signalling. Then it 
selects a cluster head as the relay node to forward 
the data to the destination node in the multi-hop 
manner. In this process, the transmit power of 
cluster head can be adaptively adjusted to reduce 
energy consumption and routing delay. In addition, 
the PU’s occupation is modeled as an independently 

and identically alternation between two stages, i.e., 
ON status when the PU channel is occupied and 
OFF status when the PU channel is idle (Singh et al. 
2017). 

2.2 Energy Consumption Weight 

To guarantee the system energy efficiency, the 
average energy consumption of data transmission 
within the cluster should be minimized. We assume 
that cluster member in  sends data to cluster head 
using authorized channel j  in a cluster. The channel 
capacity ijC  is defined as follows: 
 

 2log 1ij j ijC B h P                        (1) 

 
Where jB  is the bandwidth of the PU channel j , 

ijh  represents the channel gain when the SU in  using 

channel j , 2  is the Additive White Gaussian 
Noise (AWGN) power, and P  is the transmit 
power of the cluster member nodes. It is assumed 
that the size of the packet is packetS , the data 
transmission time of the cluster member nodes is 
given by: 

 
ij packet ijS C                             (2) 

 
Then the energy consumption in the intra-cluster 

data transmission is calculated as ij ijE p  . It is 
assumed that there are J  PU channels in the cluster, 

and the idle probability of the channel j  is j
offp . We 

consider that the probability that a cluster member 
node chooses a certain channel is proportional to the 
idle probability of the channel. So the probability of 
node selecting the channel j  in intra-cluster data 
transmission is given by: 
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Figure 2. Frame structure of hierarchical routing protocol. 
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Therefore, the average energy consumption of 

the  k th  cluster in the intra-cluster communication is 
calculated as follows: 

 

1

k J J
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

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To minimize the average energy consumption of 

intra-cluster communication in the whole network, it 
is necessary to choose a reasonable clustering 

method to maximize k
k

E . Then the concept of 

Energy Consumption Weight (ECW) is introduced, 
and the ECW of SU node in  using PU channel j  is 
defined as: 

1

J
j n

ij ij j ij off off
n

E P p p p 


      
 

                (5) 

 

Thus the sum of ECW in the  k th  cluster is 
given by: 
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3 ALGORITHMIC DESIGN 

3.1 Energy Consumption Weight Based 
Clustering Algorithm 

We introduce the concept of bipartite graph in graph 
theory to cluster SU nodes and PU channels 
reasonably. As shown in Figure 3, the graph G  is 
defined as a bipartite graph if the vertices of 
undirected graph  ,G X Y   can be divided into 
two independent sets, and the two vertices x  and y  
connected by the edge in   belong to the set X  and 
Y , respectively. Vertex set X  corresponds to the 
set of SU nodes in CRN, and the set Y  represents 
the PU channels. If a SU node x  is within the 
coverage of the PU y  and can sense the state of the 
corresponding PU channel, then there is an edge 
 ,x y  in the bipartite graph where the weight of the 

edge is the ECW ij . 

1 2 3 4 5 6

1 2 3 4 5

7

6

SU

PU  

Figure 3. Bipartite graph model. 

For a bipartite graph  ,Q U W , if there is an edge 

connection between any two vertices u U  and 
w W , then Q  is called a complete bipartite graph. 
For CRN, the problem of clustering SU nodes and 
PU channels can be formulated as the problem of 
decomposing a bipartite graph into a complete 
bipartite graph. Figure 4 shows three cases in which 
the bipartite graph in Figure 3 is decomposed into a 
complete bipartite graph. The complete bipartite 
graph shown in Figure 4(a) represents the first 
cluster partitioned from the CRN. Its cluster member 
set is  1 1,3,4U  , and the sensed channel set is 

 1 1,2,3W  . All of the SU nodes in 1U   sense the 

channels in 1W  cooperatively and communicate with 
cluster head through these channels. Similarly, the 
complete bipartite graph shown in Figure 4(b) 
denotes the second cluster. Its cluster member set is 

 2 6,7U  , and the sensed channel set is  2 5,6W  . 
The complete bipartite graph shown in Figure 4(c) 
denotes the third cluster. Its cluster member set is 

 3 2,5U  , and the sensed channel set is  3 4W  . 

1 3 4

1 2 3

2 5

4

6

5

7

6

(a) (b) (c)  

Figure 4. Complete bipartite graph decomposed from 
the bipartite graph in Figure 3. 

To minimize the average energy consumption of 
intra-cluster communication after clustering, it is 
necessary to maximize the sum of system ECW. 
Therefore, we have to find a bipartite graph 
decomposition method to maximize the sum of edge 
weights of all complete bipartite graphs after 
decomposition. The matrix sA  and pB  represent the 
clustering of SU nodes and PU channels, 
respectively. The elements k

ia  denotes the 

relationship between SU node in  and the k th  
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cluster, and the elements k
jb  represents the 

relationship between the PU iv  and the  k th  cluster: 
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Consequently, the clustering problem can be 

mapped to the problem of bipartite graph 
decomposition to maximize the weight of edge in 
graph theory. The mathematical description is as 
follows: 

,

1

1
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           (9) 

 
Two constraints in Equation (9) indicate that 

each SU node or PU channel can only be allocated 
to one cluster and cannot appear in different clusters. 
In addition, it is assumed that the number of SU 
nodes in each cluster is not less than m  to guarantee 
cooperative spectrum sensing accuracy. 

Since solving the optimization objective (9) is a 
NP-complete problem (Zhang et al. 2014), a 
heuristic greedy algorithm is designed to find the 
next optimal solution. The algorithm can effectively 
separate the complete bipartite graph from the 
bipartite graph under the above constraints. In the 
initial stage, it is assumed that 1    and 1   . 

For the  k th  cluster, 1 1k k kU     and 

1 1k k kW    . The steps to obtain a complete 

bipartite graph  ,k kQ U W  from a bipartite graph 

 ,k k kG    are as follows: kW  is set to an empty 

set and kU   is set to the SU node set. In the l th  

iteration, we first find the PU channel l k kv W  
with the highest edge weights, whose edge weights 
are denoted as  deg lv . Then we add lv  to kW  and 
remove the SU node that cannot sense the channel 

lv  from kU  (The set of SU nodes that can sense lv  

is denoted as lv ). Subsequently, we calculate the 
sum of all the edge weights of the bipartite graphs 
composed of kU  and kW , which is denoted as k . 
The above steps are repeated until the number of 

remaining channels in k  is 0 or k kU m . The 
details of greedy clustering algorithm based on ECW 
are shown in algorithm 1. 
Algorithm 1 Greedy clustering algorithm 
based on energy consumption weight 
1: Initialize: 
2:     Set  ,k k kG   , kU   , kW   

and 1l  ; 
3:     While k kU m  and 0k   Do 

4:          arg max deg
k kl v Wv v ; 

5:          If  deg kv m  then 

6:              break; 
7:          Else 
8:               k k lv    ; 

lk k vU U   ; 

9:            
 that can senses 

lv k lSU SUs v   ; 

10:             k k lW W v  ;    ,k k k kl U W   ; 

11:        End If 
12:        1l l   
13:     End While 
14: Output:  * ,k k kQ U W  

3.2 Inter-Cluster Communication 
Protocol 

After clustering, we select cluster heads using ID 
(LID) scheme which is commonly used in ad hoc 
networks. All cluster heads form the upper network 
structure, and transmit data derived from the source 
node to the destination node with the multi-hop 
manner. In this paper, the inter-cluster cross-layer 
routing design problem is modeled as a quasi-
cooperative stochastic game, and the concept of 
responsibility rating proposed in (Du et al. 2018) is 
applied. The players of the stochastic game are all 
cluster heads. In the game, each player chooses an 
action and then obtains a reward based on the 
present state and action. Subsequently, the game will 
enter the next stage and its state is determined by the 
previous state and the action of each players. In the 
stochastic game, the state distribution, player’s 
action and reward at each stage are defined as 
follows: 

(1) State distribution: 
The state of cluster head iH  at timeslot t is 

 , ,  t t t
i i i is f  , where t

i  is the responsibility rating 

of the cluster head iH , t
if  iC  is the PU channel 

accessed by the cluster head iH  at timeslot t, and 
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 0,1i   is the Signal-to-Interference plus Noise 
Ratio (SINR) indicator that indicates whether the 
SINR i  of cluster head iH  is above or below the 

threshold th : 
 

1,       if 

0,      otherwise
i th

i

 



 


                      (10) 

 

Where  2
t
i

PU
i ijc ijcg p


    , t

i
p
  is the 

transmitting power of cluster head iH , ijcg  

represents the channel gain between node in  and jn , 
PU

ijc  denotes the PU-to-SU interference at iH , and 
2  is the AWGN power. In addition, a learning 

episode of cluster head iH  terminates when 0i  , 

i.e.,  0, ,  t t t
i i is f  is the terminal state in the 

Markov chain. 
(2) Player’s action: 
Player’s action consists of routing selection, 

channel access and power control of cluster head 
nodes. The action of cluster head iH  at timeslot t is 

 ,  ,  
i

t
i j ia H c p , where jH  represents the relay 

cluster head selected form the neighbouring node of 
cluster head iH , ic  iC  represents the PU channel 

of cluster head iH , and i
p  is the transmit power of 

cluster head iH  corresponding to the responsibility 

rating t
i . 

(3) Instantaneous reward: 
The single-hop transmission latency ,TL iU  of the 

cluster head iH  is defined as follows: 
 

 , 2log 1TL i packet j iU S B                      (11) 

 
Where packetS  represents the data packet size, jB

is the bandwidth of PU channel j , and i  is the 

SINR of cluster head iH . The power consumption 

ratio ,PCR iU  of the cluster head iH  is given by: 
 

 , 2log 1
iPCR i j iU p B                    (12) 

 
Where i

p  is the transmit power of cluster head 

iH  corresponding to the responsibility rating t
i . 

The instantaneous reward when cluster head iH  

executes action ia  in is  and other cluster heads 

perform actions -ia  is defined as: 

 2 , ,( , , ) -logt
i i i TL i PCR iR s a U U    -ia        (13) 

 

Where 1 1 1
\

( , , , , , )
i

i i K
j H H

a a a a 


   -i -i ja A A   

is other cluster heads’ action vector;   and   are 
parameters to adjust the weighting of the 
transmission delay and energy efficiency. 

Each cluster head only needs local information 
instead of sharing information with all cluster heads 
in the network. Therefore, the cross-layer design 
problem of inter-cluster communication can be 
modeled as a non-cooperative stochastic game: 

 

,

       max ( , , )

. .     
i

t
i i i

a

TD i th

R s a

s t U 



i

-i
A

a
                     (14) 

 
Where th  is the maximum transmission latency 

of the cluster head.  
We apply the Equal Reward Timeslots based 

Conjectural Multi-Agent Q-Learning (ERT-
CMAQL) proposed in (Du et al. 2019) to solve the 
Nash equilibrium of the stochastic game and 
optimize the routing and resource allocation in the 
inter-cluster communication.  

The update framework of multi-agent Q-learning 
is given by: 

 

 
 

1
( , , )

( , ) (1 ) ( , )
max ( , )

i

i i i
t t

ti i i i i i
i i i

b

E R s
Q s a Q s a

Q s b


 






 
   

 
 i

-i

A

ψ
 (15) 

 
Where  0  1  ，  is the learning rate, and   is 

the discount factor determining the agent’s horizon, 
 ( , , )i i iE R s  -iψ  is the expected reward for cluster 

head iH  at timeslot t considering other 1N   
competing cluster heads, that is 

 

 
( , ) \

( , , ) ( , , ) ( , )
i i

i i i i i i j j j
a j H H

E R s R s a s a 
 

 
  

  
 

-i

-i -i
a A

ψ a  (16) 

 
Where ( , )j j js a  is the strategy of cluster head 

jH . Thus the mixed-strategies for other cluster 
heads is defined as: 

 

\
( , ) ( , )

i

t t
i i j j jj H H

s s a 


-ia                  (17) 

 
Which represents the probability that other 

cluster heads execute strategy -iψ  at timeslot t. 
Furthermore, the probability that the agent chooses 
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ia  at state is  while other competing cluster heads 

performing strategy -iψ  is given by: 
 

( , ) ( , )t t
i i i i i is a s    -ia                      (18) 

 
That is, the probability that cluster head iH  

obtains expected reward ( , , )i i iR s a -ia  is i . Let n  
denotes the number of time slots between any two 
continuous slots which cluster head iH  gets the 

same return ( , , )i i iR s a -ia , and n  has the independent 

and identical distribution with i . It is assumed that 
the average value of n  is denoted as n , and then we 
have the approximate equation  1 1i n   . Since 

every cluster head has its own strategy ( , )t
i i is a , the 

agent is able to estimate ( , )t
i is -ia  as follows: 

 
( , ) 1 (1 ) ( , )t t

i i i i is n s a     -ia               (19) 

 
Since n  is a stationary stochastic process in time 

dimension so its mean value n  is a constant. 
Specifically, the quotient of the conjecture belief at 
time slot t - 1and t can be calculated as: 

 

11

1

( , ) 1 1

(1 ) ( , ) (1 ) ( , )( , )

( , )
                  

( , )

t
i i

t tt
i i i i i ii i

t
i i i

t
i i i

s

n s a n s as

s a

s a


 








 
      



-i

-i

a

a
(20) 

 
Thus ( , )t

i is -ia  is updated as follows: 
 

1
1 ( , )

( , ) ( , )
( , )

t
t t i i i
i i i i t

i i i

s a
s s

s a

 



 -i -ia a             (21) 

 
Consequently, the multi-agent Q-learning 

updating rule in (15) can be modified as: 
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The details of ERT-CMAQL based cross-layer 

routing protocol for inter-cluster communication are 
shown in algorithm 2. 

 
 
 
 
 

Algorithm 2 ERT-CMAQL based cross-
layer routing protocol for inter-cluster 
communication 
1: Initialize: 
2:    Set 0t   and memory size N . 
3:    For each cluster head iH  Do 

4:       For each ,  i i i is S a A   Do 

5:          Initialize ( , )t
i i is a , ( , )t

i is -ia , 

( , )t
i i iQ s a . 

6:       End For 
7:    End For 
8: Learning: 
9:    For each cluster head iH  Do 

10:      For 1,  eposide M Do 

11:         Initialize state 1
is . 

12:         Repeat 
13:            Select action t

ia  according to 

( , )t
i i is a . 

14:            Execute t
ia , and obtain i . 

15:            Observe ( , , )t
i i iR s a -ia  and 1t

is  . 

16:            Update 1( , )t
i i iQ s a  based on 

( , )t
i is -ia  

                  according to (22). 
17:            Update the strategy 1( , )t

i i is a   

according  
to Boltzmann distribution. 
18:            Update 1( , )t

i is 
-ia  according to 

(21). 
19:            1t

i is s   

20:            1t t   
21:         Until is  is the terminal state 

22:      End For 
23:   End For 

4 SIMULATION RESULTS 

In this section, the performance of the hierarchical 
routing protocol based on ECW clustering algorithm 
is evaluated using Python 3.5.1 and its packages 
Networkx 2.3 and Numpy 1.15.3. The results of the 
proposed scheme are compared with (1) Cooperative 
Multi-Agent Q-Learning (CMAQL) under flat 
routing protocol (Du et al. 2019); (2) ERT-CMAQL 
based on C-MWEB clustering algorithm (Qi et al. 
2018) and (3) Q-routing (Al-Rawi et al. 2014) based 
on ECW clustering algorithm. 
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In the simulation process, the bandwidth of PU 
channel j  is set to  ~ 1, 2  MHzjB . It is supposed 

that the AWGN power 2 710 mW  , the packet size 
52 10 bitpacketS   , and the PU-to-SU interference 

7 6~ 10 ,  10  mWPU
ijc     . The link gain of both intra-

cluster communication and inter-cluster 
communication is given by: 

 

 0 0 for 
q

h LF d d d d
  ，                  (23) 

 
Where L  is a constant set to be 610 , and the 

shadowing factor F  is subject to a lognormal 
distribution with a mean of 0 dB  and variance of 
6 dB , d  is the actual distance between the 
transmitter and receiver, 0d  is the reference 
distance, and q  is the path loss exponent. In our 
simulation process, we set 0 1d   and 4q  . The 
expected mean and deviation of average PU 
departure rate ( , )d    are set as 0.1   and 

0.05  . A networking scenario comprising 20 SUs 
and 10 PUs uniformly deployed in a 500 × 500 m 
area is considered. The transmit power of cluster 
member node is 200mWP  , and the transmit 
power set for cluster head contains ten levels: 
 550,  600, , 1000 mW . We use ECW based 
clustering scheme and C-MWEB clustering 
algorithm to cluster the network. The C-MWEB 
clustering algorithm only considers the 
maximization of cooperative sensing accuracy of PU 
channels, but it ignores the overall energy 
consumption of intra-cluster communication. The 
network topology and clustering results are shown in 
Figure 5. 

Figure 6 shows the packet transmission delay 
varying with the number of routes in different 
schemes. It can be seen that with increasing number 
of routes, the packet transmission delay of all 
schemes decreases gradually. This is because agents 
gradually learn the optimal strategies under each 
scheme by interacting with the environment. As a 
single agent scheme, the packet transmission delay 
of Q-routing algorithm should be much higher than 
that of the multi-agent strategy CMAQL. However, 
we can see that the packet transmission delay of Q-
routing algorithm based on ECW clustering is lower 
than that of CMAQL algorithm under flat routing 
protocol. The reason for this is that the hierarchical 
routing protocol reduces the number of data 
forwarding. Furthermore, the transmit power of 
cluster head is larger than that of flat routing 
protocol so that the data transmission time of each 

hop is reduced. Thus the total transmission delay of 
Q-routing algorithm under hierarchical routing 
protocol is much lower. In addition, when ERT-
CMAQL is adopted as the inter-cluster 
communication scheme, the packet transmission 
delay of the hierarchical routing protocol based on 
ECW is lower than that of the C-MWEB clustering 
protocol. This is because the average channel 
capacity of each SU in the cluster is larger so that 
the transmission delay in the intra-cluster 
communication is lower than that in the C-MWEB 
clustering scheme, which leads to lower total 
transmission delay. Moreover, we find that ERT-
CMAQL based on ECW clustering, ERT-CMAQL 
based on C-MWEB clustering and CMAQL under 
flat routing protocol have almost the same 
convergence speed, which is faster than Q-routing 
based on ECW clustering. This is due to the fact that 
each SU node in the multi-agent learning scheme is 
equipped with an agent, and each agent works in 
parallel so that the convergence rate is not affected 
by the size of the network. In the single agent 
framework, one agent works independently and its 
computation load is heavy so that the convergence 
speed is slower than that of multi-agent system. 

 

(a) ECW based clustering scheme. 

 

(b) C-MWEB clustering algorithm. 
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Figure 5. Network topology and comparison of clustering 
results. 

 

Figure 6. Data packet delay vs. the number of routes. 

Figure 7 illustrates the power consumption ratio 
changing with the number of routes. It can be seen 
that the power consumption ratio of Q-routing based 
on ECW clustering is lower than that of CMAQL 
under flat routing protocol. This is mainly because 
the hierarchical routing protocol reduces the times of 
data forwarding. Although the transmit power of 
cluster heads is higher than that of nodes in flat 
routing, the advantages of less data forwarding times 
will not be offset because the packet size is 
sufficiently large. In addition, when ERT-CMAQL 
is adopted as the inter-cluster communication 
scheme, the energy consumption of the hierarchical 
routing protocol based on ECW is lower than that of 
the C-MWEB clustering protocol. This is because 
the C-MWEB clustering algorithm only considers 
the maximization of cooperative sensing accuracy of 
PU channels, but it ignores the overall energy 
consumption of intra-cluster communication. 
Therefore, the average energy consumption in the 
intra-cluster communication is larger when using C-
MWEB clustering algorithm so that the system 
power consumption ratio is higher. 

 

Figure 7. Power consumption ratio vs. the number of 
routes. 

As shown in Figure 8, the Packet Loss Rate 
(PLR) of all algorithms decreases gradually with the 
increase of the number of routes, and the PLR of Q-
routing based on ECW clustering is lower than that 
of CMAQL under flat routing protocol. In addition, 
when ERT-CMAQL is adopted as the inter-cluster 
communication scheme, the PLR of hierarchical 
routing protocol based on ECW is lower than that of 
the C-MWEB clustering protocol. This is because 
hierarchical routing protocol based on ECW has 
lower packet transmission delay in Figure 6. Then 
the number of packets whose total transmission 
latency exceeds the delay tolerance is smaller so that 
the number of packets which are transmitted 
successfully exceeds the protocol based on C-
MWEB clustering. This shows that ERT-CMAQL 
based on ECW clustering has higher network 
stability than other algorithms. 

 

Figure 8. Packet loss rate vs. the number of routes. 
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In this paper, we developed a hierarchical routing 
protocol based on energy consumption weight 
clustering scheme. Firstly, SU nodes and PU 
channels in CRN are clustered by maximizing 
energy consumption weights for the minimization of 
the energy consumption in intra-cluster 
communication. Then the strategy conjecture based 
multi-agent Q-learning scheme is used to joint 
optimize the routing, channel access and power 
allocation of the cluster head for the reduction of 
transmission delay and system energy consumption. 
Simulation results show that the end-to-end 
performance of the proposed hierarchical routing 
scheme is significantly better than that of the flat 
routing protocol and the hierarchical routing 
protocol under the traditional clustering algorithm. 
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