# Sphere Localization from a Minimal Number of Points in a Single Image 

Kunfeng Shi ${ }^{1}$, Xuebin $\mathrm{Li}^{1}$, Huikun $\mathrm{Xu}^{1}$, Hongmei Zhao ${ }^{1}$ and Huanlong Zhang ${ }^{1}$<br>${ }^{1}$ School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China

Keywords: Sphere localization, Three-point algorithm, Ellipse fitting, Gröbner basis


#### Abstract

This paper proposes a new three-point method to locate the spatial sphere center from a single image. In monocular vision system with known intrinsic parameters, the traditional methods of locating the center of a spatial sphere with known radius require fitting its image points to an ellipse from which the sphere center is extracted. The ellipse fitting procedure requires at least five image points whereas the projection ellipse of a sphere essentially is a three-degree-of-freedom problem, which implies that over-parametrization is introduced in ellipse fitting. In this paper, the ellipse is represented with the three coordinates of the sphere center, and then at least three image points on the ellipse are used to construct a set of quadratic equations of the coordinates from which the Gröbner basis method is used to solve for the coordinates. The experimental results show that the three-point method can solve the problem with less than five image points, and when the number of image points increases to five or more, the new method can also improve sphere localization accuracy and have improved robustness.


## 1 INTRODUCTION

Due to the characteristic of rotation symmetry of the sphere in space, it not only has a good image contour continuity, but also has less requirements to camera shooting angles and shielding problems (Zhao et al., 2014; Liu et al., 2016). Therefore, it has attracted extensive attention and research in camera calibration and target localization, especially in multi-camera calibration (Gu et al., 2012; Shi et al., 2012; Shi et al., 2014). In recent years, camera localization technology based on spherical targets has been applied to robotic astronauts (Fan et al., 2016) and laser tracking visual guidance (Wei et al., 2012). In addition, due to the advantages of portability and easy operation (Zheng et al., 2018), the localization of handheld spherical targets has a good application prospect in video capture systems.

At present, in the research on the positioning of spherical targets, (Zhao et al., 2014) proposed a method to calculate the projection point of the sphere center by using the axis of symmetry and common tangent of two projection conics. However, this method is applicable to the condition that an image containing two spheres at different positions in space must be taken, and the resulting image must
also be an ellipse. (Fan et al., 2016; Wei et al., 2012; Shui and Ahmad, 1989; Wong et al., 2008) first deduced a right circular cone tangent to a space sphere based on the image ellipse of the sphere, and then calculated the center of the sphere based on the right circular cone equation and its geometric characteristics. This method depends on the fitting of the sphere image ellipse, and the accuracy of fitting also determines the positioning accuracy of the sphere center. (Liu et al., 2016; Gu et al., 2012; Sun et al., 2016) established a spherical pinhole imaging model, derived a geometric relationship between the elliptic center and the imaging point of the sphere center, and then obtained a more accurate coordinates of the projection point of the sphere center through distortion correction. This method is not only complicated in theoretical derivation, but also needs to fit an ellipse. Among them, the method proposed in (Gu et al., 2012) also requires that the compensation coefficient must be calculated by at least six spatial spheres before compensation, and this method will fail when the ratio of the radius of the sphere and the distance from the sphere center to the optical center exceeds a certain range. Recently, (Geng et al., 2018) proposed a new method of distortion correction for the coordinates of imaging edge points, and extracting the coordinates of
spherical center projection point in conjunction with the focal length. From the above analysis, it is not difficult to see that, except for the method in (Geng et al., 2018), existing methods need to fit the image edge points. Since the fitting of an ellipse requires at least five measuring points, when the number of measuring points extracted from the ellipse image is less than five, the traditional methods mentioned above will not be able to locate the sphere, which undoubtedly makes the traditional methods have some limitations.

The contribution of this paper is that the conic of the projection ellipse of the sphere in a camera is represented by the three-dimensional coordinates of the sphere center, and then the sphere center is extracted by minimizing the distance from the image point to the ellipse. The new method enables the single-view sphere center positioning based on at least three image points and avoids overparametrization in traditional methods. The new method has higher sphere localization accuracy and robustness with five or more image points.

## 2 THREE-POINT METHOD

### 2.1 Theoretical Analysis of Three-Point Method

Without loss of generality, let's denote the camera calibration matrix is $\mathbf{K}$, the three-dimensional coordinates of the spherical center in the camera coordinate system is $\mathbf{S}=(\mathrm{X}, \mathrm{Y}, \mathrm{Z})^{\mathrm{T}}$, the conic of the spherical imaging ellipse is $\mathbf{C}$, the sphere radius is $r$ and the measuring points are $\mathbf{x}_{i}=\left(\mathrm{u}_{i}, \mathrm{v}_{i}, 1\right)^{\mathrm{T}}, i=$ $1,2 \cdots, N$. Matrix $\mathbf{I}_{\mathbf{n}}$ is an n-order identity matrix. In addition, the image is normalized by $\mathbf{K}^{-1}$ to eliminate the influence of $\mathbf{K}$.

The conic of the projection ellipse of the sphere in the camera is represented by the threedimensional coordinates of the sphere center as

$$
\begin{equation*}
\mathbf{C}=\mathbf{S S}^{\mathrm{T}}+\mathbf{I}_{\mathbf{3}}\left(r^{2}-\mathbf{S}^{\mathrm{T}} \mathbf{S}\right) \tag{1}
\end{equation*}
$$

Then, the sphere center can be extracted by minimizing

$$
\begin{equation*}
E=\sum_{i=1}^{\mathrm{N}}\left(\mathbf{x}_{i}^{\mathrm{T}} \mathbf{C} \mathbf{x}_{i}\right)^{2}, \tag{2}
\end{equation*}
$$

It's subject to the constraint in equation (1). This minimization problem can be solved in the manner similar to the method in (Stewénius et al., 2006). Firstly, from the following set of equations

$$
\left\{\begin{array}{c}
\mathbf{x}_{i}^{\mathrm{T}} \mathbf{C x}_{i}=0  \tag{3}\\
\mathbf{C}=\mathbf{S S}^{\mathrm{T}}+\mathbf{I}_{\mathbf{3}}\left(r^{2}-\mathbf{S}^{\mathrm{T}} \mathbf{S}\right),
\end{array}\right.
$$

we can get

$$
\begin{equation*}
\left(\mathbf{x}_{i}^{\mathrm{T}} \mathbf{S}\right)^{2}-\mathbf{S}^{\mathrm{T}} \mathbf{S} \mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{i}=-r^{2} \mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{i} \tag{4}
\end{equation*}
$$

After substituting coordinates, the equation (4) can be expressed as

$$
\begin{aligned}
& \left(-\mathrm{v}_{i}^{2}-1\right) \mathrm{X}^{2}+2 \mathrm{u}_{i} \mathrm{v}_{i} \mathrm{XY}+2 \mathrm{u}_{i} \mathrm{XZ}+\left(-\mathrm{u}_{i}^{2}-1\right) \mathrm{Y}^{2} \\
& +2 \mathrm{v}_{i} \mathrm{XZ}+\left(-\mathrm{u}_{i}^{2}-\mathrm{v}_{i}^{2}\right) \mathrm{Z}^{2}=-\left(\mathrm{u}_{i}^{2}+\mathrm{v}_{i}^{2}+1\right) r^{2} .
\end{aligned}
$$

When the number of measurement points $\mathrm{N} \geq 3$, by stacking N such equations as (5), we have

$$
\begin{gather*}
{\left[\begin{array}{c}
-\mathrm{v}_{1}^{2}-1,2 \mathrm{u}_{1} \mathrm{v}_{1}, 2 \mathrm{u}_{1},-\mathrm{u}_{1}^{2}-1,2 \mathrm{v}_{1},-\mathrm{u}_{1}^{2}-\mathrm{v}_{1}^{2} \\
-\mathrm{v}_{2}^{2}-1,2 \mathrm{u}_{2} \mathrm{v}_{2}, 2 \mathrm{u}_{2},-\mathrm{u}_{2}^{2}-1,2 \mathrm{v}_{2},-\mathrm{u}_{2}^{2}-\mathrm{v}_{2}^{2} \\
\vdots \\
-\mathrm{v}_{\mathrm{N}}^{2}-1,2 \mathrm{u}_{\mathrm{N}} \mathrm{v}_{\mathrm{N}}, 2 \mathrm{u}_{\mathrm{N}},-\mathrm{u}_{\mathrm{N}}^{2}-1,2 \mathrm{v}_{\mathrm{N}},-\mathrm{u}_{\mathrm{N}}^{2}-\mathrm{v}_{\mathrm{N}}^{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{X}^{2} \\
\mathrm{XY} \\
\mathrm{XZ} \\
\mathrm{Y}^{2} \\
\mathrm{YZ} \\
\mathrm{Z}^{2}
\end{array}\right]} \\
=\left[\begin{array}{c}
-\left(\mathrm{u}_{1}^{2}+\mathrm{v}_{1}^{2}+1\right) r^{2} \\
-\left(\mathrm{u}_{2}^{2}+\mathrm{v}_{2}^{2}+1\right) r^{2} \\
\vdots \\
-\left(\mathrm{u}_{\mathrm{N}}^{2}+\mathrm{v}_{\mathrm{N}}^{2}+1\right) r^{2}
\end{array}\right] \tag{6}
\end{gather*}
$$

Let $\mathbf{A}$ be the coefficient matrix of equations (6), $\mathbf{W}=\left[\mathrm{X}^{2}, \mathrm{XY}, \mathrm{XZ}, \mathrm{Y}^{2}, \mathrm{YZ}, \mathrm{Z}^{2}\right]^{\mathrm{T}}$ is the unknown vector of equations (6). In addition, if we label the vector $\mathbf{b}=\left[-r^{2} \mathbf{x}_{1}^{\mathrm{T}} \mathbf{x}_{1},-r^{2} \mathbf{x}_{2}^{\mathrm{T}} \mathbf{x}_{2}, \cdots,-r^{2} \mathbf{x}_{\mathrm{N}}^{\mathrm{T}} \mathbf{x}_{\mathrm{N}}\right]^{\mathrm{T}}$, then this set of equations (6) can be rewritten as

$$
\begin{equation*}
\mathbf{A W}=\mathbf{b} . \tag{7}
\end{equation*}
$$

Let $\mathbf{A}_{\mathbf{3}}$ be the rank three approximation of $\mathbf{A}$ computed with the first three principal components. The solution of the system is composed of a particular solution and a free solution in the null space. The particular solution is

$$
\begin{equation*}
\mathbf{W}_{\mathbf{0}}=\mathbf{A}_{\mathbf{3}}^{+} \mathbf{b} . \tag{8}
\end{equation*}
$$

Here, $\mathbf{A}_{\mathbf{3}}^{+}$is the pseudo inverse of $\mathbf{A}_{\mathbf{3}}$. The free solution can be represented with the three singular vectors ( $\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}, \mathbf{V}_{\mathbf{3}}$ ) of the matrix $\mathbf{A}$ corresponding the smallest three singular values. Then,

$$
\begin{equation*}
\mathbf{W}=\mathrm{k}_{1} \mathbf{V}_{\mathbf{1}}+\mathrm{k}_{2} \mathbf{V}_{\mathbf{2}}+\mathrm{k}_{3} \mathbf{V}_{\mathbf{3}}+\mathbf{W}_{\mathbf{0}} \tag{9}
\end{equation*}
$$

Here $\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}\right)$ are three unknowns to be computed later. For the convenience of the following, let us denote $\mathbf{W}=$
$\left[\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}, \omega_{6}\right]^{\mathrm{T}}$. Recall the definition $\mathbf{W}=$ $\left[X^{2}, X Y, X Z, Y^{2}, Y Z, Z^{2}\right]^{T}$ and therefore the six elements of $\mathbf{W}$ obey the following internal constraints.

$$
\left\{\begin{array}{c}
\omega_{1} \omega_{4}-\omega_{2}^{2}=0  \tag{10}\\
\omega_{1} \omega_{6}-\omega_{3}^{2}=0 \\
\omega_{4} \omega_{6}-\omega_{5}^{2}=0 \\
\omega_{2} \omega_{3}-\omega_{1} \omega_{5}=0 \\
\omega_{2} \omega_{5}-\omega_{4} \omega_{3}=0 \\
\omega_{3} \omega_{5}-\omega_{6} \omega_{2}=0
\end{array} .\right.
$$

Equations (10) are actually six quadratic equations on the unknowns $\left(k_{1}, k_{2}, k_{3}\right)$. Define the monomials vector
$\mathbf{K}_{\boldsymbol{s}}=\left[\mathrm{k}_{1}^{2}, \mathrm{k}_{1} \mathrm{k}_{2}, \mathrm{k}_{1} \mathrm{k}_{3}, \mathrm{k}_{2}^{2}, \mathrm{k}_{2} \mathrm{k}_{3}, \mathrm{k}_{3}^{2}, \mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, 1\right]^{\mathrm{T}}$. (11)
Equations (10) can be rewritten as

$$
\begin{equation*}
\mathbf{M K} \mathbf{K}_{\boldsymbol{s}}=\mathbf{0}, \tag{12}
\end{equation*}
$$

Here $\mathbf{M}$ is a $6 \times 10$ matrix. After Gauss-Jordan's elimination, equation (12) can be rewritten as

$$
\left[\begin{array}{ll}
\mathbf{I}_{6} & \mathrm{~B} \tag{13}
\end{array}\right] \mathrm{K}_{s}=\mathbf{0} .
$$

Here $\mathbf{I}_{6}$ is a $6 \times 6$ identity matrix and $\mathbf{B}$ is a $6 \times 4$ matrix. Let $\mathbf{k}=\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}\right)^{\mathrm{T}}$. Now, we define the basis monomials vector

$$
\begin{equation*}
\mathbf{u}(\mathbf{k})=\left[\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, 1\right]^{\mathrm{T}} . \tag{14}
\end{equation*}
$$

Let $\mathrm{f}(\mathbf{k})$ be any $\mathrm{k}_{i}$ in $\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}\right)^{\mathrm{T}}$, then construct the action matrix $\mathbf{A}_{\boldsymbol{t}}$ with equation (12) that obeys

$$
\begin{equation*}
\mathrm{f}(\mathbf{k}) \mathrm{u}(\mathbf{k})=\mathbf{A}_{t} \mathbf{u}(\mathbf{k}) \tag{15}
\end{equation*}
$$

Here, the elements in $\mathbf{A}_{\boldsymbol{t}}$ can be expressed with the elements in $\mathbf{B}$ according to the choice of $f(\mathbf{k})$. Denote the $i$-th row of $\mathbf{B}$ as $\mathbf{b}_{i}$, and then when $\mathrm{f}(\mathbf{k})=$ $\mathrm{k}_{1}, \mathrm{k}_{2}$, and $\mathrm{k}_{3}$ respectively, the three versions of $\mathbf{A}_{\boldsymbol{t}}$ are computed as

$$
\left(\begin{array}{c}
-\mathbf{b}_{1}  \tag{16}\\
-\mathbf{b}_{2} \\
-\mathbf{b}_{3} \\
{[1,0,0,0]}
\end{array}\right),\left(\begin{array}{c}
-\mathbf{b}_{2} \\
-\mathbf{b}_{4} \\
-\mathbf{b}_{5} \\
{[0,1,0,0]}
\end{array}\right),\left(\begin{array}{c}
-\mathbf{b}_{3} \\
-\mathbf{b}_{5} \\
-\mathbf{b}_{6} \\
{[0,0,1,0]}
\end{array}\right) .
$$

Four complex solutions of $\mathbf{u}(\mathbf{k})$ are computed as the eigenvectors of $\mathbf{A}_{\boldsymbol{t}}$. For stability reasons, three matrices $\mathbf{A}_{\boldsymbol{t}}$ are computed for $\mathrm{f}(\mathbf{k})$ being $\mathrm{k}_{1}, \mathrm{k}_{2}$ and $\mathrm{k}_{3}$ respectively, and then the matrix $\mathbf{A}_{\boldsymbol{t}}$ with the largest norm is used to compute $\mathbf{u}(\mathbf{k})$. Then, the value of the unknown parameter vector $\mathbf{k}$ can be extracted from $\mathbf{u}(\mathbf{k})$. Note that the last element of the eigenvectors of the $\boldsymbol{A}_{\boldsymbol{t}}$ matrix should be normalized to 1 .

Then, the real solutions of $\mathbf{k}$ are back-substitute into equation (9), and at most four real solutions of $\mathbf{W}$ can be obtained. It is particularly noteworthy that since the depth of the sphere center is real and positive, the solutions with negative $\omega_{6}$ should be excluded. After the exclusion, the three-dimensional coordinates of the sphere centre are extracted from the solutions of $\mathbf{W}$ as follows

$$
\left\{\begin{array}{l}
Z=\sqrt{\omega_{6}}  \tag{17}\\
Y=\omega_{5} / Z \\
X=\omega_{3} / Z
\end{array}\right.
$$

The three-dimensional coordinates of the sphere center have at most four real solutions, but after enforcing the condition that $\mathrm{Z}>r$, generally only one solution is obtained.

### 2.2 Maximum Likelihood Estimation

The solution of the sphere center coordinates obtained by the above method can be optimized through maximum likelihood method. An image point on the projection ellipse of the sphere can be represented by $\mathbf{S}=(\mathrm{X}, \mathrm{Y}, \mathrm{Z})^{\mathrm{T}}, \varphi_{i}$ and $r$, where $\varphi_{i}$ is the angle parameter of the image point on an ellipse. Therefore, the image point on the ellipse can be represented as in equation (18) at the bottom of this page.

Assume that the measurement points are corrupted by Gaussian white noise. The maximum likelihood estimate can be obtained by minimizing the following functional:

$$
\begin{equation*}
\sum_{i=1}^{\mathrm{N}}\left\|\hat{\mathbf{x}}\left(\mathbf{S}, \varphi_{i}, r\right)-\mathbf{x}_{i}\right\|^{2} \tag{19}
\end{equation*}
$$

Minimizing (19) is a nonlinear minimization problem, which is solved with the sparse LevenbergMarquardt algorithm as described in (Hartley and Zisserman, 2004).

$$
\hat{\mathbf{X}}\left(\mathbf{S}, \varphi_{i}, r\right)=\frac{1}{\sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}}}\left(\begin{array}{cc}
\mathrm{Y} & \mathrm{X}  \tag{18}\\
-\mathrm{X} & \mathrm{Y}
\end{array}\right)\left(\begin{array}{c}
\frac{r}{\sqrt{\mathrm{Z}^{2}-r^{2}}} \cos \left(\varphi_{i}\right) \\
\frac{r \sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}-r^{2}}}{\mathrm{Z}^{2}-r^{2}} \\
\ln \left(\varphi_{i}\right)
\end{array}\right)+\binom{\frac{\mathrm{XZ}}{\mathrm{Z}^{2}-r^{2}}}{\frac{\mathrm{YZ}}{\mathrm{Z}^{2}-r^{2}}}
$$

## 3 EXPERIMENTAL RESULTS

In the simulation experiments, we assume that the camera has been calibrated and the sphere radius is known. In order to verify the performance of the algorithm proposed in this paper, it is tested under different numbers of points, different depths of sphere center, and different noise levels. The experiment in each configuration is repeated for 2000 times and performs comparison of RMS errors of the five algorithms: the three-point method, the three-point method followed by maximum likelihood estimation, ellipse direct fitting followed by center extraction, normalized linear curve fitting followed by center extraction, and maximum likelihood curve fitting followed by center extraction.

Under the influence of noisy measurement points, the estimations of the projection curve in traditional algorithms may turn out not to be ellipses or the estimated ellipses deviate severely from the form in equation (1). As a result, the subsequent center extraction step cannot be performed or is severely unstable, and the localization of sphere center is considered as a failure case.

### 3.1 Relationship Between the Number of Image Points and RMS Error

The focal length of the camera is 2000 pixels. In the camera coordinate system, we assume that the target sphere center is at $(2,3,4)^{\mathrm{T}} \mathrm{m}$, the sphere radius is 0.005 m , and Gaussian white noise with zero mean and standard deviation of 0.5 pixels is added to the pixel points of the ellipse. After that, 3 to 25 measurement points are uniformly selected on the elliptical image to test the localization errors. The results are shown in Figure 1 and Figure 2.


Figure 1: Relationship between number of image points and RMS error.


Figure 2: Relationship between the number of image points and the percentage of failures.

From Figure 1, we can see that with the increasing of the number of image points, the RMS errors of the sphere center calculated by the five algorithms gradually decrease. Compared with the traditional algorithms, the new method has an advantage that the sphere center coordinates of the target sphere can be calculated when there are only 3 or 4 image points. In addition, the normalized linear curve fitting algorithm followed by center extraction has the largest localization error of the sphere center, and the new method followed by maximum likelihood estimation has the smallest RMS error.

It can be seen from Figure 2 that the traditional three algorithms have different percentages of failures, but the new method proposed in this paper has no case of failure. This shows that the new method is more robust than the traditional algorithms.

### 3.2 Relationship between the Depth of the Sphere Center and RMS Error

The focal length of the camera is 2000 pixels. In the camera coordinate system, we keep the ratio of the X -axis coordinate, the Y -axis coordinate and the Z axis coordinate of the sphere center to be 2:3:4 and uniformly select 10 sets of Z-axis coordinate, i.e. the depth of sphere center, from 1 to 8 m . The sphere radius is 0.005 m . The image points on the projection ellipse are selected such that the distances between adjacent points are approximately equal to 1 pixel. Gaussian white noise with zero mean and standard deviation of 0.5 pixels is added to the image points. The results are shown in Figure 3 and Figure 4.


Figure 3: Relationship between the depth of sphere center and the RMS error.


Figure 4: Relationship between the depth of the sphere center and the percentage of failures.

It can be seen from Fig. 3 that, with the gradual increasing of the depth of sphere center, the RMS errors of the target sphere center calculated by the five algorithms are approximately proportional to the 2.5 -th power of the depth. It is worth noting that, during the increase of the depth of the sphere center, the RMS error of the sphere center solved by the normalized linear curve fitting algorithm followed by center extraction is significantly larger than the other four algorithms, and the smallest error is obtained by using the new method followed by maximum likelihood.

It can be seen from Fig. 4 that the new method and the new method followed by maximum likelihood improvement have no failure case. In contrast, in the cases of large depths and
consequently small imaging ellipses, the traditional algorithms have a large percentage of failures.

### 3.3 Relationship between Noise Level and RMS Error

The focal length of the camera is 2000 pixels. In the camera coordinate system, the target sphere center is at $(2,3,4)^{\mathrm{T}} \mathrm{m}$, and the sphere radius is 0.005 m . The image points on the projection ellipse are selected such that the distances between adjacent points are approximately equal to 1 pixel. Gaussian white noise with zero mean and standard deviation varying from 0 to 1.0 pixel is added to the image points. The results are shown in Fig. 5 and Fig. 6.


Figure 5: Relationship between noise standard deviation level and RMS error.


Figure 6: Relationship between noise standard deviation level and percentage of failures.

From Fig. 5 we can see that as the noise standard deviation increases from 0 to 1 pixel, the RMS errors of the sphere center calculated by the five algorithms also increase linearly from the origin. Comparing the RMS errors obtained by the five algorithms, it can be seen that the RMS error of new method followed by maximum likelihood estimation is the smallest, while the normalized linear curve fitting algorithm followed by center extraction has the largest error under the same noise level.

It can be seen from Fig. 6 that in the process of increasing the noise standard deviation, the new method and the new method followed by maximum likelihood estimation do not encounter failure case in the calculation of the sphere center coordinates. In contrast, the traditional three algorithms have different percentages of failures when the noise level is high.

## 4 CONCLUSIONS

When the target sphere radius and the camera calibration matrix are known, the three-dimensional coordinates of a sphere center can be calculated with at least three measurement points on the image ellipse by constructing and solving a set of quadratic equations of the three variables in the sphere center coordinates. Compared with traditional algorithms, the new three-point method for calculating the sphere center coordinates of the target sphere proposed in this paper has several advantages. It can work when the number of image points are less than five. In addition, when the number of measurement points increases to five or more, the proposed method has a certain improvement in the location accuracy and higher robustness than those of the traditional algorithms. It can be seen from the experimental results that the proposed method is more practical than the traditional algorithms especially when the image ellipse is small or the noise level of the measuring point is high.

## ACKNOWLEDGEMENTS

This work was supported in part by the National Natural Science Foundation of China under Grants No. 61703373, No. U1504604, No. 61873246, in part by the Key research project of Henan Province Universities under Grant 16A413017, and in part by the Doctoral Scientific Research Foundation through
the Zhengzhou University of Light Industry under Grant 2015BSJJ004.

## REFERENCES

Fan, X., Hao, Y., Zhu, F., et al., 2016. Study on spherical target identification and localization method for robonuant. Manned Spaceflight, 22(03):375-380.
Geng, H., Zhao, H., Bu, P., et a1., 2018. A high accuracy positioning method based on 2D imaging for spherical center coordinates. Progress in Laser and Optoelectronics.
Gu, F., Zhao, H., Bu, P., et al., 2012, Analysis and correction of projection error of camera calibration ball. Acta Optica Sinica, 32(12):209-215.
Hartley, R., Zisserman, A. 2004. Multiple view geometry in computer vision, Cambridge University Press, Second Edition.
Liu, S., Song, X., Han, Z., 2016. High-precision positioning of projected point of spherical target center. Optics and Precision, 24(8):1861-1870.
Shi, K., Dong, Q., Wu, F., 2012. Weighted similarityinvariant linear algorithm for camera calibration with rotating 1-D objects. IEEE Transactions on Image Processing, 21(8):3806-3812.
Shi, K., Dong, Q., Wu, F., 2014. Euclidean upgrading from segment lengths: DLT-like algorithm and its variants. Image and Vision Computing, 32 (3):155168.

Shiu, Y. C., and Ahmad, S., 1989. 3D location of circular and spherical features by monocular model-based vision. IEEE International Conference on Systems, Man and Cybernetics, Cambridge, MA, USA, 576-581.
Stewénius, H., Engels, C., Nistér, D., 2006. Recent developments on direct relative orientation. ISPRS Journal of Photogrammetry \& Remote Sensing, 60: 284-294.
Sun, J., He, H., Zeng, D., 2016. Global calibration of multiple cameras based on sphere targets. Sensors, 16(1):77.
Wei, Z., Sun, W., Zhang, G., et a1., 2012. Method for finding the 3D center positions of the target reflectors in laser tracking measurement system based on vision guiding. Infrared and Laser Engineering, 41(4):929935.

Wong, K., Schnieders, D. and Li, S, 2008. Recovering light directions and camera poses from a single sphere. In Lecture Notes in Computer Science, 631-642.
Zhao, Y., Sun, J., Chen X., et al., 2014. Camera calibration from geometric feature of spheres. Journal of Beijing University of Aeronautics and Astronautics, 40(4): 558-563.
Zheng, X., Zhao, M., Feng, S., 2018. Two-step calibration of probe tip center of planar target. Laser \& Optoelectronics Progress, 55(01):011201.

