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Abstract: The excessive dose of the widely used X-ray computer tomography (CT) may induce potential disease. So 

lower radiation dose is an important direction of CT development. Short-scanning few-view CT (SSFW-CT) 

imaging can reduce radiation dose and scan time simultaneously. The total variation (TV) algorithm based 

on compressed sensing has been extensively used in CT reconstruction. The algorithm based on sparse 

transform is also applied to CT reconstruction, such as wavelet transform. Because of the serious discomfort 

with the SSFW-CT, the paper proposes a regularization iteration reconstruction algorithm method that 

combining total variation method and tight-frame transform, denoted TV-TFIR. The proposed method can 

reconstruct the details of the image more precisely. The simulation phantom and real data are used to verify 

the effectiveness of the proposed algorithm. The experimental results of the proposed method are more 

effective in both quantitative indicators and visual effects. 

1 INTRODUCTION 

X-ray computed tomography (CT) has been widely 

used in industrial, clinical diagnosis, and other 
applications because CT can get the high-resolution 

internal structure image (Jouini, 2016). However, the 

extra x-ray radiation exposure during clinical 

examination may cause cancer and other genetic 
lesions (Brenner, 2007). So the main research is to 

reduce the radiation doses and reconstruct the high 

quality images. There are two main way to reduce 

the dose: the first way is to reduce the x-ray 
exposure in each projection views and the second 

way is to reduce the number of projections. (Wang, 

G., 2009) The first method will produce noisy 

projections and the reconstructed image is 
surrounded by noise and artifacts (Xu, Q., 2012). 

The second method including sparse-view CT and 

few-view CT will cause serious artifacts in the 

reconstructed images for insufficient projection 
sampling (Yu, W., 2017). Sparse-view CT is usually 

sampled throughout the circumference. To further 

reduce the radiation dose, we proposed a 

reconstruction algorithm combining the total 
variation and tight frame iteration regularization 

(TV-TFIR) algorithm for the short-scanning few-

view CT. 

For the SSFW-CT, the traditional filtering back-

projection (FBP) algorithm (Chang, S., 1978) and 
simultaneous algebraic reconstruction technique 

(SART) algorithm (Andersen, A. H., 1984) can’t 

reconstruct the high-quality image for incomplete 

projection data. The development of compressed 
sensing (CS) theory makes the ill-posed image 

reconstruction can be effectively solved (Donoho, D. 

L., 2006). Image reconstruction algorithms based on 

compressed sensing mainly use prior knowledge of 
image, especially the sparseness of image such as 

gradient transform (Laroque, S. J., 2006), wavelet 

transform (Li, M., 2014) and so on. 

Sidky proposed the total variation (TV) 
algorithm for the limit-angle CT reconstruction 

(Sidky, E. Y., 2008). And there are many algorithms 

to solve the TV reconstruction, like fixed point 

iteration method (Abushammala, M., 2015), primal-
dual Newton method (Peng, J., 2000), multilevel 

optimization methods (Titli, A., 2007). The splitting 

schemes is an effective method to solve the TV 

problem, and TV reconstruction method could 
suppress artifacts and smooth images very well 

reconstruct high quality images from incomplete 
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data. (Wang, Y. 2016). Recently, TV algorithm is 

widely used for different reconstruction tasks 
(Ritschl, L., 2011). However, Yu and Wang (Yu, H., 

2009) indicated that the TV minimization algorithm 

assumes the image is piecewise constant and that 

doesn't satisfy the clinical and industrial reality. 
Furthermore, the result image of TV reconstruction 

algorithm may suffer from blocky artifacts. 

There are other iterative methods can avoid the 

block artifacts, such as tight frame iteration 
regularization (TFIR) (Li, M., 2014), nonlocal 

means (NLM) (Zhang, L., 2018), dictionary learning 

algorithm (Lu, Y., 2011) and so on. The tight feame 

iteration reconstruction has been used in short-
scanning few-view CT reconstruction because the 

reconstructed images are sparse under the proper 

wavelet frame (Gu, J., 2017). The sparsity of 

wavelet coefficient is restrained by using the quasi-
norm. 

When the projection data is seriously incomplete, 

the TV and TFIR methods based on compressed 

sensing cannot reconstruct high quality images. Li et 
al. used the TV reconstruction and wavelet tight 

transform for the limited-angle CT (Li, J., 2018). 

Inspired by them, we proposed a reconstruction 

algorithm combining the total variation (TV) and 
wavelet tight frame regularization for the SSFW-CT 

reconstruction. 

The remain of the paper is organized as follows. 

Section 2 firstly describes the geometry 
configuration of the SCFW-CT. Then the TVM 

algorithm and wavelet tight frame are also 

introduced in this section. Finally, the total variation 

combined with tight frame iteration regularization 
(TV-TFIR) model is proposed and the solution 

algorithm is given. The experimental results for both 

digital phantoms and real CT projection data are 

displayed in Section 3. Section 4 shows the 
conclusions and the outlook of this paper. 

2 SCANNING STRUCTURE AND 

RECONSTRUCT ALGORITHM   

2.1 Scanning Structure Configuration 

In this paper, the circular fan-beam short-scanning 

configuration is adopted. And the sparse-angle 

sampling is used to further reducing the radiation 
dose. The scanning geometry is shown in Figure 1. 

The dashed arc is the rotation orbit. The X-ray 

source spot S is installed on the rotation orbit, and 

the detector B was installed on the opposite of the X-

ray source. The detector and the X-ray source are 

relatively fixed and they rotate around the circular 
orbit during scanning. The object is installed on the 

center of the rotation system. The detector in the 

right of Fig. 1 is the double solid arc. For the fan-

beam short-scanning problem, the real rotation angle 

is a part of the circle, and it is represented by θ. The 

length of OS is the distance between X-ray source to 
the center of rotation. OB is the distance between the 

center of rotation to the detector. The whole 

scanning process is very fast because the sampling 

angle is sparse. 

Figure 1: The scanning geometry structure of the short-
scanning few-view CT. 

2.2 Related Reconstruction Model  

The scanning process of SSFW-CT can be discrete 

and approximated as the following linear system 

(Hsieh, J., 2000): 
 Af p    (1) 

Where 
N

f R  is the unknown image. 
M

p R  

is the projection dat. 
M N

A R


  is the system matrix. 

Where 
,i jA  represents the intersection length of 

ray-sum to the image pixel, ε is the noise.  

In the SSFW-CT, the projection data are 

severely incomplete. The traditional simultaneous 

algebraic reconstruction technique (SART) 

algorithms may lead to serious artifacts. 
Compressed sensing (CS) is an effective solution to 

this problem, and CS method requires prior 

knowledge of the image as the regularization term 

(Donoho, D. L., 2006). Then, the liner system (1) 
can be formulated as follows: 

 2

2
arg min ( )

f
f Af p R f    

 
(2) 
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Where ( )R f  is the regularization term, f 
 is the 

optimal solution to (2). The 
2

2
Af p  is the data 

consistency term. 

The SSFW-CT is a serious ill-posed problem. In 

recent decades, the regularization method has been 
widely used in CT reconstruction. The regular 

terms usually use prior knowledge of the image, 

and the general regular reconstruction algorithm 

can be expressed as the following minimization 
optimization problem: 

 
2

2 TV

1
arg min +

2f

Af p f




 

(3) 

The total variation (TV) norm of the image can 

be expressed as follow: 

 2 2

, 1, , , 1

,

( ) ( )
i j i j i j i jTV

i j

f f f f f
 

     (4) 

Where 
,i j

f  is the gray value of the image f. 

The tight frame iteration regularization (TFIR) 
(Yu, W., 2015) is defined in the follow: 

 
2

2 0

1
arg min +

2f

Af p Wf




 

(5) 

Where the 
0

Wf  is the non-zero number of 

( )Wf . 

2.3 Proposed TV-TFIR Model 

To reconstruct the better image, we proposed a total 

variation combined with tight frame iteration 

reconstruction algorithm for the short-scanning 
few-view CT.  

 

1 20 1
min +

, 0

, .
f

z

Af e g f

v s t Df v

Wf z




  



 

 

(6) 

Where A is the system matrix of the CT. D  is 

total variation operators, and the W  is B-spline 

wavelet transform (Unser, M., 1992). To effectively 
solve problem (5), we use the alternating 

minimization method (ADM) algorithm in this 

paper (Wang, Y. 2016). 

The constrained optimization above can be 

transformed into an unconstrained optimization 

problems using the augmented Lagrangian method. 

And then we use the ADM to solve the augmented 

Lagrangian (AL) function of formula (6). The 

corresponding AL function is as follows: 

 
1 20 1, ,

21
1 22

2 22
32 2

min L(z, v, )

(W ) (D )
2

(A )
2

z v f

T T

T

f z v

f z Wf z f v

Df v f g Af g

 


 


 

 

     

     

 
(7) 

Where γ1 , γ2  and γ3 are the Lagrange 

multipliers, and the positive constants λ1, λ2  and 𝜌 
are used to balance the data consistency item. The 

ADM splits the AL function (7) into three sub-

problems, L(f) , L(z)  and L( ν) . Then the sub-

problems of (7) can be solved as following 
iterations: 

The first sub-problem about f is L(f): 

 2* 1
1 2

22
2 2

2

3 2

= arg minL( ) (W )
2

              (D )
2

              (A )

T

f

T

T

f f f z Wf z

f v Df v

f g Af g







 

   

   

   

 

(8) 

The formula is a quadratic function about f. So 
the exact minimizer solution of (8) is: 

 *

1 2 1

1 2 2 3

( 2 ) (

2 )

T T T

T T T T T

f I D D A A W z

W D D A g A

   

     

  

    

 

(9) 

The W𝑇  is the transpose of the wavelet 

transform matrix  W. Suppose and the matrix  X+ is 

the pseudo-inverse of  X , where X  could be any 
matrix. In this problem, the storage and 

computational complexity of pseudo-inverse matrix 

of W is very high for the large scale of matrix  A. 
An efficient solution is to use the proximal point 

algorithm (PPA) (Zaslavski, A., 2016). In equation 

(8),  
2

2
Af g  can be approximated linearly at 

current iteration point 
kf : 

 

 2 2

2 2

2

2

1
(2 ( ))T k k

Af g Af g

M f f f f


   

  

 (10) 
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Substitute equation (10) into equation (9) and 

replace 
2

2
Af g . And then we use the same 

method as equation (9) to get the solution. 

 

 *

1 2

1 1 2 2

3 0

2
( )

(

2
2 ( ) )

T

T T T T

T T k k

f I D D I

W z W D D

A A Af g f


 



    


 



  

   

  

 
(11) 

The constant matrix 
1 2

2
( )TI D D I


 


   is easy 

to diagonalize. formula (11) can be abbreviated as: 

 * ( , , )f F f z   (12) 

The second sub-problem about z is L(z): 

 *

1 0

21
1 2

arg min(z, v, )

(W )
2

z

T

z f z

f z Wf z






 

   

 (13) 

Sorting out the above formula (13) and delete 
the constant terms: 

 2

* 1 1
1 0

1 2

arg min(z, v, ) ( )
2

T

z
z f z z Wf

 



    

 

(14

) 

This problem can be solved effectively by the 

iterative hard-threshold (HST) algorithm 

(Daubechies, I., 2016) and the expression is: 

 

1

1

1 1

1 1

* 1 1 1 1

2

1 1 1 1

1 1 1

1 1 1

2
            0         , W

2
( W )  0, W , W

2
    W      , W

T

T T T

T T

f

z H f f f

f f





 

 

   

   

  

  


 


  

       
 


   


 
(15

) 

The third sub-problem about ν is L(ν): 

 *

2 1

22
2 2

arg min(z, v, )

(D )
2

T

f v

f v Df v


 




 

   
 (16) 

Sorting out the above formula and delete the 

constant terms: 

 2

* 2 2
2 1

2 2

arg min(z, , ) ( )
2

T

v
v v f v v Df

 



      (17) 

This problem can be solved effectively by the 

iterative soft-threshold (IST) algorithm (Zhang, Y., 
2013) and the expression is: 

 

2

2

2 2 2 2

2 2 2 2

* 2 2 2

2 2 2

2 2 2 2

2 2 2 2

,

( )       0            

,

T T

T T

T T

Df Df

S Df Df

Df Df





   

   

  


  

   

   


    




    


    


 

(18) 

The pseudo-code of TV-TFIR algorithm is 

shown in the Table 1. 

Table 1: The pseudo-code of the TV-TFIR. 

Initializations. 

While(n maxn N ) do 

Update f : 
1 ( , , )n n n nf F f z   ; 

Update z  : 

1

1

1 1

2
1

( W )
T

n nz H f








   ; 

Update   : 

2

2

1 2

2

( )
T

n nS Df








   ; 

Lagrange multipliers update:  

1 1

1 1 1(W z )n nf       ; 

1 1

2 2 2 (D )n nf       ; 

1

3 3 (A )nf g      ; 

If stopping criteria then return 
1nf 

 

else n=n+1. 

3 EXPERIMENTAL RESULTS 

In this paper, the Forbild phantom (Yu, Z., 2012) is 

used to complete the simulation experiment for 
different projection numbers. Furthermore, we use 

the real projection data of a gear to prove the 

validity of the, algorithm. The Forbild phantom 

image and the gear image are shown in Fig 2. To 
show the accuracy of our algorithm, the SART 

algorithm, the TV algorithm and the TFIR 

algorithm are used to contrast experiments. 

First, a simulated Forbild phantom is used to 

certify the performance of TV-TFIR algorithm on 
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spatial resolution and accuracy. And real projection 

data of Gear is used to certify the performance of 
TV-TFIR algorithm. 

In order to quantify the experimental results, the 

quantitative index root mean square (RMSE), peak 
signal-to-noise ratio (PSNR) and structural similarity 

(SSIM) and the quantitative index are utilized as 

follows (Zhou Wang, A.C., 2004): 

 * 2

, ,

,

(f f )

RMSE

i j i j

i j

pixel
N







 

(19) 

 

 2

,

10 * 2

, ,,

(max(f ))
10 log

(f f )

i j

i j i j pixeli j

PSNR
N


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(20) 
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x y XY

X Y X Y
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SSIM

u u



 




   
 

(21) 

Where f  is the reconstructed image and 
,i j

f ang 

*

,i j
f  respectively are the pixel value of the image f  

and the reference image. 
pixel

N  is the pixel number 

of the image f .  

All experiments are implemented on a personal 
computer (PC) with an Inter(R) Xeon(R) CPU E3-

1231 v3 @3.4GHz and 16GB RAM. The 

programming language used in the experiment is 
MATLAB and C++. 

 

 

Figure 2: The Images used in the experiment. a) The 

Forbild phantom; b) The Gear image. 

3.1 Results on Forbild Phantom 

In the simulation experiment, a simulated Forbild 

phantom with 512*512 pixels is used to prove the 

validity of our algorithm, and the image is shown in 

Fig 2 a). The lower part of the simulated forbild 
phantom includes some ellipses and rectangles with 

different gray values. On the right side of the 

phantom, there is a half ellipse with high gray value, 

and there are many small circles with low gray value 
inside the ellipse. The left side of the module has 

some randomly distributed high gray value points. 

The gray value is uniform in other parts of the model 

except for a circle with higher gray value. 
This Forbild phantom is consistent with medical 

and industrial applications. The parameters of the 

simulated image scanning system are shown in the 

table 2. 

Table 2: Geometry scanning parameters of exterior CT for 

the simulated imaging system 

Simulated system parameter Parameter 

Distance X-ray to center 900.0 mm 

Distance center to detector  500.0 mm 

The number of detector units 372 

The length of the detector 372 mm 

Image size 512 × 512 

The pixel size of the image 1.0 × 1.0  

 

For the simulation experiment, the SART 

algorithm, TV algorithm and TFIR algorithm are 

used as the contrast experiments. The projection 

angles used in the experiment are respectively 30 
views, 40 views and 50 views. The results of the 

Forbild phantom are shown in Fig 3. The phantom 

reconstructed using SART has severe linear artifacts. 

The linear artifacts in the results of TV are much 
less when the projection angles are enough. The 

results of TFIR are no linear artifacts. But the result 

of the TFIR method will lead to deformation of 

image details as shown in Fig 4. Compared with the 
SART, TV and TFIR, the results of the proposed 

algorithm are recovered more accurately. 

Figure 3: The simulated experiment results of the Forbild 

phantom. 
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Figure 4: The reconstructed ROIs of the Forbild phantom 

in Figure 3. 

Figure 5 shows the quantitative indicators of the 

reconstruction results of the Forbild phantom 
images. And in the paper, RMSE, PSNR and SSIM 

are respectively used as quantitative indicators. 

Each sub-figure in figure 5 contains three sets of 

histograms. They represent the quantitative 
indicators at projection views of 30, 40 and 50 

respectively. And each group of histograms consists 

of four histograms, which respectively represent the 

four algorithms used in the experiment. As can be 
seen from figure 5, the result of quantitative index 

is consistent with the visual effect in figure 3. The 

SART algorithm performs worst, and the 

quantitative indicators and visual effects of TV and 
TFIR are little difference. Our proposed algorithm 

performs best. 

 

 

Figure 5: a) RMSE, b) PSNR and c) SSIM of the Forbild 

phantom results. 

The convergence analysis is shown in Fig 6 that 
shows the RMSE values with the iterations number. 

Fig 6 shows that the error decreases fastest at the 

beginning of the iteration and stops falling as iterate 

1000 steps. The plot shows the proposed algorithm 
can minimize the RMSE. And combined with Fig 5, 

it can be found that our method can always achieve 

RMSE minimization in different projection views. 

 

 

 

Fig 6: RMSE as a function of the number of iterations for 

the Forbild phantom study. (a) 30 views, (b) 40 views, (c) 

50 views. 

3.2 Result on Real Data 

To evaluate the effectiveness of TV-TFIR 

algorithm in practical applications field, real 
projection data of a Gear is used to verify the TV-

TFIR algorithm. The pixels of the gear image are 

512*512. The scanning parameters are shown in 

table 3. 

 
Table 3: Geometry scanning parameters of exterior CT 
for the real imaging system 

System parameter Parameter  

Distance X-ray to center 1950.0 mm 

Distance X-ray to detector 148.86 mm 

The number of detector units 553 

The length of the detector 42 mm 

Image size 512 × 512 

Pixel size 0.076 × 0.076 

 

For the real data experiment, the SART 

algorithm, TV algorithm and TFIR algorithms are 

used as the contrast test. The projection views used 

in the experiment are respectively 37 views and 48 
views.  

Figure 7 shows the reconstruction results of the 

Gear image. Figure 8 shows the ROIs of the Gear 

image. As shown in Figure 7 and Figure 8, SART 
results are the worst, with noise and artifacts 

distributed throughout the image. The result of the 

TV algorithm is smooth, and the brightness and 

smoothness are similar to the Gear image in Figure 
2 (b). But the TV results are fuzzy on the edges. 

The result of TFIR is good for edge reconstruction, 

but there are artifacts in the whole image, and the 

gray level is obviously inconsistent with the Figure 
2 (a). The TV-TFIR algorithm is similar to TV in 

terms of the smoothness of the image. But the TV-

TFIR algorithm is superior to TV algorithm for 

image edge reconstruction. However, the algorithm 
we proposed is inferior to TFIR algorithm in edge 

preserving. In general, our algorithm is superior to 

other algorithms. 
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Figure 7: The real data experiment results of the Gear. 

 

Figure 8: The reconstructed ROIs image in Fig 7. 

4 DISCUSSION & CONCLUSION 

Short-scanning few-view computer tomography 

(SSFV-CT) is an effective method to reduce the 

radiation dose. TV algorithm and tight frame 

iteration regularization algorithm are widely used in 
CT reconstruction for incomplete projection data. 

But TV algorithm assumes the image is piecewise 

constant and that doesn't satisfy the clinical and 

industrial reality. Furthermore, it may lead to blocky 
artifacts in reconstructed image. Tight frame 

regularization algorithm can prevent the appearance 

of blocky artifacts, but it can’t reconstruct high 

quality images when the projection data is seriously 
incomplete. In the paper, we proposed an image 

reconstruction total based on variation and tight 

frame iteration regularization for short-scanning 

few-view computer tomography. 
There are several parameters to choose in the 

experiment, we use trial and error method to select 

the parameters in this paper. Although the 

parameters used may not be optimal, the 
experimental results show that the proposed method 

can reconstruct the image with higher quality. 

One disadvantage of our proposed algorithm is 

computationally intensive. But with the development 
of high-performance computing devices, computing 

power may not be the biggest bottleneck in the 

future. 
In conclusion, the proposed algorithm can adapt 

the severely incomplete projection data. 
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