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Abstract: Network diagnostics is a time-consuming activity that requires an administrator with good knowledge of net-
work principles and technologies. Even if some network errors have been resolved in the past, the administra-
tor must spend considerable time removing these errors when they reoccur. This article presents an automated
tool to learn the expected behavior of network protocols and possible variations. The created model can be
used to automate the diagnostic process. The model presents a finite automaton containing protocol behav-
ior for different situations. Diagnostics of unknown communication is performed by checking the created
model and searching for error states and their descriptions. We have also created a proof-of-concept tool that
demonstrates the practical potential of this approach.

1 INTRODUCTION

Computer networks consist of a large number of de-
vices and applications that communicate with each
other. Due to the complexity of the network, er-
rors occurred on a single device can negatively af-
fect the network services and thus the user experience.
There are various sources of error, such as miscon-
figuration, poor connectivity, hardware error, or even
user misbehavior. End users are often unable to solve
these problems and seek help from a network admin-
istrator. The administrator must diagnose the current
situation, find the cause of the problem, and correct it
to provide the service again.

The administrator diagnoses problems by check-
ing communication and finding possible causes
for these errors. Troubleshooting can be a rather
complex activity requiring good technical knowl-
edge of each network entity. Another complication
is that the administrator often has to check the number
of possible causes to find the true source of the prob-
lem, which requires some time. Network problems
reappear even after the administrator detects and re-
solves these issues, such as repeating the same user
error or when the application update on the server
changes the expected behavior. All these problems
make the diagnostic process a time-consuming and
challenging activity that requires much administrator
attention.

(Zeng et al., 2012) provides a short survey that
shows that network diagnostics is time-consuming,
and administrators wish to have a more sophisticated
diagnostic tool available. Since each environment
is different, the use of universal tools is difficult.
It would be useful to have a tool that adapts to be-
havior on a particular network. The tool should learn
the behavior of the network itself without the need
to program or specify rules on the behavior of indi-
vidual communicating applications and services.

Our goal is to develop a tool that automatically
creates a protocol behavior model. We are not aiming
at creating a general model for use in all networks, but
the model should describe diagnosed network only.
Instead of writing the model manually, the adminis-
trator provides examples (traces) of the protocol con-
versations in the form of PCAP files. The adminis-
trator provides two groups of files. The first group
contains traces of normal behavior, while the second
group consists of known, previously identified error
traces. Based on these groups, the tool creates a proto-
col model. When the model is created, it can be used
for detection and diagnosis of issues in the observed
network communication. Once the model is created,
additional traces may be used to improve the model
gradually.

Our focus is on detecting application layer errors
in enterprise networks. Thus, in the presented work,
we do not consider errors occurred on other layers,
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Using Network Traces to Generate Models for Automatic Network Application Protocols Diagnostics.
DOI: 10.5220/0007929900370047
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 37-47
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

37



e.g., wireless communication (Samhat et al., 2007),
routing errors (Dhamdhere et al., 2007), or perfor-
mance issue on the network layer (Ming Luo, 2011).
Because we are focusing on enterprise networks, we
make some assumption on the availability of required
source data. We expect that administrators using this
approach have access to network traffic as the same
administrators operate the network infrastructure, and
it is possible to provide enough visibility to data
communication. Even the communication outside
the company’s network is encrypted, the traffic be-
tween the company’s servers and inside the network is
many times unencrypted, or the data can be decrypted
by providing server’s private key or logging the sym-
metric session key 1. Also, the source capture files
have no or minimal packet loss. An administrator can
recapture the traffic if necessary.

When designing the system, we assumed some
practical considerations:

• no need to implement custom application protocol
dissectors;

• application error diagnostics cannot be affected
by lower protocols (e.g., version of IP protocol,
data tunneling protocol);

• easily readable protocol model - the created model
can be used for other activities too (e.g., security
analysis).

To demonstrate the potential of our approach,
we have created and evaluated a proof-of-concept im-
plementation available as a command line tool.

The main contribution of this paper is a new au-
tomatic diagnostic method for error detection in net-
work communication of commonly used application
protocols. The method creates a protocol behavior
model from packets traces that contain both correct
and error communication patterns. The administra-
tor can also use the created model for documentation
purposes and as part of a more detailed analysis,e.g.,
performance or security analysis.

This paper is organized as follows: Section 2 de-
scribes existing work comparable to the presented ap-
proach. Section 3 overviews the system architecture.
Section 4 provides details on the method, including
algorithms used to create and use a protocol model.
Section 5 presents the evaluation of the tool imple-
menting the proposed system. Finally, Section 6 sum-
marizes the paper and identifies possible future work.

1http://www.root9.net/2012/11/ssl-decryption-with-
wireshark-private.html

2 RELATED WORK

Recently published survey paper (Tong et al., 2018)
divides issues related to network systems as either
application-related or network-related problems. No-
table attention in troubleshooting of network appli-
cations was concentrated on networked multimedia
systems, e.g., (Leaden, 2007), (Shiva Shankar and
Malathi Latha, 2007), (Luo et al., 2007). Multimedia
systems require that certain quality of service (QoS)
is provided by the networking environment otherwise
various types of issues can occur. Network issues
comprise network reachability problems, congestion,
excessive packet loss, link failures, security policy vi-
olation, and router misconfiguration.

Traditionally, network troubleshooting is a mostly
manual process that uses several tools to gather
and analyze relevant information. The ultimate tool
for manual network traffic analysis and troubleshoot-
ing is Wireshark (Orzach, 2013). It is equipped with
a rich set of protocol dissectors that enables to view
details on the communication at different network
layers. An administrator has to manually analyze
the traffic and decide which communication is abnor-
mal, possibly contributing to the observed problem.
Though Wireshark offers advanced filtering mecha-
nism, it lacks any automation (El Sheikh, 2018).

Network troubleshooting employs active, passive,
or hybrid methods (Traverso et al., 2014). Ac-
tive methods rely on the tools that generate probing
packets to locate network issues (Anand and Akella,
2010). Specialized tools using generated diagnostic
communication were also developed for testing net-
work devices (Procházka et al., 2017). Contrary
to active methods, the passive approach relies only
on the observed information. Various data sources
can be mined to obtain enough evidence to identify
the problem. The collected information is then eval-
uated by the troubleshooting engine. The engine can
use different techniques of fault localization.

Rule-based systems describe normal and abnor-
mal states of the system. The set of rules is typic-
ally created by an expert and represents the domain
knowledge for the target environment. Rule-based
systems often do not directly learn from experience.
They are also unable to deal with new previously un-
seen situations, and it is hard to maintain the repre-
sented knowledge consistently (łgorzata Steinder and
Sethi, 2004).

Statistical and machine learning methods were
considered for troubleshooting misconfigurations
in home networks (Aggarwal et al., 2009) and diag-
nosis of failures in large Internet sites (Chen et al.,
2004). Tranalyzer (Burschka and Dupasquier, 2017)
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Figure 1: After the system processes the input PCAP files (the first yellow stage), it uses the data to create the protocol
behavior model (the second green stage) or to diagnose an unknown protocol communication using the created protocol
model (the-third purple stage).

is a flow-based traffic analyzer that performs traffic
mining and statistical analysis enabling troubleshoot-
ing and anomaly detection for large-scale networks.
Big-DAMA (Casas et al., 2016) is another framework
for scalable online and offline data mining and ma-
chine learning supposed to monitor and characterize
extremely large network traffic datasets.

Protocol analysis approach attempts to infer
a model of normal communication from data sam-
ples. Often, the model has the form of a finite automa-
ton representing the valid protocol communication.
An automatic protocol reverse engineering that stores
the communication patterns into regular expressions
was suggested in (Xiao et al., 2009). Tool ReverX
(Antunes et al., 2011) automatically infers a specifi-
cation of a protocol from network traces and generates
corresponding automaton. Recently, reverse engi-
neering of protocol specification only from recorded
network traffic was proposed to infer protocol mes-
sage formats as well as certain field semantics for bi-
nary protocols (Lodi et al., 2018).

3 SYSTEM ARCHITECTURE

This section describes the architecture of the proposed
system which learns from communication examples
and diagnoses unknown communications. The sys-
tem takes PCAP files as input data, where one PCAP
file contains only one complete protocol communi-
cation. An administrator marks PCAP files as cor-
rect or faulty communication examples before model
training. The administrator marks faulty PCAP files
with error description and a hint on how to fix
the problem. The system output is a model describing
the protocol behavior and providing an interface for
using this model for the diagnostic process. The diag-
nostic process takes a PCAP file with unknown com-
munication and checks whether this communication
contains an error and if yes, returns a list of possible
errors and fixes.

The architecture, shown in Figure 1, consists
of multiple components, each implementing a stage
in the processing pipeline. The processing is staged
as follows:

• Input Data Processing: Preprocessing is respon-
sible for converting PCAP files into a format suit-
able for the next stages. Within this stage, the in-
put packets are decoded using protocol parser.
Next, the filter is applied to select only relevant
packets. Finally, the packets are grouped to pair
request to their corresponding responses.

• Model Training: The training processes several
PCAP files and creates a model characterizing
the behavior of the analyzed protocol. The out-
put of this phase is a protocol model.

• Diagnostics: In the diagnostic component, an un-
known communication is analyzed and compared
to available protocol models. The result is a report
listing detected errors and possible hints on how
to correct them.

In the rest of the section, the individual compo-
nents are described in detail. Illustrative examples are
provided for the sake of better understanding.

3.1 Input Data Processing

This stage works directly with PCAP files provided
by the administrator. Each file is parsed by TShark 2

which exports decoded packets to JSON format.
The system further processes the JSON data by filter-
ing irrelevant records and pairs request packets with
their replies. The output of this stage is a list of tuples
representing atomic transactions.

3.1.1 Packets Parser

Instead of writing our packet decoders, we use
the existing implementation provided by TShark.
TShark is the console version of the well-known
Wireshark protocol analyzer which supports many
network protocols and can also analyze tunneled and
fragmented packets. In the case the Wireshark does
not support some protocol, e.g., proprietary, it is pos-
sible to use a tool which generates dissectors from
XML files (Golden and Coffey, 2015). The system

2https://www.wireshark.org/docs/man-
pages/tshark.html
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...
"eth": {
  "eth.dst": "f0:79:59:72:7c:30",
  "eth.type": "0x00000800",
  ...
},
...
"dns": {
  "dns.id": "0x00007956",
  "dns.flags.response": "0", 
  "dns.flags.opcode": "0",
  "dns.qry.name": "mail.patriots.in",
  ... 
}, 
... 

Figure 2: Excerpt from the TShark output into JSON for-
mat. The JSON represents POP3 packet values from all
network protocols in a key-value data format.

converts each input PCAP file into the JSON for-
mat (TShark supports multiple formats). The JSON
format represents data as a key-value structure (see
Figure 2), where the key is the name of the proto-
col field according to Wireshark definition 3, e.g.,
pop.request.command.

3.1.2 Data Filtering

The JSON format from the TShark output is still pro-
tocol dependent because the field names are protocol-
dependent, and we have to know which key names
each protocol uses. The system converts the data
into a more generic format to make the next pro-
cessing protocol independent. We have found out,
that most of the application protocols use a request-
reply communication pattern. The system filters re-
quests and replies from each protocol and removes
the rest of the data. Even though the protocols use
the same communication pattern, they use a differ-
ent naming convention to mark the reply and response
values (see Table 1).

The problem is how to find the requests and
replies in the JSON data. In our solution, we have
created a database of protocols and their processed
field names. In the case the protocol is not yet in
the database, we require the administrator to add these
two field names to the database. The administrator
can get the field names from the Wireshark tool easily
by clicking on the appropriate protocol field.

Messages can also contain additional informa-
tion and parameters, e.g., server welcome message.
The system also removes this additional information
to allow generalization of otherwise different mes-
sages during the protocol model creation. For exam-

3https://www.wireshark.org/docs/dfref/

Table 1: Several application protocols with their request and
reply field names with example values. The system takes
only data from these fields and drops the rest.

Name Type Field name E.g.

SMTP Request smtp.req.command MAIL
Reply smtp.response.code 354

FTP Request ftp.request.command RETR
Reply ftp.response.code 150

POP Request pop.request.command STAT
Reply pop.response.indicator +OK

DNS Request dns.flags.opcode 0
Reply dns.flags.rcode 0

ple, the welcome server message often contains
the current date and time, which is always different,
and these different messages would create a lot of un-
repeatable protocol states. The Figure 3 shows the re-
sulting format from the Data filtering step.

Unfortunately, TShark marks some unpredictable
data (e.g., authentication data) in some protocols as
regular requests and does not clearly distinguish it.
These values are a problem in later processing be-
cause these unpredictable values create ungeneraliz-
able states during the protocol model learning phase.
In our tests, we have observed that regular requests
have a maximal length of 6 characters, and unpre-
dictable requests have a much longer length. Based
on our finding, the system drops all requests that are
longer than six characters, and if necessary, the net-
work administrator can change this value. Distin-
guishing of these unpredictable requests also for other
protocols should be more focused in future research.

3.1.3 Data Pairing

To avoid pairing requests and replies during the pro-
tocol model learning process, the system pairs each
reply to its request in the data processing stage. After
this pairing process, the system represents each pro-
tocol with a list of pairs, each pair containing one
request and one reply. This pairing also simpli-
fies the model learning process because some proto-
cols use the same reply value for multiple commands
(e.g., POP3 reply ”+OK” for all correct replies)
and the model could improperly merge several inde-
pendent reply values into one state (e.g., all POP3 suc-
cess replies jumps into one state).

The pairing algorithm iteratively takes requests
one by one and chooses the first reply it finds.
If no reply follows, the system pairs the request with
a ”NONE” reply. In some protocols, the server sends
a reply to the client immediately after they connect
to the server. E.g., the POP server informs the clients
if it can process their requests or not. We have solved
this problem by pairing these replies with the empty
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request ”NONE”. The result of the pairing process
is a sequence of pairs, where each pair consists of one
request and one reply. The Figure 3 shows an example
of this pairing process.

Data filtering output         Data pairing output 

Reply: "220"
Request: "EHLO"

Reply: "250" 
Reply: "250"
Reply: "250"

Request: "AUTH" 
Reply: "334" 
Reply: "334"
Reply: "235"

Request: "MAIL"
Reply: "250"

Request: "QUIT"

(None, "220") 

("EHLO", "250")
("EHLO", "250")
("EHLO", "250")

("AUTH", "334")
("AUTH", "334")
("AUTH", "235")

 ("MAIL", "250")

("QUIT", None) 

Figure 3: Example of an SMTP communication in which
the client authenticates, sends an email and quits the com-
munication. The left part of the example shows output from
the Data filtering stage containing a list of requests and
replies in the protocol-independent format. The right part
shows a sequence of paired queries with replies, which are
the output of the Data pairing stage. The system pairs one
request and one reply with the special None value.

3.2 Model Training

After the Input Data Processing stage transformed in-
put PCAP files into a list of request-response pairs,
the Model Training phase creates a model of the pro-
tocol. The model has the form of a finite state
machine describing the behavior of the protocol.
The system creates the model from provided com-
munication traces. For example, for POP3 protocol,
we can consider regular communication traces that
represent typical operations, e.g., the client is check-
ing a mail-box on the server, downloading a message
from the server or deleting a message on the server.
The model is first created for regular communication
and later extended with error behavior.

Learning from Traces with Expected Behavior.

The model creation process begins by learning
the protocol behavior from input data representing
regular communication. The result of this training
phase is a description of the protocol that represents
a subset of correct behavior. The model is created
from a collection of individual communication traces.
When a new trace is to be added, the tool identi-
fies the longest prefix of the trace that is accepted
by the current model. The remaining of the trace
is then used to enrich the model. The Figure 4 shows

a simple example of creating a model from two cor-
rect communication traces (drawn in black ink).

1) CAPA, OK → STAT, OK → QUIT, OK 
2) CAPA, OK → LIST, OK → QUIT, OK 
3) CAPA, OK → STAT, ERR → QUIT, OK

error
description

CAPA,
+OK 

QUIT,
+OK 

STAT,
+OK 

LIST,
+OK 

STAT, -
ERR 

CAPA,
+OK

QUIT,
+OK

QUIT,
+OK

LIST,
+OK

STAT,
-ERR

STAT,
+OK

Figure 4: An example of communication traces and the cor-
responding protocol model. The first two sequences rep-
resent correct communication, while the third sequence
is communication with an error.

Learning the Errors.

After the system learns the protocol from regular
communication, the model can be extended with
error traces. In Figure 4, red arrow stands for a sin-
gle error transition in the model that corresponds
to the added error trace. The system expects that
the administrator prepares that error trace as the re-
sult of previous (manual) troubleshooting activities.
The administrator should also provide error descrip-
tion and information about how to fix the error.

When extending the model with error traces,
the procedure is similar to when processing correct
traces. Automaton attempts to consume as long prefix
of input trace as possible ending in state s. The fol-
lowing cases are possible:

• Remaining input trace is not empty: The system
creates a new state s′ and links it with from state
s. It marks the new state as an “error” state and
labels it with a provided error description.

• Remaining input trace is empty:

– State s is error state: The system adds the new
error description to existing labeling of an exis-
ting state s.

– State s is correct state: The system marks
the state as possible error and adds the error
description.

When extending the automaton with error traces,
it is possible that previously correct state is changed
to a possible error state. For consistent application
protocols, this ambiguity is usually caused by the ab-
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straction made when describing application protocol
behavior.

3.3 Diagnostics

After the system creates a behavioral model that is ex-
tended by error states, it is possible to use the model
to diagnose unknown communication tracks. The sys-
tem runs diagnostics by processing a PCAP file
in the same way as in the learning process and checks
the request/response sequence against the automaton.
Diagnostics distinguishes between these classes:
• Normal: the automaton accepts the entire input

trace and ends in the correct state.
• Error: the automaton accepts the entire input

trace and ends in the error state.
• Possible Error: the automaton accepts the en-

tire input trace and ends in the possible error
state. In this case, the system cannot distinguish
if the communication is correct or not. There-
fore, the system reports an error description from
the state and leaves the final decision on the user.

• Unknown: the automaton does not accept en-
tire the input trace, which may indicate that
the trace represents a behavior not fully recog-
nized by the underlying automaton.
If the diagnostic process detects an unknown error

or result is not expected, the administrator must man-
ually analyze the PCAP file. After the administra-
tor decides whether the file contains an error or not,
the administrator should assign a file to a par-
ticular group of files (correct or error) and repeat
the learning process. This re-learning process in-
creases the model’s ability, and next time the sys-
tem sees the same situation, it reports the correct re-
sult. By gradually expanding, the model covers most
of the possible options.

4 ALGORITHMS

This section provides algorithms for (i) creating
a model from normal traces, (ii) updating the model
from error traces and (iii) evaluating a trace if it con-
tains an error. All three presented algorithms work
with a model that uses a deterministic finite automa-
ton (DFA) as its underlying representation.

The protocol behavior is an automaton
(Q,Σ,δ,q0,F). The set of states Q is represented
by all query/response pairs identified for the modeled
application protocol. As Q ⊆ Σ, the transition
relation δ : Q×Σ→ Q is restricted as follows:

δ⊆ {((qs,rs),(qi,ri),(qi,ri))|(qs,rs),(qi,ri) ∈ Q}

Each state can be a finite state because the input
of the respective input is an indication of the state
reached and a list of error descriptions obtained when
processing the input data.

4.1 Adding Correct Traces

Algorithm 1 takes the current model (input variable
DFA) and adds missing transitions and states based
on the input sequence (input variable P). The al-
gorithm starts with the init state and saves it into
the previous state variable. The previous state vari-
able is used to create a transition from one state
to the next. In each loop of the while loop
section, the algorithm assigns the next pair into
the current state variable until there is no next
pair in the input. From the previous state and
the current state, the transition variable is created,
and the system checks if the DFA contains this tran-
sition. If the DFA does not contain the transition,
the transition is added to the DFA. Before continuing
with the next loop, the current state variable is as-
signed to the previous state variable. The updated
model will be used as the input for the next unpro-
cessed input sequence. After processing all the input
sequences, which represent normal behavior, the re-
sulting automaton is a model of normal behavior.

Algorithm 1: Updating model from the correct traces.
Inputs: P = sequence of query-reply pairs

DFA = set of the transitions
Output: DFA = set of the transitions
Previous state = init state
while not at end of input P do

Current state = get next pair from P
Transition = Previous state→Current state
if DFA does not contain Transition then

add Transition to DFA
Previous state = Current state

end
return DFA

4.2 Adding Error Traces

The Algorithm 2 has one more input (Error), which
is a text string describing a user-defined error.
The start of the algorithm is the same as in the previ-
ous case. The difference is in testing whether the au-
tomaton contains the transition specified in the input
sequence. If so, the system checks to see if the saved
transition also contains errors. In this case, the al-
gorithm updates the error list by adding a new error.
Otherwise, the algorithm continues to process the in-
put string to find a suitable place to indicate the error.
If the transition does not exist, i is created and marked
with the specified error.
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Algorithm 2: Extending the model with error traces.
Inputs: P = sequence of query-reply pairs

DFA = set of transitions
Error = description of the error

Output: DFA = set of transitions
Previous state = init state
while not at end of input P do

Current state = get next pair from P
Transition = Previous state→Current state
if DFA contains Transition then

if Transition contains error then
append Error to Transition in DFA
return DFA

else
Previous state = Current state

else
add transition Transition to DFA
mark Transition in DFA with Error
return DFA

end
return DFA

4.3 Testing Unknown Trace

The Algorithm 3 uses previously created automa-
ton (DFA variable) to check the input sequence P.
According to the input sequence, the algorithm tra-
verses the automaton and collects the errors listed
in the transitions taken. If the required transition was
not found, the algorithm returns an error. In this case,
it is up to the user to analyze the situation and possibly
extend the automaton for this input.

5 EVALUATION

We have implemented a proof-of-concept tool which
implements the Algorithm 1, 2, and 3 specified
in the previous section. In this section, we pro-
vide the evaluation of our proof-of-concept tool
to demonstrate that the proposed solution is suit-
able for diagnosing application protocols. Another
goal of the evaluation is to show how the created
model changes by adding new input data to the model.
We have chosen four application protocols with dif-
ferent behavioral patterns for evaluation.

5.1 Reference Set Preparation

Our algorithms create the automata states and transi-
tions based on the sequence of pairs. The implica-
tion is that repeating the same input sequence does
not modify the learned behavior model. Therefore,
it is not important to provide a huge amount of in
put files (traces) but to provide unique traces (se-
quences of query-reply pairs). We created our refer-
ence datasets by capturing data from the network,

Algorithm 3: Checking an unknown trace.
Inputs: P = sequence of query-reply pairs

DFA = set of transitions
Output: Errors = one or more error descriptions
Previous state = init state
while not at end of input P do

Current state = get next pair from P
Transition = Previous state→Current state
if DFA contains Transition then

if Transition contains error then
return Errors from Transition

else
Previous state = Current state

else
return ”unknown error”

end
return ”no error detected”

removing unrelated communications, and calculating
the hash value for each trace to avoid duplicate pat-
terns. Instead of a correlation between the amount
of protocols in the network and the amount of saved
traces, the amount of files correlates with the com-
plexity of the analyzed protocol. For example,
hundreds of DNS query-reply traces captured from
the network can be represented by the same sequence
(dns query,dns reply).

After capturing the communication, all the traces
were manually checked and divided into two groups:
(i) traces representing normal behavior and (ii) traces
containing some error. In case the trace contains
an error, we also identified the error and added
the corresponding description to the trace. We split
both groups of traces (with and without error) into
the training set and the testing set.

It is also important to notice that the tool uses
these traces to create a model for one specific (or sev-
eral) network configuration and not for all possible
configurations. Focus on a single configuration re-
sults in a smaller set of unique traces and smaller cre-
ated models. This focus allows an administrator to
detect situations which may be correct for some net-
work, but it is not correct for a diagnosed network,
e.g., missing authentication.

5.2 Model Creation

We have chosen the following four request-reply ap-
plication protocols with different complexity for eval-
uation:

• DNS: Simple stateless protocol with simple com-
munication pattern - domain name query (type A,
AAAA, MX, ...) and reply (no error, no such
name, ...).

• SMTP: Simple state protocol in which the client
has to authenticate, specify email sender and re-
cipients, and transfer the email message. The pro-
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Table 2: For each protocol, the amount of total and training traces is shown. These traces are separated into successful
(without error) and failed (with error) groups. The training traces are used to create two models, the first without errors and
the second with errors. The states and transitions columns indicate the complexity of the created models.

Protocol Total traces Training traces Model without
error states

Model with
error states

Successful Failed Successful Failed States Transitions States Transitions
DNS 16 8 10 6 18 28 21 34
SMTP 8 4 6 3 11 18 14 21
POP 24 9 18 7 16 44 19 49
FTP 106 20 88 14 33 126 39 137

tocol has a large predefined set of reply codes re-
sulting in many possible states in DFA created
by Algorithm 1 and 2.

• POP: In comparison with SMTP, from one point
of view, the protocol is more complicated be-
cause it allows clients to do more actions with
email messages (e.g., download, delete). How-
ever, the POP protocol replies only with two pos-
sible replies (+OK, -ERR), which reduce the num-
ber of possible states.

• FTP: It is stateful protocol usually requires
authentication, then allows the client to do mul-
tiple actions with files and directories, and also
the protocol defines many reply codes.

The proof-of-concept tool took input data of se-
lected application protocols and created models
of the behavior without errors and a model with er-
rors. The Table 2 shows the distribution of the input
data into a group of correct training traces and a group
of traces with errors. Remaining traces will be later
used for testing the model. The right part of the ta-
ble shows the complexity of the generated models
in the format of states and transitions count.

Based on the statistics of models, we have made
the following conclusions:
• transitions count represents the complexity

of the model better than the state’s count;

• there is no direct correlation between the com-
plexity of the protocol and the complexity
of the learned model. As can be seen with pro-
tocols DNS and SMTP, even though the model
SMTP is more complicated than DNS protocol,
there were about 50% fewer unique traces result-
ing in a model with 21 transitions, while the DNS
model consists of 34 transitions. The reason
for this situation is that one DNS connection can
contain more than one query-reply and because
the protocol is stateless, any query-reply can fol-
low the previous query-reply value.
Figure 5 shows four charts of four protocols

that show the complexity of the models in terms

of the number of states, transitions, and testing traces
with error results. Each chart consists of two parts.
The first part marked as training from correct traces
creates the model only from traces without errors.
To check the correctness of the model, we used testing
traces with and without errors. The second part learn-
ing the errors takes the model created from all the suc-
cessful traces and extends it with training traces with
known errors. To mark the testing trace without
error as a correct result, the model has to return that
the trace is without error. Testing traces with an error
are marked as correct when an error was detected, and
the model found the correct error description.

The charts in Figure 5 shows the progress
of changing the model size when new traces are added
to the model. We have created these values from
25 tests, and the charts show a range of the values
from these tests with their median. Each test be-
gan by randomizing the order of the trace files, re-
sulting in a different trace order in each test. Based
on the deviation of values from the median, we can
see that during the learning process, the model is de-
pendent on the order of the traces. However, after
we have added all the traces, the created model has
the same amount of states and transitions (zero de-
viation). The zero deviation can be seen at the end
of training from correct trace states and also at the end
of learning the error states. We have also used
a diff tool to compare the final models between them-
selves to confirm that all the models were the same,
and the final model does not depend on the order
of the input traces.

Figure 5 shows that by adding new traces, the size
of the model is increasing. With the increasing
size of the model, the model is more accurate, and
the amount of diagnostic error results decreases.
However, after some amount of traces, the model ex-
pansion will slow down until it stops after the tool has
observed all valid traces. Stopping the expansion may
seem like the point when the model is fully trained,
however from our experience, it is not possible to de-
termine when the model is fully learned or at least
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Figure 5: The figure shows the count of transitions, states, and errors in the four analyzed protocols. An error is an incorrect
diagnostic result. The values are extracted from 25 random tests, and the median of their values is represented by intercon-
nection lines. The learning process is split into two parts: i) training the model only from traces without any error and after
all correct traces have been learned, in section ii) model is extended with the knowledge of known errors.

learned from X%. Even if the model does not grow
for a long time, it can suddenly expand by processing
a new trace (new extensions, programs with specific
behavior, program updates).

Another way of specifying how much percent
the model is trained is by calculating all possi-
ble transitions. The calculation is (requests count ∗
replies count)2. Of course, many combinations
of requests and replies would not make any sense,
but the algorithm can never be sure which combina-
tions are valid and which are not. The problem with
counting all possible combinations is that without pre-
defined knowledge of diagnosed protocol the tool can
never be sure if all possible requests and replies (no
matter the combinations) have already be seen or not.

5.3 Evaluation of Test Traces

Table 3 shows the amount of successful and failed
testing traces; the right part of Table 3 shows testing
results for these data. All tests check whether:

1. a successful trace is marked as correct (TN);

2. a failed trace is detected as an error trace with cor-
rect error description (TP);

3. a failed trace is marked as correct (FN);

4. a successful trace is detected as an error or failed
trace is detected as an error but with an incorrect

error description (FP);

5. true/false (T/F) ratios which are calculated
as (T N +T P)/(FN +FP). T/F ratios represents
how many traces the model diagnosed correctly.

As the columns T/F ratio in Table 3 shows, most
of the testing data was diagnosed correctly. We have
analyzed the incorrect results and made the following
conclusions:

• DNS: False positive - One application has made
a connection with the DNS server and keeps
the connection up for a long time. Over
time several queries were transferred. Even
though the model contains these queries, the or-
der in which they came is new to the model.
The model returned an error result even when
the communication ended correctly. An incom-
plete model causes this misbehavior. To correctly
diagnose all query combinations, the model has
to be created from more unique training traces.

• DNS: False positive - The model received a new
SOA update query. Even if the communication
did not contain the error by itself, it is an indica-
tion of a possible anomaly in the network. There-
fore, we consider this as the expected behavior.

• DNS: False negative - The situation was the same
as with the first DNS False positive mistake -
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Table 3: The created models have been tested by using testing traces, which are split into successful (without error) and
failed (with error) groups. The correct results are shown in the true negative and true positive columns. The columns false
positive and false negative on the other side contain the number of wrong test results. The ratio of correct results is calculated
as a true/false ratio. This ratio represents how many testing traces were diagnosed correctly.

Protocol Testing traces Testing against model
without error states

Testing against model
with error states

Successful Failed TN TP FN FP T/F ratio TN TP FN FP T/F ratio
DNS 6 2 4 2 0 2 75 % 4 1 1 2 63 %
SMTP 2 1 2 1 0 0 100 % 2 1 0 0 100 %
POP 6 2 6 2 0 0 100 % 6 2 0 0 100 %
FTP 18 6 18 6 0 0 100 % 18 5 1 0 96 %
TN - true negative, TP - true positive, FN - false negative, FP - false positive, T/F ratio - true/false ratio

the order of packets was unexpected. Unex-
pected order resulted in an unknown error instead
of an already learned error.

• FTP: False negative - The client sent a PASS
command before the USER command. This
resulted in an unexpected order of commands,
and the model detected an unknown error. We are
not sure how this situation has happened, but be-
cause it is nonstandard behavior, we are inter-
preting this as an anomaly. Hence, the proof-of-
concept tool provided the expected outcome.

All the incorrect results are related to the incom-
plete model. In the real application, it is almost im-
possible to create a complete model even with many
input data. In the stateless protocols (like DNS),
it is necessary to capture traces with all combinations
of query-reply states. For example, if the protocol de-
fines 10 types of queries, 3 types of replies, the to-
tal amount of possible transitions is (10 ∗ 3)2 = 900.
Another challenge is a protocol which defines many
error reply codes. To create a complete model, all
error codes in all possible states need to be learned
from the traces.

We have created the tested tool as a prototype
in Python language. We have not aimed at testing
the performance, but to get at least an idea of how us-
able our solution is, we gathered basic time statistics.
The processing time of converting one PCAP file (one
trace) into a sequence of query-replies and adding it
to the model took on average 0.4s. This time had only
small deviations because most of the time took ini-
tialization of the TShark. The total amount of time
required to learn a model depends on the amount
of PCAPs. The average time required to create
a model from 100 PCAPs was 30 seconds.

6 CONCLUSIONS

This paper suggested a method for automatic error
diagnostics in network application protocols by cre-
ating models for these applications. There are two
use-cases for when administrators should use this ap-
proach: (i) if an administrator is experienced, the ad-
ministrator can learn the model to speed-up the diag-
nostic process; (ii) if an administrator is inexperi-
enced, the administrator can use the model created by
an experienced administrator to diagnose the network.

The already existing diagnostic solutions do not
have any automation capabilities, require an adminis-
trator to create rules describing the normal and error
states or the automatically created protocol models
are not used for diagnostic purposes.

Our method uses network traces prepared by ad-
ministrators to create a model representing proto-
col behavior. The administrator has to separate the
correct from the error traces and annotate the error
ones. The model is created based on the query-
response sequences extracted from the analyzed pro-
tocol. For this reason, the model is applicable only
for a protocol with a query-reply pattern. The model
represents the correct and incorrect protocol behavior,
which is used for unknown network trace diagnostics.

The main benefit of having an own trained model
is that the model will represent the protocol in a spe-
cific configuration and will not accept situations
which may be valid only for other networks. The ad-
ministrator can use the model to speed up the work
by automating unknown communication diagnostics.
Our solution uses the well-known tool TShark, which
supports many network protocols and allows us to use
the Wireshark display language to mark the data.

We have implemented the proposed method
as a proof-of-concept tool 4 to demonstrate its capa-
bilities. The tool has been tested on four application

4https://github.com/marhoSVK/semiauto-diagnostics
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protocols that exhibit different behavior. Experiments
have shown that it is not easy to determine when
a model is sufficiently taught. Even knowing the pro-
tocol complexity is not a reliable indication. Because
even the simplest protocol we tested needed a larger
model than a more complex protocol. Although the
model seldom covers all possible situations, it is use-
ful for administrators to diagnose repetitive and typi-
cal protocol behavior and find possible errors.

Future work will focus on: (i) finding other au-
tomation cases for the created protocol model ; (ii) de-
signing and implementing additional communication
modeling algorithms to support other useful commu-
nication features ; (iii) a study on possibility of com-
bining different models from multiple algorithms into
one complex model; (iv) integrating timing informa-
tion into DFA edges.
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