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Abstract: Prediction models found a wide application in advanced control systems, intelligent systems of information 
decision support, play a significant role in any activity concerned with signal processing procedures, involving 
detecting failures of different technological processes. Methods based on the wavelet analysis are 
characterized by a unique ability of detailed frequency analysis in the time. The paper presents stability 
conditions of a prediction model, which are developed on the basis of the multi-scale wavelet transform, as 
well an example of the prediction model applied in the oil refining process. 

1 INTRODUCTION 

Under solving identification problems one may 
emphasize a broad class of process to control which 
constructing linear models is not enough. These 
processes may have some particularities in certain 
time instants. In engineering systems, such 
particularities frequently have a cyclic feature. 
Solving the problem of constructing prediction 
models for time-varying processes of such a kind 
looks vital (Sakrutina and Bakhtadze, 2015). 

Within lattes two decades, to analyse time-
varying process in different areas the wavelet 
transform has been broadly expanded, what numerous 
publications confirm (as an example, Toledo et al., 
1998; Yuan and Shi. 2008; Wen and Zhou, 2009; 
Wen et al., 2010; Castello et al., 2015; Breidenstein 
et al., 2017; Muto et al., 2019). First studies on the 
wavelet analysis of time (space) series with 
manifested heterogeneity have appeared in the middle 
of 1980s (Grossman and Morlet, 1984). The method 
was positioned as an alternative to the Fourier 
transform localizing frequencies but not providing the 
process time resolution.  

At present, the wavelet analysis is applied for 
processing and synthesis of time-varying signals, 
solving problems of compression and coding of 
information, image processes, in particular, in 
medicine and many other spheres. The approach is 
effective for studying functions and signals being 
time-varying or space heterogeneous, when analysis 
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results are to contain not only frequency signal 
characteristics (power signal distribution over 
frequency components), but, as well, information 
about local coordinates at which certain groups of the 
frequency components manifest themselves, or at 
which fast changes of the frequency signal 
components are the case. 

The wavelet analysis are used mainly for the 
identification (Ghanem and Romeo, 2000, 2001) of 
non-linear systems with a specific structure, where 
unknown time-varying coefficients can be 
represented as a linear combination of basis wavelet 
functions (Tsatsanis and Giannakis, 2002; Wei and 
Billings, 2002). 

The present paper is devoted to applying the 
wavelet analysis under constructing prediction 
models providing the prediction without accounting 
future states of the prediction ground, in particular, 
determining the stability. 

2 PREDICTION MODEL OF 
NON-LINEAR TIME-VARYING 
PLANT 

A feature of the performance of advanced control 
systems of manufacturing processes is applying soft- 
and algorithmic complexes referred as virtual 
analysed. The virtual analysers implement 
constructing a prediction model of a specific 
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manufacturing process, using (besides current and 
archived technological data) models at other 
manufacturing control levels. 

Two aspects are features of virtual analysers. 
Firstly, under their performance the adaptive 
approach to the model tuning is implemented. 
Secondly, as an additional a priori information source 
to identify an investigated process models of other 
manufacturing processes can be applied, and, besides 
that, recommended control actions of different 
regulators (which, perhaps, perform in the mode of a 
technological process operator adviser). 

To check the accuracy of defining the input and 
output parameters of the process model, checking the 
hypothesis on the model parameters significance is 
implemented. To evaluate the process model 
accuracy, checking the hypothesis on the model 
adequacy is implemented. The model accuracy is 
defined in the dependence of model prediction errors. 
In a number of problems the admissible measurement 
error is set by standards, technological regulations, 
and other requirements. To analyse the prediction 
quality, the empirical error functions are frequently 
used (Kassam, 1977; Kim et al., 2017): mean absolute 
percentage error – MAPE, mean absolute error – 
MAE, mean squared error – MSE. 

Let a prediction associative model (Bakhtadze et 
al., 2013) of a non-linear time-varying plant meets the 
equation: 

, , (1)

where  is the plant output prediction at the time 
instant ,  is the input actions vector,  is the 
output memory depth,  is the input memory depth, 

 is the input vector dimension, , ,  are tuned 
coefficients,  are selected not in the 
chronological decreasing order. 

Let us write a virtual prediction model (1) in the 
standardized scale: 

, , (2)

where ,  ,  0, 

1, , ,  are standardized coefficients. 
For a detailing level selected  for a current input 

vector in the standardized scale we obtain the multi-
scale expansion (Mallat, 1999): 

, , , , , 

, , , , , 

where:  is the multiscale expansion depth (1
, where log ∗  and ∗ is the power 

of the state set in the base of knowledge about the 
system dynamic); ,  are scaling functions; 

,  are wavelet functions that are obtained from 
the mother wavelets by the stretching/compression 
and shift: 

, 2 ⁄ 2 , 

where, as the mother wavelets, the Haar wavelets are 
considered;  is the detailing analysis level; ,  are 
scaling coefficients, ,  are detailing coefficients. 
The coefficients are calculated by use of the Mallat 
algorithm (Mallat, 1999). 

Let us expand equation (2) over the wavelets: 

, , ,  

, ,  

, ,  

, , ,

, , ,  

In the last equality, we will group members 
containing as co-factors identical wavelets. 
Meanwhile we account that due to the associative 
search procedure (Bakhtadze and Sakrutina, 2015) 
the coefficients  и  may differ of zero for inputs  
selected from the archive in accordance to the 
associative procedure rather than the chronological 
sequence, 

, , , ,  

, ,

, ,  

, ,

, , , . 

(3)

The dynamic plant described by relationship (6) 
will be stable if simultaneously the following  
equations (meeting the relationships with respect 
each of the addendums over  ( 1,… , ) in the 
left and right parts of (3): 

, , , ,  

, ,

, , ,  

(4)
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, ,

, , , . 

3 MODEL STABILITY 
CONDITIONS 

Let max
,

. In subsections 3.1-3.4 there will be 

considered models (4) of the kind: , , 
1, 1. 

3.1 Stability Condition under  

If the input memory depth is less than the output 
memory depth, then (4) is transformed to the form: 

, , , ,

, 1 , 1 ⋯

, , ⋯

, ,

, , 1 , 1 ⋯

, , ,

, 1 , 1 ⋯

, , ⋯

, ,

, , 1 , 1 ⋯

, , , . 

(5)

Let us consider separately the approximating and 
detailing parts of equality (5) correspondingly: 

, ,

, 1 , , 1 , 1

⋯

, , , ,

, 1 , 1 ⋯

, , , 

(6)

where 1, ; 

, 1 , , 1 , 1

… , , , ,

, 1 , 1 ⋯

, , , 

(7)

where 1, , 1, . 
Let us introduce the following notations: 

…
1

, ∈ , 

…
1

, ∈ , 

where: 

; 1 ; 	… ;		
1 , 

; 1 ;	… ;	
1 , 

then: 

…
1

;  1
1

… ; 

…
1

;  1
1

… . 

(8)

Let us introduce notations for the coefficients in (6): 

, 0, 

, 1 , , 1 , 

… 

, , , , 

, 1 , 
… 

, . 

(9)

Let us introduce notations for the coefficients in (7): 

, 0, 

, 1 , 1 , 

… 

, , , , 

, 1 , 
… 

, . 

(10)

By virtue of notations (9) and (10), let us rewrite 
(6) and (7) correspondingly in the following form: 

1 ⋯ 	
1 ⋯ , 
1 ⋯ 	

1 ⋯ , 

or 

2
1 ⋯

2

2
1 ⋯

2
1

2
1 ⋯

2 2
1

⋯
2

1 , 

(11)
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2
1 ⋯

2

2
1 ⋯

2
1

2
1 ⋯

2 2
1

⋯
2

1 . 

(12)

A sufficient condition to meet equations (11) and 
(12) is simultaneous meeting the equalities: 

2
1 , 

2
1

2
1 , 

… 

2 2
1 , 

… 

2
1 ; 

2
1 , 

2
1

2
1 , 

… 

2 2
1 , 

… 

2
1 . 

Equalities (11) and (10), by virtue of above 
introduced notation (8), can be represented in the 
form: 

0

0
2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮

⋯
2

2
0

0
2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯

1 , 

(13)

0

0
2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮

⋯
2

2
0

0
2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯

1 , 

(14)

Let the matrices in the left hand sides of (13) and 
(14) be invertible, then 

2
0

0

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮

⋯
2

1 , (15)

2
0

0

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮

⋯
2

1 . (16)

One can interpret relationships (15) and (16) as a 
representation of a system in the state space. The 
system stability is defined by the characteristic 
polynomial of diagonal matrix in the right hand sides 
of (15) and (16) (Kwakernakk and Sivan, 1972). 

Thus, we obtain that the stability criterion of plant 
(5) (and, hence, (6) and (7) for ∀	 1, , 1, ) 
is assured by meeting the equalities: 

2
1, 1, … ,

2
1; (17)

2
1, 1, … ,

2
1. (18)

The system of inequalities (17) and (18) by virtue 
of earlier introduced notations can be rewritten for the 
approximating part in the form of (19) ∀	 1, , 
and for the detailing part in the form of (20) for ∀	
1, , 1, . 

, 1 ∑ , , 1

2 ,

1, 

	 , 2 ∑ , , 2

, 1 ∑ , , 1
1, 

…, 

	 , 1

, ∑ , ,

1, 

, 2

, 1
1, 

…, 
2 ,

, 1
1. 

(19)

, 1 ∑ , 1

2 ,

1, 

, 2 ∑ , 2

, 1 ∑ , 1
1, 

…, 

, 1

, ∑ ,

1, 

, 2

, 1
1, 

…, 
2 ,

, 1
1. 

(20)
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3.2 Stability Condition under  

If the input memory depth is more than the output 
memory depth, then (4) is transformed to the form: 

, , , ,

, 1 , 1 ⋯

, ,

, 1 , 1 ⋯

, , , …

, , ,

, 1 , 1 ⋯

, ,

, , 1 , 1 ⋯

, , , ⋯

, , , . 

(21)

Let us consider separately the approximating and 
detailing parts of equality (21) correspondingly: 

, ,

, 1 , 1 ⋯

, ,

, , 1 , 1 ⋯

, , , …

, , ,  

(22)

where 1, ; 

, ,

, 1 , 1 ⋯

, ,

, , 1 , 1 ⋯

, , , ⋯

, , ,  

(23)

As a result of transformations being equivalent to 
those of Subsection 3.1, we obtain sufficient 
conditions for the approximating part in the form of 
(24) ∀	 1, , and for the detailing part, in the form 
of (25) for ∀	 1, , 1, . 

, 1 ∑ , , 1

2 ,

1,	 

, 2 ∑ , , 2

, 1 ∑ , , 1
1,	 

…,	 

(24)

∑ , , 1

, ∑ , ,

1, 

∑ , , 2

∑ , , 1
1, 

…, 
2∑ , ,

∑ , , 1
1; 

, 1 ∑ , , 1

2 ,

1, 

, 2 ∑ , , 2

, 1 ∑ , , 1
1, 

…, 
∑ , , 1

, ∑ , ,

1, 

∑ , , 2

∑ , , 1
1, 

…, 
2 , ∑ , ,

, 1 ∑ , , 1
1.

(25)

3.3 Stability Condition under  

If the input memory depth is equal to the output 
memory depth, then (4) is transformed to the form: 

, , , ,

, 1 , 1 ⋯

, ,

, , 1 , 1 ⋯

, , ,

, 1 , 1 ⋯

, ,

, , 1 , 1 ⋯

, , , . 

(26)

Let us consider separately the approximating and 
detailing parts of equality (26) correspondingly: 

, ,

, 1 , 1 ⋯

, ,

, , 1 , 1 ⋯

, , ,  

(27)

where 1, , 
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, ,

, 1 , 1 ⋯

, ,

, , 1 , 1 ⋯

, , ,  

(28)

where 1, , 1, . 
As a result of transformations being equivalent to 

those of Subsection 3.1, we obtain sufficient 
conditions for the approximating part in the form of 
(29) ∀	 1, , and for the detailing part, in the form 
of (30) for ∀	 1, , 1, . 

, 1 ∑ , , 1

2 ,

1,	

, 2 ∑ , , 2

, 1 ∑ , , 1
1,	

	… ,	
2 , ∑ , ,

, 1 ∑ , , 1
1; 

(29)

, 1 ∑ , , 1

2 ,

1,	

, 1 ∑ , , 1

2 ,

1, 

(30)

, 2 ∑ , , 2

, 1 ∑ , , 1
1,	

… ,	
2 , ∑ , ,

, 1 ∑ , , 1
1. 

3.4 Stability Condition under = =1 

Let us consider a case, when the input and output 
memories depths are equal to 1, then (4) is 
transformed to the form: 

, , , ,

, 1 , 1

, , 1 , 1

, 1 , 1

, , 1 , 1  

(31)

Let us consider separately the approximating and 
detailing parts of equality (31) correspondingly: 

, , , 1 , 1 	

, , 1 , 1  
(32)

where 1, , 

, , , 1 , 1 	

, , 1 , 1  
(33)

where 1, , 1, . Let us introduce notations 
for the coefficients in (32): 

, 0, 

, 1 , , 1 . 
(34)

Let us introduce notations for coefficients in (34): 

, 0, 

, 1 , , 1 . 
(35)

By virtue of notations (34) and (35) introduced, 
let us rewrite (32) and (33) correspondingly in the 
following form: 

1 . (36)
1 . (37)

One can interpret relationships (36) and (37) as a 
representation of a system in the state space.  

1; (38)

1. (39)

The systems of inequalities (38) and (39), by 
virtue of the notations earlier introduced, can be 
rewritten for the approximating part in the form (40) 
∀	 1, , and for the detailing part in the form of 
(41) for ∀	 1, , 1, . 

, 1 ∑ , , 1

,

1, (40)

, 1 ∑ , , 1

,

1. (41)

4 MODELLING OIL REFINING 
PROCESS 

On the basis of preliminary data analysis, a prediction 
linear model of the following type has been built: 

1 3 	

5 7 , 
(42)

where  is the prediction of the temperature of 
boiling away of 10% fraction “150-250ºC” (a detailed 
description of the variables is presented in the paper 
of Kalashnikov and Sakrutina (2018). 

The associative model will have the structure of 
linear model (42), but a principal distinction of the 
associative model is forming at each step a new model  
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Table 1: The comparison of the associative models quantity in accordance to the number of vectors selected from the plant 
knowledge base. 

Number of vectors 
in the associative 

model 
MAPE MAE MSE 

Maximal absolute 
error 

Minimal absolute 
error 

195 0,30886% 0,50004 0,42292 3,32514 0,00011 
170 0,30058% 0,48662 0,40238 3,17054 0,00093 
152 0,29356% 0,47525 0,38331 2,84228 0,00020 
133 0,28576% 0,46262 0,36426 2,65459 0,00064 
113 0,27167% 0,43978 0,33527 2,21305 0,00010 
101 0,26629% 0,43105 0,32104 2,33122 0,00019 
86 0,25112% 0,40656 0,29165 2,53347 0,00002 
65 0,22790% 0,36897 0,24949 2,46776 0,00027 
61 0,22249% 0,36024 0,23835 2,52234 0,00002 
60 0,22230% 0,35992 0,23673 2,49180 0,00042 
58 0,22063% 0,35721 0,23372 2,44692 0,00003 
55 0,21527% 0,34854 0,22429 2,46557 0,00007 
54 0,21637% 0,35035 0,22685 2,41414 0,00013 
50 0,21267% 0,34437 0,21904 2,24581 0,00021 
46 0,20609% 0,33370 0,20835 2,21200 0,00002 
42 0,19653% 0,31823 0,19297 2,35652 0,00001 
41 0,19486% 0,31556 0,18879 2,17517 0,00041 

 
on the basis knowledge about the plant, which is 
updated and specified in the time progress. To 
determine a necessary quantity of input vectors to 
build an accurate associative model, by use of a test 
sample (2400 steps) we will use a number of accuracy 
and prediction adequacy evaluations. Table 1 
contains 17 variants of the number of input vectors, 
on the basis of which the associative models were 
being built, for which indicators of the model 
accuracy have been calculated: MAPE, MAE, MSE, 
maximal and minimal absolute errors. From the 
considered models the best associative model has 
been selected, i.e. most accurate and with smallest 
quantity of large errors, namely, the one built on the 
basis of 42 vectors selected from the plant knowledge 
base. 

 

Figure 1: Boiling away point prediction of the 10% fraction 
''150-250ºC'' at steps 2-101. 

The considered process prediction was being built 
on the basis of the linear and associative models form 
10525 steps (1 step = 10 min.). Figure 1 displays 
results of modelling for steps 2,101, where the 
dependencies of data of laboratory analysis of the 

boiling away temperature of the 10% fraction ''150-
250ºC'' (T_process) of the time t, the dependence of 
predictions of the boiling away temperature of the 
10% fraction “150-250ºC” on the basis of the linear 
model (T_linear_model) an associative model 
(T_associative_model) of the time t. 

 

Figure 2: Stability condition of the approximating part for 
the prediction model in the point t=55 in the dependence of 
the expansion depth. 

For model (42), Figure 2 display an example of 
meeting the stability criterion for the approximating 
part: 

∑ , 1

2 ,
1. 

in the dependence of the expansion depth. 
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5 CONCLUSIONS 

In the paper, the results, obtained on the basis of the 
multi-scale wavelet transform, of the stability 
conditions of prediction models based on the 
associative search technique and proving the 
prediction without accounting possible future states 
of the prediction ground. 

The stability conditions obtained can be applied to 
the risk potential evaluation (Kalashnikov and 
Sakrutina, 2018) of implementing the prediction by 
use, for instance, the Harrington verbal-numerical 
scale (Harrington, 1965). 
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