
Hunting Traits for Cryptojackers

Gabriel Jozsef Berecz1,2 a and Istvan-Gergely Czibula1 b

1Department of Computer Science, Babeş-Bolyai University, M. Kogălniceanu Street, Cluj-Napoca, Romania
2Cyber Threat Proactive Defense Lab, Bitdefender, Romania

Keywords: Cryptojacker, Computer Security, Learning-based Classifier.

Abstract: Cryptocurrencies are renowned world wide nowadays and they have been adopted in various industries. This
great success comes from both the technology innovation they brought to the world, the blockchain, and the
financial opportunities they opened up for investors. One of the unpleasant aspects are the cybercriminals who
took advantage of this technology and have developed malicious software (i.e. cryptojacker) in order to gain
profit by mining cryptocurrencies on their victims’ personal computer without any consent. This paper pro-
poses to analyze standalone cryptojackers, both statically and dynamically, with the aim of identifying specific
traits. The approach draws out features specific to cryptojackers that are selected using statistical methods and
explains why a cryptocurrency mining malware has such traits. Based on 20 selected specific features, three
different supervised learning classification models have been trained, which are able to differentiate between
clean applications and cryptojackers reliably. In experiments, an average accuracy of ≈ 92.46% has been
achieved.

1 INTRODUCTION

In the past two years, cryptocurrencies have seen a
rapid growth. By the start of 2018, they achieved
a total market capitalization of 820 billion dol-
lars (Coinmarketcap, 2013). This great success can
be attributed to both the technology innovation it
brought to the world, the blockchain, and the finan-
cial opportunities it opened up for investors. Min-
ing is the process of validating transactions within the
blockchain network. A miner is a machine connected
to the blockchain network which validates transac-
tions within the network (Swan, 2015). Cybercrim-
inals took advantage of this technology and have de-
veloped malicious software in order to gain profit by
mining cryptocurrencies on each victim’s personal
computer and collect the rewards in their wallets.
Thus, cryptojackers have become wide spread over
the Internet and many users are mining cryptocur-
rencies without consent. Since they have first ap-
peared, cryptojackers have been noticed running in-
side a browser (i.e. browser-based cryptojackers that
execute Javascript code) (Eskandari et al., 2018) and
running locally on machines as standalone executa-
bles.

With the growth of Cryptocurrency market, cryp-
tojackers have become widely spread among Internet

a https://orcid.org/0000-0002-0923-9742
b https://orcid.org/0000-0003-0076-584X

users. They get executed through different methods,
some of them are usually malicious software such as
trojans, while other are delivered through complex at-
tacks like exploits or file-less attacks. Because they
are stealthy and, for the most of the time, unrecog-
nized, they are able to persist on an affected machine
for months. During the whole time, the attacker gains
his profit while the user’s hardware components are
getting damaged. Once infected with such a threat, it
could take minutes up to months to notice that some-
thing is wrong, but the attack has to be detected as
early as possible in order to produce as little damage
as possible. Thus, a specialized component respon-
sible for identifying cryptojackers is required nowa-
days.

Moreover, Pastrana et al. (Pastrana and Suarez-
Tangil, 2019) have studied cryptojacking campaigns
presenting how attackers earned at least 56 million
USD. Their study proved that malicious actors are
nowadays targeting this kind of malware as it may
be unnoticeable by its victims and delivering profit
continuously. This represents only a part of the min-
ing going on in the wild, not taking into consideration
users and companies that are the victims of this phe-
nomena without even knowing.

The term of cryptojacker refers to malicious soft-
ware used to stealthily mine cryptocurrencies, with-
out user’s consent. We focused on cryptojackers that
are standalone executable files as they have not been

386
Berecz, G. and Czibula, I.
Hunting Traits for Cryptojackers.
DOI: 10.5220/0007837403860393
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 386-393
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

studied in-depth, unlike the browser-based ones. The
features were extracted based on behavioral analysis
and static analysis of both cryptojackers and clean ap-
plications. The paper presents only those features that
are relevant and have a major contribution in the clas-
sification process.

Based on an in-depth analysis of cryptojackers,
along with a comparison between them and clean ap-
plications, this paper aims to answer the following
questions:

• Are there any anomalies in the characteristics (i.e.
features) of cryptojackers which could differenti-
ate them from any clean application?

• Why would a cryptojacker have a specific feature
present?

• Can we reliably separate clean applications from
cryptojackers based on specific features?

The first question attempts to identify features
present among many cryptojackers, the second one
tries to explain the traits and behavior of such mali-
cious applications, while the third implies an experi-
mental evaluation. The main contributions of this pa-
per can be summarized as follows:

• Identify features that are specific to standalone
cryptojackers.

• Analyze and explain why would cryptojackers
have such a trait or behavior.

• Introduce and experimentally validate cryptojack-
ers classification methods based on the identified
features.

The paper presents existing approaches and so-
lutions to the problem of cryptojacking detection in
Section 2. After that, the paper introduces our ap-
proach in Section 3 and continues with the experimen-
tal evidence of the proposed approach in Section 4.
Finally, in Section 5 we compare the results obtained
by our proposal with the ones already present in the
literature. Conclusions and future improvements are
discussed in Section 6.

2 RELATED WORK

Browser-based cryptojackers have been studied dur-
ing the past years and systems aiming to identify such
threats have been developed. The paper from Eskan-
dari et al. (Eskandari et al., 2018) presented the re-
cent trends in terms of cryptocurrency mining. Ac-
cording to their study, Coinhive (Coinhive, 2012) is
the most used Javascript cryptocurrency miner, repre-
senting 92.0% of the total number of websites using

Javascript cryptocurrency miners, followed in top 3
by JSEcoin (JSEcoin, 2017) and Crypto-Loot (Cryp-
toLOOT, 2017). Saad et al. (Saad et al., 2018) focused
on code-based analysis among browser-based crypto-
jackers, presenting code complexity features that are
used to identify cryptojacking Javascript code with an
accuracy of 96.4%. These two approaches present in-
formation related to browser-based cryptojackers, not
for standalone applications.

Krishnan et al. (Krishnan et al., 2015) discuss
about moving the mining process into cloud present-
ing the limitations of the traditional machines and
why cloud computing is the next step. A study (Tahir
et al., 2017) concerning cloud services was published,
in which the authors presented how virtual machines
from cloud are abused with the aim of mining cryp-
tocurrencies. Another approach (Sari and Kilic, 2017)
used Open Source Intelligence in order to investi-
gate vulnerabilities present in mining pools, having
the Mirai botnet (Antonakakis et al., 2017) as refer-
ence. Hong et al. (Hong et al., 2018) presented at-
tack vectors specific to browser-based cryptojackers
along with their distribution techniques. The frame-
work proposed by Rauchberger et al. (Rauchberger
et al., 2018) is specialized in scanning for cryptojack-
ers Javascript code and it revealed that in Alexa Top
1 million websites, there were 3,178 which contain
Javascript code mining cryptocurrencies.

In terms of generic malicious software detection,
Zabidi et al. (Zabidi et al., 2012) extract features
present among different malicious software families,
such as trying to identify if there is a debugger at-
tached to the running process or if the sample is
running inside a sandboxed environment. The sys-
tem proposed by Baldangombo (Baldangombo et al.,
2013) et al. detects malicious software using features
extracted from static analysis, using a total number of
25,592 features and 3 different classifiers (i.e. sup-
port vector machine, J48 and Naive Bayes) in order
to achieve a detection rate of 99.6%. In a survey for
automated dynamic malware analysis (Egele et al.,
2012) authors presented different approaches, such as
function call monitoring, functions parameters analy-
sis, data flow tracking, instruction trace and persis-
tence methods. Also, an automatic behavior-based
classification of generic malicious samples (Devesa
et al., 2010) has an average accuracy of 94.8% us-
ing four different classifiers. In order to detect poly-
morphic malware, Kim et al. (Kim and Moon, 2010)
present how dependency graphs can be used to iden-
tify malicious scripts. All these approaches are try-
ing to separate generic malware from clean appli-
cations, they are not targeting a specific malicious
class (i.e cryptojackers) and they are either static or

Hunting Traits for Cryptojackers

387

dynamic analyzing samples. Hybrid malware ap-
proaches have been published (Roundy and Miller,
2010) (Yang et al., 2015) (De Paola et al., 2018),
but they are generically classifying malicious appli-
cations, not focusing on a specific prevalent family,
the cryptojackers.

3 METHODOLOGY

Our approach for investigating and identifying stan-
dalone cryptojackers’ specific features consists of the
following steps:
• Step 1: Data gathering - collect various samples,

both cryptojackers and clean applications.
• Step 2: Feature extraction - collect information

from the gathered data.
• Step 3: Feature selection - choose features spe-

cific to cryptojackers using statistical methods.
• Step 4: Evaluation models - using the identified

features, build different supervised learning mod-
els.

• Step 5: Performance evaluation criteria - measure
performance for the evaluation models.

3.1 Data Gathering

We collected our data using the following sources:
• Hybrid-analysis (Hybrid-analysis, 2014) - auto-

mated malware analysis tool providing an in depth
description for the submitted samples. We used
this tool in order to gather applications labeled as
cryptocurrency mining software.

• Malshare (MalShare, 2013) - an online malicious
software repository that we used to gather more
cryptojackers.

• Other sources - the clean applications were col-
lected using Ninite (Ninite, 2009) software and
Filehippo (FileHippo, 2004).
In order to get as close as possible to the ground

truth, we have selected only clean applications that
are not detected by any anti virus company and cryp-
tojackers that are statically signed by at least 80% of
anti virus companies.

3.2 Feature Extraction

Each sample from the data set was analyzed both stat-
ically and dynamically using custom tools developed
specifically for this experiment (any other tool that ex-
tracts the below mentioned information is suitable).
The static features extracted consist of:

• Information from the executable’s header (it may
differ as it depends on the used operating system)

• Entropy (Lyda and Hamrock, 2007)

• Imported modules and functions.

• Exported functions and modules.

• Information about every section (name, raw size
and virtual size).
The second step in feature extraction was a dy-

namic analysis in which we monitored function calls
(i.e. API calls specific to the operating system). The
dynamic analysis step was required as many mali-
cious software, not just cryptojackers, resolve their
imports at runtime in order to avoid static detec-
tion (Moser et al., 2007). Also, many malicious ap-
plications, as well as clean applications, are delivered
obfuscated and packed, thus avoiding static analysis.

3.3 Feature Selection

Having the aforementioned information, we wanted
to see anomalies concerning cryptojackers. Thus, we
compute the most used (imported or run time called)
functions by cryptojackers and, at the same time,
rarely used by clean applications. By doing this we
can identify functions being frequently used by cryp-
tojackers. We do the same for imported modules in or-
der to hunt them, too. For every numerical feature ex-
tracted, we also separately compute the average value
among cryptojackers and clean applications. More-
over, identifying features that are specific to clean
applications, but are not present or rarely present at
cryptojackers, will contribute to a better separation of
these two classes. After having the final features, we
are going to normalize every value using the formula:

fi =
xi−min(x)

max(x)−min(x)
(1)

3.4 Evaluation Model

To experimentally evaluate our selected features we
used three different classifiers already implemented
in the scikit-learn (Pedregosa et al., 2011) Python li-
brary:
• Support vector machine classificator (Wang,

2005). The kernel function used for the algorithm,
is the Radial Basis Function (Musavi et al., 1992)
where γ is obtained using Hastie et. al’s algo-
rithm (Hastie et al., 2004):

e−γ||x−x′||2 (2)

• Multi-layer perceptron classifier (Riedmiller,
1994) experimentally tuned up using ReLU

SECRYPT 2019 - 16th International Conference on Security and Cryptography

388

activation function (Xu et al., 2015) and
Adam (Kingma and Ba, 2014) method for weight
optimization.

• Random forest classifier (Pal, 2005) experimen-
tally optimized.

3.5 Performance Evaluation Criteria

The first step in order to evaluate the performance is
cross validation. We split the data set in two sets:
training (consisting of 80% of the total samples) and
prediction (consisting of 20%). In order to measure
the model’s generalization ability, we applied K-fold
cross validation with k = 10. By doing so, the total
number of samples was 10 times split into 10 differ-
ent sets of training and prediction. In terms of perfor-
mance, we measure the results using the area under
the ROC curve (Metz, 1978) and the average value
over the 10 cases for accuracy, precision, recall (true
positive rate). They are calculated as equations (3),
(4) and (5) show, where tp (i.e. true positive) repre-
sents the number of cryptojackers correctly classified,
tn (i.e true negative) is the number of clean applica-
tions correctly classified, fp (i.e false positive) rep-
resents the number of cryptojackers classified wrong
and fn (i.e. false negative) is the number of clean ap-
plications being classified wrong.:

accuracy =
t p+ tn

t p+ tn+ f p+ f n
(3)

precision =
t p

t p+ f p
(4)

recall =
t p

t p+ f n
(5)

4 COMPUTATIONAL
EXPERIMENTS

In order to validate our approach, computational ex-
periments are needed. This section presents our re-
sults including the extracted features, the used mod-
els, accuracy, recall, precision and the ROC curve. All
experiments have been conducted on Windows oper-
ating system and all samples are Windows portable
executable files (Microsoft, 1991).

4.1 Data Set

The results presented in this paper are based on an
analysis of 11,766 cryptojackers and 11,374 clean ap-
plications summing up to a total number of 23,140
samples. The data set was collected from diverse

public sources such as honeypots, malicious URLs,
malicious email attachments, as presented in Sec-
tion 3. It contains various applications including
packed applications and applications using evasion
techniques (Afianian et al., 2018), such as importing
modules and functions at runtime. All samples have
been run on a machine having installed as operating
system Windows 10 Redstone 3 (RS3). During the
analysis, the machine was connected to Internet.

4.2 Feature Analysis

As we already mentioned in our methodology, we ex-
tracted statistics related to our features and in the next
lines we analyze them. Table 1 presents functions fre-
quently being used by cryptojackers but not by clean
applications, ordered by the difference between cryp-
tojackers usage and clean applications usage.

The results presented in Table 1 reveal that
cryptojackers do have specific behavior that distin-
guishes them from clean applications. One no-
ticeable difference is the frequent use of time re-
lated functions (i.e. localtime(32/64), ftime(32/64),
gmtime(32/64), etc.). They may be used during the

mining process as seed to generate random numbers
or simply for logging purposes. Another interesting
fact is the usage of network communication related
functions (i.e. inet ntoa, getpeername) as cryptojack-
ers have to communicate over the internet for mining
purposes. Cryptojackers also use hashing functions
during the mining process. As a result, cryptography
related functions are also present in the top 10 (i.e.
SHA256 Init and SHA256 Final).

Moving forward, we computed the same statis-
tics, but applied to imported modules in order to iden-
tify what libraries do cryptojackers use. The results
are presented in Table 2 and they confirm once again
that cryptojackers frequently use network communi-
cation related modules (i.e. ws2 32.dll, libcurl-x.dll,
wldapi32.dll, wtsapi32.dll). One noticeable remark
about most used modules is that user32.dll (a library
responsible for creating user interfaces) is not being
used by cryptojackers as one of their goal is to remain
as stealthy as possible.

Having identified functions and modules most fre-
quently used by cryptojackers, we investigated their
traits further and computed the average values for
numerical values present in the portable executable
header. Table 3 presents a comparison between cryp-
tojackers and clean applications of the average value
of five features extracted from static analysis. The
five features were selected based on their significance
and by the significance between the two average val-
ues. Cryptojackers tend to have a larger image size

Hunting Traits for Cryptojackers

389

Table 1: Top 10 functions frequently used by cryptojackers, but rarely by clean applications.

Function name Cryptojackers usage (%) Clean usage (%) Difference
localtime(32/64) 41.6388 2.7876 38.8512
ftime(32/64) 37.3483 1.8357 35.5126
gmtime(32/64) 32.9938 1.3598 31.6340

inet ntoa 30.6664 4.2155 26.4509
getpeername 29.6817 5.7113 23.9703
curl slist append 20.5380 0.0679 20.4701
time(32/64) 22.0151 2.0397 19.9754
setusermatherr 22.0151 3.9435 18.0716

SHA256 Init 10.2690 0.3399 9.9291
SHA256 Final 10.2690 0.3399 9.9291

Table 2: Top 5 modules frequently used by cryptojackers, but rarely by clean applications.

Module name Cryptojackers usage (%) Clean usage (%) Difference
ws2 32.dll 56.1983 9.7909 46.4074
libcurl-x.dll (x is the version) 16.4585 1.0878 15.3707
wldap32.dll 15.7552 0.8159 14.9393
opencl.dll 13.9264 0.1359 13.7905
wtsapi32.dll 10.8317 2.2437 8.5880

due to the fact that they are usually delivered with-
out any external dependencies, the attacker aiming to
infect as many victims as possible (for example, if a
malware requires Python to be installed on a machine
in order to successfully execute an attack, it reduces
its possible victims as not all machines have Python
installed). Also, it can be observed that cryptojackers
import less functions, have less exports and a lower
size of headers than clean applications as they have
limited tasks to execute (these tasks refer to the cryp-
tocurrency mining process), while a clean application
usually is a much more complex piece of software.

To sum up, we have the top 10 functions fre-
quently used by cyptojackers along with the top 5 im-
ported modules and 5 features extracted during the
static analysis based on their average values. Based
on these 20 features we are going to train a classifier
in order to separate between cryptojackers and clean
applications.

4.3 Classification Model

Using the aforementioned features, we trained three
different supervised learning (Duda et al., 2012) clas-
sifiers as mentioned in Section 3. We present the
achieved results along with the used values for the
classifiers’ parameters.

The support vector machine classifier uses as a
kernel function the following:

e−γ||x−x′||2 ,γ = 0.09 (6)

The multi-layer perceptron architecture consists
of 20 neurons on the input layer, two hidden layers

with 16 neurons each, and one output layer with 1
neuron giving the probability of being a cryptojacker.
The used learning rate is 0.0017, the penalization co-
efficient used by the Adam optimization (Kingma and
Ba, 2014) is 0.0001 along with a maximum number of
50 iterations.

The random forest classifier uses 15 estimators,
the Gini index (Gastwirth, 1972) as a measurement
for a split quality and maximum depth of 8 nodes.

Using these 3 classifiers, we obtained an average
accuracy of 92.4652% along with an average preci-
sion of 95.6311% and an average recall of 88.8128%.
The results presented in Table 4 reveal that our model
has a relatively low rate of false positives but tends
to miss cryptojackers. The false negative rate is ≈
11.2% (computed as 1− recall), taking into consid-
eration that our model uses only 20 features that are
targeted for one class’ traits (i.e. cryptojackers), there
is room for improvement and we talk about what can
be further done in Section 6. Moreover, we present in
Figure 1 the ROC curve for the trained models.

5 DISCUSSION AND
COMPARISON TO RELATED
WORK

Now that we have gathered and presented all our re-
sults, we are going to discuss about them and we
will point out some major differences between our ap-
proach and the current available methods.

To begin with, in Section 4 we presented the av-

SECRYPT 2019 - 16th International Conference on Security and Cryptography

390

Table 3: A comparison of the average values for cryptojackers and clean applications on five features extracted from static
analysis.

Feature name Cryptojackers average value Clean applications average value
SizeOfImage (bytes) 21,320,884.1981 10,539,628.71987
OverlaySize (bytes) 1,357,925.2727 4,755,346.9559
NumberOfImportedFunctions 141.7411 269.6894
SizeOfHeaders 1718.6666 1843.2000
NumberOfExports 28.5625 50.5263

Table 4: Average accuracy, precision and recall for the used
classifiers.

Model Acc.(%) Precision(%) Recall(%)
SVM 91.5207 97.5696 84.8525
MLP 92.1696 92.6273 91.3216
RF 93.7054 96.6966 90.2643

Average 92.4652 95.6311 88.8128

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve SVM (area = 0.94)
ROC curve MLP (area = 0.96)
ROC curve Random Forrest(area = 0.97)

Figure 1: ROC curve for the used classifiers: SVM, MLP
and Random forest.

erage accuracy, precision and recall for the classifica-
tion models used. The average precision of 95.6311%
along with the average recall of 88.8128% reveal that
models based on cryptojackers specific traits are able
to tell if an application is a cryptocurrency mining
malware with very few false positives, but may miss
cryptojackers. In a real world scenario, due to cryp-
tocurrency mining malware popularity, a user is very
likely to come over such a threat. Supposing that a
common user comes up 10 new applications a month
and few of them (hardly 5 if the user clicks on ev-
erything while he is browsing the internet) are cryp-
tojackers (either they are downloaded from trusted
sources or attached to malicious content on emails
or delivered through other spreading techniques), a
model based on specific cryptojackers traits is going
to miss, on average, two cryptojackers in two and a
half months while triggering only one false positive.

The above mentioned simulation on a real world
scenario is not sufficient for a user to be fully pro-
tected, but it points out the core idea of our research
paper. Cryptojackers do have specific traits that can

be exploited in order to detect such threats. More-
over, cryptojackers are very different in terms of be-
havior from a clean application as they usually run
stealthy, they intensively use APIs for network com-
munication, hashing, APIs that may be used to get a
seed for pseudo random number generators and they
have less imported functions, less exported functions
and their disk size is considerably higher as they aim
to have no dependencies (this way they are able to run
on different versions of the operating systems and on
machines with missing libraries).

Approaches presented in the literature refer to
generic malicious software detection. Multiple mal-
ware families are gathered into a single data set and
experiments are thus conducted. Our approach fo-
cuses on a specific malicious software, cryptojackers,
targeting their behavior and traits. By doing this, even
if cryptojackers are delivered through different attack
vectors (exploits, mail attachments, etc.) the payload
(i.e. the mining component) is going to be identified.
Also, our approach aims to identify specific traits to
a prevalent malicious family in order to emphasize
their importance in a classification problem. Baldan-
gombo’s et al. (Baldangombo et al., 2013) solution
uses static analysis, if a cryptojacker is obfuscated as
presented by Konoth et al. (Konoth et al., 2019), their
solution is bypassed. Devesa et al. (Devesa et al.,
2010) behavior based classification depends exclu-
sively on API calls to identify malware behavior, but
does not correlates this information with any static in-
formation.

The major importance of this paper is the fact that
it presents how traits for standalone cryptojackers can
be extracted in order to improve the security of a ma-
chine. It can be generalized to any operating system,
but our focus was the Windows operating system as
it is most used by regular users. On the other hand,
the results presented in the literature are referring to
browser-based cryptojackers and their focus is ana-
lyzing Javascript code, not the binary executable file
responsible for mining cryptocurrencies.

Hunting Traits for Cryptojackers

391

6 CONCLUSIONS AND FUTURE
WORK

Malicious software is everywhere across the Internet,
from adware popping up on many websites up to ran-
somware encrypting user’s file system. Security is-
sues are discovered every day in different software
and are quickly patched by developers. However,
many users decline to update their systems, leaving
their machines vulnerable to attacks, thus, making the
attacks easier by targeting vulnerable machines. Mal-
ware industry has grown over the past twenty years
and represents a way of living for attackers and has
registered huge profit for them. New malware and
new attacking vectors are developed every day and
they are released in the wide world of the Internet.
Cryptojackers have produced more than 56 million
USD as stated by Pastrana et al. (Pastrana and Suarez-
Tangil, 2019).

In order to give a final answer to the 3 main ques-
tions presented in the introductory part, we have to
point out that:

• Yes, there are anomalies in the characteristics of a
cryptojacker as we presented in Tables 1, 2, 3.

• In Section 5 we explained why cryptojackers have
specific features present.

• We experimentally proved in Section 4 using three
different classification models that cryptojackers
can be reliably separated from clean applications
using only 20 features.

Due to the high number of recent cryptojacking at-
tacks, there is a need of a specific component in order
to protect users from such attacks. In order to achieve
that, cryptojackers had to be analyzed and features
specific to them extracted. We presented three dif-
ferent classification models with an average accuracy
of ≈ 92.46% based on the features of cryptojackers
along with its advantages, disadvantages and a com-
parison to existing solutions.

The current classification models rely on few fea-
tures related to function calls and portable executable
header. The main goal of the classification models is
to provide an experimental validation for the extracted
features and emphasize their importance. A substan-
tial improvement would be to further analyze cryp-
tojackers behavior and traits in terms of file system
interactions (copied, written and read files), registry
interactions (queried, opened, written registry keys)
and network traffic (packet analysis). Thus, even in
extreme cases where cryptojackers use custom made
libraries and functions to achieve their goal, there
would still be features revealing their malicious be-
havior. Another improvement would be to analyze the

clean applications traits in comparison to cryptojack-
ers (what traits are highly present at clean applications
but are rarely present at cryptojackers) in order to bet-
ter separate between these two classes.

REFERENCES

Afianian, A., Niksefat, S., Sadeghiyan, B., and Baptiste,
D. (2018). Malware dynamic analysis evasion tech-
niques: A survey. arXiv preprint arXiv:1811.01190.

Antonakakis, M., April, T., Bailey, M., Bernhard, M.,
Bursztein, E., Cochran, J., Durumeric, Z., Halderman,
J. A., Invernizzi, L., Kallitsis, M., et al. (2017). Under-
standing the mirai botnet. In USENIX Security Sym-
posium, pages 1092–1110.

Baldangombo, U., Jambaljav, N., and Horng, S.-J. (2013).
A static malware detection system using data mining
methods. arXiv preprint arXiv:1308.2831.

Coinhive (2012). Coinhive monetize your business with
your users cpu power. https://coinhive.com/. Ac-
cessed: 2018-12-09.

Coinmarketcap (2013). Cryptocurrency market capitaliza-
tion. https://coinmarketcap.com/. Accessed: 2018-12-
09.

CryptoLOOT (2017). Earn more from your traffic. https:
//crypto-loot.com/. Accessed: 2018-12-09.

De Paola, A., Gaglio, S., Re, G. L., and Morana, M. (2018).
A hybrid system for malware detection on big data.
In IEEE INFOCOM 2018-IEEE Conference on Com-
puter Communications Workshops (INFOCOM WK-
SHPS), pages 45–50. IEEE.

Devesa, J., Santos, I., Cantero, X., Penya, Y. K., and
Bringas, P. G. (2010). Automatic behaviour-based
analysis and classification system for malware detec-
tion. ICEIS (2), 2:395–399.

Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern
classification. John Wiley & Sons.

Egele, M., Scholte, T., Kirda, E., and Kruegel, C. (2012). A
survey on automated dynamic malware-analysis tech-
niques and tools. ACM computing surveys (CSUR),
44(2):6.

Eskandari, S., Leoutsarakos, A., Mursch, T., and Clark, J.
(2018). A first look at browser-based cryptojacking.
arXiv preprint arXiv:1803.02887.

FileHippo (2004). Download free software. https://
filehippo.com/. Accessed: 2018-12-09.

Gastwirth, J. L. (1972). The estimation of the lorenz curve
and gini index. The review of economics and statistics,
pages 306–316.

Hastie, T., Rosset, S., Tibshirani, R., and Zhu, J. (2004).
The entire regularization path for the support vector
machine. Journal of Machine Learning Research,
5(Oct):1391–1415.

Hong, G., Yang, Z., Yang, S., Zhang, L., Nan, Y., Zhang,
Z., Yang, M., Zhang, Y., Qian, Z., and Duan, H.
(2018). How you get shot in the back: A systemat-
ical study about cryptojacking in the real world. In

SECRYPT 2019 - 16th International Conference on Security and Cryptography

392

Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages
1701–1713. ACM.

Hybrid-analysis (2014). Free automated malware analysis
service. https://www.hybrid-analysis.com/. Accessed:
2018-12-22.

JSEcoin (2017). Jsecoin: Digital currency - designed for
the web. https://jsecoin.com/. Accessed: 2018-12-09.

Kim, K. and Moon, B.-R. (2010). Malware detection
based on dependency graph using hybrid genetic al-
gorithm. In Proceedings of the 12th annual confer-
ence on Genetic and evolutionary computation, pages
1211–1218. ACM.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Konoth, R. K., van Wegberg, R., Moonsamy, V., and Bos,
H. (2019). Malicious cryptocurrency miners: Status
and outlook. arXiv preprint arXiv:1901.10794.

Krishnan, H. R., Saketh, S. Y., and Vaibhav, V. T. M. (2015).
Cryptocurrency mining-transition to cloud. Interna-
tional Journal of Advanced Computer Science and Ap-
plications, 6(9):115–124.

Lyda, R. and Hamrock, J. (2007). Using entropy analysis to
find encrypted and packed malware. IEEE Security &
Privacy, 5(2).

MalShare (2013). Malware repository providing re-
searchers access to samples. https://malshare.com/.
Accessed: 2018-12-22.

Metz, C. E. (1978). Basic principles of roc analysis. In
Seminars in nuclear medicine, volume 8, pages 283–
298. Elsevier.

Microsoft (1991). Peering inside the pe: A tour of the
win32 portable executable file format. https://msdn.
microsoft.com/en-us/library/ms809762.aspx. Ac-
cessed: 2018-12-09.

Moser, A., Kruegel, C., and Kirda, E. (2007). Limits of
static analysis for malware detection. In Computer
security applications conference, 2007. ACSAC 2007.
Twenty-third annual, pages 421–430. IEEE.

Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B., and
Hummels, D. M. (1992). On the training of radial
basis function classifiers. Neural networks, 5(4):595–
603.

Ninite (2009). Install or update multiple apps at once. https:
//ninite.com/. Accessed: 2018-12-22.

Pal, M. (2005). Random forest classifier for remote sensing
classification. International Journal of Remote Sens-
ing, 26(1):217–222.

Pastrana, S. and Suarez-Tangil, G. (2019). A first look at
the crypto-mining malware ecosystem: A decade of
unrestricted wealth. arXiv preprint arXiv:1901.00846.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Rauchberger, J., Schrittwieser, S., Dam, T., Luh, R., Buhov,
D., Pötzelsberger, G., and Kim, H. (2018). The other
side of the coin: A framework for detecting and ana-
lyzing web-based cryptocurrency mining campaigns.
In Proceedings of the 13th International Conference
on Availability, Reliability and Security, page 18.
ACM.

Riedmiller, M. (1994). Advanced supervised learning
in multi-layer perceptrons—from backpropagation to
adaptive learning algorithms. Computer Standards &
Interfaces, 16(3):265–278.

Roundy, K. A. and Miller, B. P. (2010). Hybrid analysis
and control of malware. In International Workshop on
Recent Advances in Intrusion Detection, pages 317–
338. Springer.

Saad, M., Khormali, A., and Mohaisen, A. (2018). End-
to-end analysis of in-browser cryptojacking. arXiv
preprint arXiv:1809.02152.

Sari, A. and Kilic, S. (2017). Exploiting cryptocurrency
miners with oisnt techniques. Transactions on Net-
works and Communications, 5(6):62.

Swan, M. (2015). Blockchain: Blueprint for a new econ-
omy. ” O’Reilly Media, Inc.”.

Tahir, R., Huzaifa, M., Das, A., Ahmad, M., Gunter, C.,
Zaffar, F., Caesar, M., and Borisov, N. (2017). Min-
ing on someone else’s dime: Mitigating covert min-
ing operations in clouds and enterprises. In Interna-
tional Symposium on Research in Attacks, Intrusions,
and Defenses, pages 287–310. Springer.

Wang, L. (2005). Support vector machines: theory and ap-
plications, volume 177. Springer Science & Business
Media.

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empiri-
cal evaluation of rectified activations in convolutional
network. arXiv preprint arXiv:1505.00853.

Yang, R. R., Kang, V., Albouq, S., and Zohdy, M. A. (2015).
Application of hybrid machine learning to detect and
remove malware. Transactions on Machine Learning
and Artificial Intelligence, 3(4):16.

Zabidi, M. N. A., Maarof, M. A., and Zainal, A. (2012).
Malware analysis with multiple features. In Com-
puter Modelling and Simulation (UKSim), 2012 UK-
Sim 14th International Conference on, pages 231–
235. IEEE.

Hunting Traits for Cryptojackers

393

