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Abstract: The integration of Intrusion Detection Systems (IDS) in Industrial Automation Systems (IAS) has gained
popularity over the past years. This has occurred due to their ability to detect intrusions at a device and
network level. In order for these systems to provide effective and reliable protection, they must possess a set
of specific properties. These properties are inherent characteristics that depend on the IDS application field, as
different fields provide different deployment conditions. Unfortunately, the evaluation and validation of such
properties for IAS has proven challenging, as current contributions often follow evaluation and validation
approaches from the IT domain that focus solely on the effectiveness of intrusion detection approaches; hence,
neglecting other aspects relevant to the industrial domain. This paper addresses this issue by presenting IDS
properties derived from trends and characteristics of IAS; as well as a taxonomy of metrics and tests to evaluate
and validate these properties. This taxonomy provides a foundation from which future IDS contributions for
IAS can be improved and reinforced by providing an overview of pertinent metrics and tests.

1 INTRODUCTION

Intrusion Detection Systems (IDS) are software ap-
plications capable of monitoring and analyzing events
and information from hosts and/or the network in or-
der to detect intrusions. Some contemporary IDS con-
tributions have claimed a high detection rate of over
95% (Tavallaee et al., 2010). Unfortunately, although
this high detection rate is their biggest allurement,
some other aspects have been neglected.

This is especially highlighted in (Paxson, 2007;
Tavallaee et al., 2010; Sommer and Paxson, 2010;
Bhuyan et al., 2014). Where the aspect most often
discussed is the qualitative and quantitative evaluation
of performance that has been hindered by the lack of
available datasets and the suitability of the evaluation
metrics. Other aspects that have been neglected are
properties that any IDS should possess. Some of these
properties (i.e., soundness, completeness, timeliness,
etc.) were first described in earlier works by pioneers
in the field of IDS as open issues that need to be ad-
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dressed (Paxson, 2007; McHugh, 2001; Bhuyan et al.,
2014). Although these open issues have been known
for decades in the IT domain, their neglect has inher-
ited inadequate and/or incomplete evaluation and val-
idation practices for the industrial domain. The ad-
dressing of such open issues is imperative in industrial
IDS, as they may result in vulnerable or flawed IDS
being deployed resulting in embedded vulnerabilities
or misidentification of intrusions in IAS.

The main contribution of this paper is a taxon-
omy of metrics and tests that can be used to evaluate
and validate properties that industrial IDS should pos-
sess. These properties are abstracted from the afore-
mentioned open issues and the general characteristics
and features of current industrial IDS that contem-
plate general architectures of IAS. The metrics and
tests are identified through a literature review of IDS
contributions in both the IT and industrial domains.

This paper is structured as follows. Section 2 pro-
vides a brief overview of the current state of intrusion
detection in IAS. Section 3 describes abstracted prop-
erties that an IDS should possess based on the charac-
teristics and requirements of IAS. Section 4 presents
metrics and tests that can be used to evaluate and val-
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idate the properties derived in Section 3. Section 5
presents the proposed Taxonomy of metrics and tests.
Finally, Section 6 provides the conclusions.

2 OVERVIEW OF INTRUSION
DETECTION IN IAS

This Section provides an overview of research con-
tributions, as well as Open Source and Commercial
products, in the field of intrusion detection in IAS.

2.1 Research Contributions

As it can be observed from survey literature (Zhu
and Sastry, 2010; Garitano et al., 2011; Mitchell and
Chen, 2014), three intrusion detection approaches are
predominant in research works.

The first approach is the preference of network in-
trusion detection over host intrusion detection as ob-
served in (Zhu and Sastry, 2010; Mitchell and Chen,
2014). A Network IDS (NIDS) often consists of a
centralized software component that processes and
analyzes all data collected from the network in order
to detect intrusions and distributed units (often called
sensors) that capture (and sometimes pre-process or
filter) captured network data and forward it to the
centralized software component. The preference of
network intrusion detection over host intrusion detec-
tion comes from these distributed units that allow for
passive monitoring to be performed with the use of
network taps or port mirroring in switches, which al-
lows seamless integration in legacy systems and sys-
tems during runtime. It also provides scalability and
does not add overhead that may negatively influence
the automation system itself. Moreover, network data
collection is performed in strategical parts of the sys-
tem (e.g., between HMI and SCADA System and be-
tween HMI and PLC (Kleinmann and Wool, 2017))
in order to decrease costs and increase efficiency, as
only relevant and desired information is analyzed.

The second predominant approach is the prefer-
ence of anomaly-based over signature-based intru-
sion detection. In signature-based intrusion detec-
tion data or events collected are compared to well-
known intrusion patterns. On the other hand, in
anomaly-based intrusion detection intrusions are not
known; hence, everything that deviates from the nor-
mal behavior is considered as an intrusion (Udd et al.,
2016). Anomaly-based intrusion detection is favored
as signature-based intrusion detection is ineffective
against zero-day attacks and is also considered costly
due to the efforts required to generate its signatures.

The third, and final, most predominant approach
is the preference to model automation process vari-
ables in order to detect system anomalies assumed to
be caused by intrusions. This is often achieved by ex-
tracting process variables from captured network traf-
fic (Nivethan and Papa, 2016). The predominance of
these approaches in IAS is a result of the long lifetime
of this kind of systems and their often predictable be-
havior (Naedele and Biderbost, 2004).

Some of the most popular techniques imple-
mented to detect network intrusions are the follow-
ing. Specific signatures have been generated for in-
dustrial protocols in order to detect abnormal proto-
col behavior (Yang et al., 2014). Normal user and
service behavior have been modeled using statisti-
cal analysis from header information in (Kwon et al.,
2015) and (Valdes and Cheung, 2009) respectively.
More complex analysis techniques have implemented
classifiers (Zhang et al., 2016; Ponomarev and Atk-
ison, 2016), rule generators (Udd et al., 2016; Lit-
tler et al., 2013), One-Class Support Vector Machines
(OCSVM) (Maglaras and Jiang, 2014), etc.

2.2 Open Source and Commercial
industrial IDS

The two most widely known and used Open Source
NIDS are Zeek (formerly known as Bro) (Paxson,
1999) and Snort (Roesch, 1999). They are capable of
capturing, logging and analyzing network data. They
also have a predefined set of signatures to detect well-
known threats. However, they can also be extended to
add personalized signatures or additional behavior.

Zeek filters unnecessary network data and feeds it
to an interpreter that evaluates it against scripts writ-
ten in the Bro scripting language (Paxson, 1999). This
allows Zeek to be extended as observed in (Udd et al.,
2016) where a parser was generated for IEC 60870-
5-104 protocol support. On the other hand, Snort
handles rules written in the Snort format. Preproces-
sors or plug-ins can also be integrated on it to add
additional behavior. Within the context of the Dig-
ital Bond Project Quickdraw, Snort rules for indus-
trial protocols (i.e., DNP3, Ethernet/IP and Modbus
TCP) were generated (Littler et al., 2013). These rules
have also been integrated into commercial IDS (Ma-
han et al., 2011). Zeek and Snort also share other
similarities with one-another, such as the configura-
bility of their intrusion responses which can be to ei-
ther monitor traffic and block and/or report intrusions.

Commercial products with intrusion detection ca-
pabilities are often not marketed as industrial IDS but
as Centralized Management solutions with a strong
Cybersecurity focus or as Operational Technology
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(OT) Management Systems; as their capabilities are
not only limited to intrusion detection, but they also
provide additional features that allow them to man-
age, monitor and visualize other system components.
Nonetheless, they are referred to as industrial IDS in
this paper as their architecture and behavior are simi-
lar to that of the research and open source NIDS previ-
ously discussed (i.e., they consist of Network Sensors
and a centralized software component).

Other capabilities commonly provided by these
solutions are logging, alerts, reports and graph gener-
ation that allow to visualize system events (e.g., intru-
sions detected). Some solutions provide more com-
plex capabilities such as interoperability with other
devices and applications such as firewalls and other
Security Information and Event Management Sys-
tems (SIEM) and vulnerability assessment tools. A
list of some fo these solutions can be found in the
Market Guide for Operational Technology Security
2017 (Perkins et al., 2017) by Gartner, Inc.

Unfortunately, more technical information regard-
ing the implemented techniques, operations and com-
putational performance of these solutions is not pub-
licly available and hence difficult to obtain.

3 INDUSTRIAL IDS PROPERTIES

This section introduces properties that industrial IDS
should possess. These properties are derived from
open issues and neglected aspects identified from in-
dustrial IDS trends discussed in the previous section
and IAS operational requirements. These industrial
IDS trends have been summarized as follows:

• Predominance of Anomaly-based NIDS.

• Network Sensors that capture network traffic are
strategically distributed across the system.

• Network Sensors forward captured data to a dedi-
cated system for analysis.

• The system that analyzes data obtained from the
Network Sensors is often centralized and located
at the control, supervisory or business level of the
automation hierarchy (Knapp, 2014). It may be
deployed in specialized hardware or in a preex-
isting device in the automation environment that
meets its computational requirements.

These tendencies convey that new components are
integrated into the industrial system. These compo-
nents communicate with one-another and consist of
both hardware and software. Their integration adds
new challenges, as their introduction into an automa-
tion system may affect its operation. In order to en-

sure that this does not occur, the operational require-
ments of the automation system must be considered.
These requirements are capabilities that an IAS must
possess in order to ensure its correct functionality.
They are defined in (Stouffer et al., 2015) as the fol-
lowing: Real-time capabilities (OR1), High Avail-
ability (OR2), High Reliability and Fault Tolerance
(OR3), High Maintainability (OR4) and Constrained
Resources in certain embedded devices (OR5).

Considering the aforementioned trends and the
operational requirements of IAS, the following prop-
erties for industrial IDS have been derived from
(McHugh, 2001; Oryspayuli, 2006; Milenkoski et al.,
2015; Zarpelão et al., 2017):

• High Detection Accuracy (P1): Precise identifica-
tion of intrusions. This means that an intrusion
is identified as an intrusion, which would require
a response. Whereas a non intrusive event is not
identified as an intrusion.

• Completeness (P2): Detection of a wide range of
intrusions.

• Real-time Intrusion Detection and Response or
Timeliness (P3): Immediate detection and re-
sponse in the presence of an intrusion. In other
words, the time elapsed between the occurrence
of an intrusion and its detection and response is as
close to zero as possible.

• Low Resource Consumption (P4): The amount
of computational resources (i.e., energy consump-
tion, network, CPU, ROM and RAM usage) used
by industrial IDS components are the necessary to
carry out their operation based on their required
functionality and features. This means that the re-
source consumption is optimized in order to liber-
ate computational resources that could be used by
other system components.

• Low Performance Overhead (P5): Direct or sec-
ondary effects of an IDS do not negatively influ-
ence the correct operation of the IAS. Considering
the current industrial IDS trends, this indicates the
following. Network Sensors do not add additional
overhead to the industrial network. This is espe-
cially important, as the network load in industrial
networks is high. It also entails that software com-
ponents of the industrial IDS, that are not installed
on specialized IDS hardware but rather on other
IAS devices do not negatively influence the oper-
ation carried out by other automation components.

• High Processing Performance (P6): Computa-
tional operations carried out by IDS components
are performed in the shortest amount of time pos-
sible while maintaining reliable and high quality
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results. Considering the current tendencies of in-
dustrial IDS, this indicates that IDS components
are capable of real-time and reliable processing of
highs amounts of data.

• Fault Tolerance (P7): The IDS is capable of
providing a degree of protection or functionality
even in the presence of faults in its components
(Lussier et al., 2004).

• Robustness (P8): The IDS is capable of maintain-
ing acceptable operation even in the presence of
unexpected or adversarial circumstances that dis-
turb its operation(Lussier et al., 2004).

• Resiliency (P9): The IDS is capable of recover-
ing from unexpected or adversarial circumstances
that may have caused disturbances in its operation
(Zhu and Basar, 2015).

• Data Validity (P10): Data processed by the
IDS is error-free. It is also authenticated and
protected against unauthorized modifications by
third-parties which could possibly invalidate the
results of the industrial IDS.

An IDS possessing these properties ensures the
fulfillment of IAS operational requirements as fol-
lows. High Detection Accuracy (P1), Completeness
(P2), Real-Time Intrusion Detection (P3), High Pro-
cessing Performance (P6) and Data Validity (P10)
guarantee that intrusions that may negatively affect
the correct operation of the automation system are
correctly identified in order to implement timely
countermeasures that may decrease or stop their ef-
fects. Hence, ensuring High Availability (OR2) and
maintaining High Reliability (OR3). Furthermore,
Low Resource Consumption (P4) and Low Perfor-
mance Overhead (P5) ensure industrial IDS do not
negatively influence the resources required to achieve
RT Capabilities (OR1). They also open the oppor-
tunity for components of industrial IDS to be de-
ployed in resource constrained devices (OR5). More-
over, High Maintainability (OR4) of the automation
system is possible thanks to the correct and timely
identification of intrusions (P1 and P3) that guaran-
tee the execution of actions to decrease, stop or repair
the consequences of such intrusions. It is also sup-
ported by the Fault Tolerance (P7), Robustness (P8)
and Resiliency (P9) of industrial IDS, which ensure
the continuous operation of intrusion detection func-
tions even in the presence of disturbances caused by
faults or adversarial behavior. This is especially im-
portant in the presence of targeted attacks against the
industrial IDS. Consequently, they provide continu-
ous protection to the IAS that ensure its Availability
and Reliability (OR2 and OR3). An overview of this
is provided in Table 1.

Table 1: Industrial IDS properties and their relation to op-
erational requirements of Industrial Automation Systems
(IAS).

OR
IDS Properties 1 2 3 4 5

P1-High Detection Accuracy – X X X –
P2-Completeness – X X – –
P3-RT ID and Response – X X X –
P4-Low Resource Consumption X – – – X
P5-Low Performance Overhead X X – – X
P6-High Processing Performance – X X – –
P7-Fault Tolerance – X X X –
P8-Robustness – X X X –
P9-Resiliency – X X X –
P10-Data Validity – X X – –

OR1: Real-time capabilities; OR2: High Availability;
OR3: High Reliability and Fault Tolerance; OR4: High
Maintainability; OR5: Constrained Resources.

Other properties such as interoperability, scalabil-
ity and extendability are not discussed in detail in
this contribution. This occurs, as these properties can
not be evaluated or validated with metrics or specific
tests, but rather depend on the specific features that
are integrated into industrial IDS. On the other hand,
the aforementioned properties are general attributes or
characteristics that should be considered for industrial
IDS with characteristics as those identified during the
analysis of trends. Additional properties may be con-
sidered in order to validate more specific approaches
or techniques. However, this is out of the scope of this
contribution.

4 METRICS AND TESTS TO
EVALUATE AND VALIDATE IDS
PROPERTIES

This section presents the taxonomy of metrics and
tests to evaluate and validate the aforementioned IDS
properties. These properties comprise the dimensions
of this taxonomy. Both metrics and tests allow to
quantitatively and qualitatively measure them.

The metrics allow to quantitatively evaluate cer-
tain properties. They have been classified according
to the data source of the values used for their calcu-
lation. These classes are: detection-, time-, compu-
tational resources- and IDS capacity metrics. This
classification allows to identify which metrics can be
analyzed based on the available system or test infor-
mation. They have been abstracted from (McHugh,
2001; Kwon et al., 2015; Al-Jarrah et al., 2018;
Buczak and Guven, 2016; Almalawi et al., 2013;
Gupta and Chow, 2010; Brahmi et al., 2015; Lever-
sage and Byres, 2008; Mitchell and Chen, 2014).
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On the other hand, tests describe events or sit-
uations under certain conditions and environments
(Athanasiades et al., 2003) where the behavior of
components is analyzed or measured, which allows
to use them as benchmarks from which metrics or
conclusions can be obtained. These tests have been
abstracted from the analysis of literature reviewed in
Section 2 and key contributions (Puketza et al., 1996;
Milenkoski et al., 2015; Durst et al., 1999).

4.1 Detection Metrics

Detection metrics are calculated from values result-
ing from the identification or misidentification of in-
trusions performed by an IDS and are often obtained
from IDS tests, as it is necessary to know the total
amount of intrusive and non-intrusive events that are
fed to the IDS. They are comprised of the following:

• True Positive (TP): Number of intrusion events
identified as intrusions.

• False Negative (FN): Number of intrusion events
not identified as intrusions.

• True Negative (TN): Number of non-intrusive
events not identified as intrusions.

• False Positive (FP): Number of non-intrusive
events identified as intrusions.

From these values, a set of evaluation metrics can
be obtained. Something characteristic that these met-
rics have is that they are used in machine learning to
evaluate algorithms used for classification problems.
This occurs as intrusion detection is inherently a clas-
sification problem.

Standard Detection Metrics: The following
metrics are the most commonly used to evaluate IDS.

• True Positive Rate (TPR): It is also known as
Sensitivity, Recall or Detection Rate (DR). Ratio
of real intrusions detected from the total amount
of existing intrusions. See (1).

• True Negative Rate (TNR): It is also known
as Specificity. Ratio of real non-intrusive events
identified as such from the total amount of non-
intrusive events. See (1).

• False Positive Rate (FPR): It is also known as
False Alarm Rate (FAR) or Fall-out. Ratio of
non-intrusive events incorrectly identified as in-
trusions, from the total amount of non-intrusive
events. See (2)

• False Negative Rate (FNR): Ratio of undetected
intrusions from the total amount of real intrusions.
See (2).

T PR =
T P

T P+FN
T NR =

T N
T N +FP

(1)

FPR =
FP

FP+T N
FNR =

FN
FN +T P

(2)

Precision (Pr): Ratio of correctly identified intru-
sions from all detected intrusions (i.e., regardless
of whether or not they are really intrusive or non-
intrusive events). It is also known as Positive Predic-
tive Value (PPV) (Milenkoski et al., 2015).

Pr =
T P

T P+FP
(3)

Accuracy (ACC): Ratio of correctly classified intru-
sive events and non-intrusive events considering all
the classified events.

ACC =
T P+T N

T P+T N +FP+FN
(4)

F-score: Harmonic mean of precision and recall (i.e.,
DR or TPR) (Almalawi et al., 2013). It represents the
fraction of the detected intrusions that are valid.

F− score = 2 · Pr ·DR
Pr+DR

=
2 ·T P

2 ·T P+FP+FN
(5)

G-mean: Geometric mean of precision and recall
(i.e., DR or TPR). A high G-mean indicates a high
accuracy to detect intrusions.

G−mean =
√

Pr ·DR (6)

Matthews Correlation Coefficient (MCC): Correla-
tion coefficient between the observed and detected in-
trusions used when the difference between the amount
of samples of two classes is too big (e.g., too many
non-intrusive events and extremely few intrusions).
Its value is within the range of -1 (total misidentifica-
tion of intrusion) and 1 (perfect detection). A value of
0 represents a random identification (Al-Jarrah et al.,
2018).

MCC =
T P ·T N−FP ·FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

(7)

ROC Graph: The Receiver Operating Character-
istic (ROC) graph allows to analyze the efficiency of
the detection rate. The values commonly plotted are
TPR vs FPR. Numerically, the area under the ROC
curve is considered (Buczak and Guven, 2016).

4.2 Timing Metrics

Timing metrics are calculated from values resulting
from the measurement of the temporal duration of
events. These events include events related to the IDS,
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intrusions or other components that may interact with-
or that exist within the same environment as the IDS.

Training Time (TT): Time required for an
anomaly-based IDS to learn the expected normal be-
havior.

Intrusion Duration: Time elapsed between the
start and end of an intrusion.

Detection Time (DT): Time elapsed between the
start of an intrusion until it is detected by the IDS.

Response Time (RsT): Time elapsed between the
detection of an intrusion until its response action is
carried out.

Delay Time: Difference between the expected
time of an event and the later time in which it really
occurs. An example of this is the network delay. Net-
work delay refers to the packet delivery delay in an
industrial network (e.g end-to-end delay (Gupta and
Chow, 2010)). This delay may be caused by IDS, an
intrusion or other network components.

Processing Time per Event: Time elapsed since
an event has started to be processed by an IDS, un-
til a final decision regarding that event is made (i.e.,
whether or not it is an intrusive event).

4.3 Computational Resources Metrics

The following metrics quantify computational re-
sources of certain system components. These com-
ponents may be part of an IDS or they may exist in
the same environment as one.

Percentage of Resource Utilization: Amount
of a computational resource (per unit or percentage)
used over a period of time. The resources that can
be measured are Network, CPU and Memory (i.e.,
RAM & ROM) utilization.

Network Bandwidth: Amount of data (per unit
or percentage) transmitted over the network (Brahmi
et al., 2015).

4.4 IDS Capacity Metrics

The following metrics measure specific abilities of an
IDS that are not related to detection accuracy.

IDS Throughput: Amount of events that can be
processed by an IDS during a given time. In NIDS, it
refers to the network traffic that can be processed by
its Sensors and centralized analysis component.

Mean Time-to-Compromise (MTTC): Security
metric that estimates the time required by an at-
tacker to successfully impact a system (Leversage and
Byres, 2008). Different methodologies exist to esti-
mate this metric (McQueen et al., 2006; Leversage
and Byres, 2008; Nzoukou et al., 2013).

4.5 Intrusion Identification Tests

Tests that verify the accuracy of an IDS (i.e., ability
to detect intrusions (Puketza et al., 1996)). In order
to provide validity to these tests, it is recommended
that data fed into an IDS has similar characteristics to
data that will be analyzed by it during normal oper-
ation. The use of predefined datasets to evaluate the
accuracy of multiple intrusion detection approaches is
a common practice (Milenkoski et al., 2015; Mitchell
and Chen, 2014; Puketza et al., 1996), as it provides
reproducibility. However, what type of- and how data
is fed into the IDS depends on the type of IDS and the
main approaches implemented in it.

In anomaly-based approaches, datasets are com-
prised of normal and abnormal behavior. Unfortu-
nately, methodologies used to generate data with ab-
normal behavior may influence the quality of datasets
and hence, the validity of the test itself. This
has occurred with the dataset of the 1999 Interna-
tional Knowledge Discovery and Data Mining Com-
petition (KDD99) and the Defense Advanced Re-
search Projects Agency (DARPA) dataset DARPA98.
Both datasets have been considered as unsuitable
(McHugh, 2000). An alternative to these datasets are
the Industrial Control System Cyber Attack Datasets
(ICSCAD). These datasets have been popular for the
study of cyber attacks in IAS. Their description is pre-
sented in (Morris and Gao, 2014). They consist of
four datasets extracted from a gas pipeline and water
storage tank testbeds.

On the other hand, signature-based approaches are
more straightforward, as only the intrusions must be
fed to the IDS.

4.6 Resource Usage Tests

Tests that verify the amount of computational re-
sources used by IDS components (i.e., Network Sen-
sors and centralized analysis component), as it is im-
portant to evaluate how much CPU and memory uti-
lization is required. In (Milenkoski et al., 2015), two
different approaches are identified. The first approach
refers to the calculation of the overall resources re-
quired by an IDS. The second approach refers to the
calculation of the resources required by individual
components of an IDS. In both instances, it is nec-
essary to perform the tests in both optimal and non-
optional conditions (i.e., together with stress tests), as
the resources used by the IDS may variate depend-
ing on these conditions. It is also crucial to perform
these tests with different configuration settings. This
is especially important when the industrial IDS com-
ponents are expected to be deployed on embedded
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hardware, which may require additional considera-
tions (e.g., task configuration in Real-Time Operating
Systems). The results of these tests allow to define the
hardware requirements for IDS components.

4.7 Resource Overhead Tests

Tests that verify the degradation that may be caused
by IDS. This degradation is observed during the de-
crease of performance of other system components
that exist within the same environment. This per-
formance may consist of metrics such as computa-
tional resources metrics, timing metrics or other spe-
cific metrics relevant to the system component being
tested for degradation. These performance metrics
are obtained under two different conditions (i.e., with
and without an operational IDS). Performing these
tests with different IDS configuration settings allows
to identify appropriate configuration parameters for it.

4.8 Intrusion Detection Throughput
Tests

Tests that identify the amount of workload that can be
handled by IDS components (i.e., Network Sensors
and centralized analysis component). The workload
in Network Sensors is the amount of network traffic
that is captured, preprocessed and forwarded to the
centralized analysis component. On the other hand,
the workload of the centralized analysis component is
the amount of data received from the Network Sen-
sors that can be processed. It is desirable that these
tests are carried out under optimal and non-optimal
conditions (similar to the resource usage tests).

4.9 Stress Tests

Tests that verify the IDS degradation under stressful
situations created by external influences such as third-
parties targeting IDS components (i.e., Network Sen-
sors and centralized analysis component). This degra-
dation can be observed during the IDS operation with
the decrease in intrusion detection metrics (e.g., ac-
curacy) and IDS capacity metrics; as well as the in-
crease in time and computational resource utilization
metrics. The most clear example of stressful situa-
tions are targeted attacks (Durst et al., 1999). In the
field of IAS system faults may also generate stress.

5 TAXONOMY

The metrics and tests presented in the previous section
evaluate and validate the IDS properties discussed in

Section 3. However, not all metrics and tests are suit-
able for all properties. For this reason, a correlation
between metrics and tests; and the IDS properties that
they evaluate and validate is presented. An overview
of this correlation and the suggested taxonomy is pre-
sented in Table 2. The correlation between tests, met-
rics and properties is measured in three different de-
grees: high, medium and no correlation.

A high correlation (i.e., ++) provides a clear and
self-standing portrayal of the property. This means
that a metric or test can provide by itself a solid eval-
uation or validation of a property. On the other hand, a
medium correlation (i.e., +) provides semi-clear por-
trayal of the property. This means that for a metric or
test to evaluate or validate a property, it is necessary to
analyze their results with additional information (e.g.,
context, other metrics or tests, etc.). Furthermore, no
correlation (i.e., –) indicates that a metric or test is not
relevant for the evaluation or validation of a property.

Intrusion Detection Metrics grant an straightfor-
ward estimation of the High Detection Accuracy (P1)
of an IDS. They are obtained from a Intrusion Identifi-
cation Test and also provide a notion of Completeness
(P2). Which is validated when a variety of different
intrusions are used for testing. Stress Tests can also be
used as they may contain complex adversarial models.

Time Metrics obtained during Intrusion Identifica-
tion Test provide an estimation of Timeliness (P3).
Detection Time (DT), Response Time (RsT) and Pro-
cessing Time per Event provide a clear assessment of
the RT capabilities of an IDS. Training Time (TT)
provides a notion on usability on the time capabilities
of an IDS (e.g., how fast can the IDS start operating).

Furthermore, Network, Memory and CPU Utiliza-
tion Metrics provide an straightforward estimation of
the Low Resource Consumption (P4) and Low Per-
formance Overhead (P5) of an IDS. These metrics
are obtained from Resource Usage Tests. In addition
to these metrics and test, some Time and IDS met-
rics are considered to evaluate the Performance Over-
head (P5). Resource Overhead, Intrusion Detection
Throughput and Stress Tests may be used to obtain
these metrics. In addition, increase in Delay Time ob-
served in other components, as well as the decrease
in IDS Throughput also provide an estimate of over-
head in the system. Together with the previously men-
tioned metrics, Detection Time (DT) and Response
Time (RsT) can also be analyzed to find appropriate
configuration settings for the IDS, which would allow
to decrease its performance overhead.

Intrusion Detection and Time Metrics can be used
as a measure of quality for High Processing Perfor-
mance (P6), Fault Tolerance (P7), Robustness (P8)
and Resiliency(P8), as they provide a view of the IDS
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Table 2: Taxonomy of metrics and tests to evaluate and validate industrial IDS properties.

Metric & Tests P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

M
et

ri
cs

D
et

ec
tio

n

Standard Metrics ++ + — — — + + + + —
Precision (Pr) ++ + — — — + + + + —
Accuracy (Acc) ++ + — — — + + + + —
F-score ++ + — — — + + + + —
G-mean ++ + — — — + + + + —
MCC ++ + — — — + + + + —
ROC Graph ++ + — — — + + + + —

Ti
m

e

Training Time (TT) — — + — — ++ — — — —
Intrusion Duration — — — — — — + + + —
Detection Time (DT) — — ++ — + ++ + + + —
Response Time (RsT) — — ++ — + ++ + + + —
Delay Time — — — — ++ — + + + —
Processing Time per Event — — ++ — + ++ + + + —

C
.R

sr
c.

Network Utilization — — — ++ ++ — — — — —
Memory Utilization — — — ++ ++ — — — — —
CPU Utilization — — — ++ ++ — — — — —
Network Bandwidth — — — ++ ++ — — — — —

C
ap

. Throughput — — + — + ++ + + — —
MTTC — — — — — — ++ ++ + ++

Te
st

s

Intrusion Identification ++ + + — — + + + + —
Resource Usage — — — ++ ++ — — — — —
Resource Overhead — — — — ++ — — — — —
ID Throughput — — — — ++ — ++ ++ ++ —
Stress — + — — + — ++ ++ ++ ++

IDS Properties: P1: High Detection Accuracy; P2: Completeness; P3: Real-time Intrusion Detection; P4: Low Resource
Consumption; P5: Low Performance Overhead; P6: High Processing Performance; P7: Fault Tolerance; P8: Robustness;
P9: Resiliency; P10: Data Validity.
Correlation: ++: High; +: Medium; –: No Correlation. Other: C: Computational; Rsrc.: Resources; Cap.: Capacity.

performance. However, these metrics by themselves
are not enough to evaluate these properties.

A more accurate estimation of High Processing
Performance (P6) can be obtained by considering
the Training Time (TT), Detection Time (DT), Re-
sponse Time (RsT), Processing Time per Event and
IDS Throughput. As an IDS with a high processing
performance has the most accurate detection in the
shortest amount of time possible.

Besides Intrusion Detection Metrics, Timing met-
rics and Intrusion Detection Throughput and Stress
Tests support the assessment of Fault Tolerance (P7),
Robustness (P8) and Resiliency (P9). A fault tolerant,
robust and resilient IDS maintains a high accuracy
and real-time capabilities in the presence of faults or
other unexpected circumstances. It also has a behav-
ior as close to the optimal one it was designed for (i.e.,
IDS Throughput). Moreover, it has a high MTTC,
which means that an adversary should require more
time in order to compromise the system. The evalu-
ation of the MTTC allows to identify mechanisms to
harden or protect the IDS. This provides a notion of
Data Validity (P10).

6 CONCLUSIONS

The protection of IAS is critical to ensure their cor-
rect operation. Industrial IDS are a feasible solution
that can be seamlessly integrated in them for this, as
they can detect a wide range of intrusions. However,
before this integration occurs it is necessary to verify
that an IDS is efficient, reliable and does not nega-
tively influence the operation of the target system (i.e.,
does not violate the operational requirements). In or-
der to do this, a qualitative and quantitative evalua-
tion of its performance must be made. The outcome
of this evaluation is to verify the suitability of IDS for
its deployment in an automation environment. Unfor-
tunately, from the analysis of literature performed in
this contribution; it was observed that the quality of
experimental evaluations from consulted IDS has of-
ten been overlooked (Tavallaee et al., 2010).

To address this issue, a taxonomy of metrics and
tests that allow to evaluate and validate properties of
an industrial IDS has been proposed. First, a set of
open issues in IDS in both the computer science and
automation field have been identified. The identifi-
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cation of these open issues has been supported by
the consideration of operational requirements for IAS,
which allowed to define properties that an IDS should
have in order to be suitable for an automation environ-
ment. Afterwards, a set of metrics and tests to evalu-
ate and validate these properties have been abstracted
from reviewed literature. Furthermore, the presented
taxonomy allows to identify appropriate metrics and
tests to be considered during the development of an
industrial IDS depending on its desired properties.

The presented taxonomy focuses on analyzing the
overall performance of an industrial IDS and its influ-
ence over the automation system. Aspects related to
specific implementation approaches or techniques are
not considered, as these may require additional tests
and metrics. Some examples of this are: performance
metrics for Machine Learning algorithms (Servin and
Kudenko, 2008), entropy metrics for anomaly detec-
tion (Marnerides et al., 2014), protocol-specific met-
rics (Kwon et al., 2015), etc.
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