
Using Topic Specific Features for Argument Stance Recognition

Tobias Eljasik-Swoboda1 a, Felix Engel2 b and Matthias Hemmje2 c
1Faculty of Mathematics and Computer Science, University of Hagen, Hagen, Germany

2FTK e.v. Forschungsinstitut für Telekommunikation und Kooperation, Dortmund, Germany

Keywords: Argument Stance Detection, Explainability, Machine Learning, Trainer-athlete Pattern, Ontology Creation,
Support Vector Machines, Text Analytics, Architectural Concepts.

Abstract: Argument detection and its representation through ontologies are important parts of today’s attempt in
automated recognition and processing of useful information in the vast amount of constantly produced data.
However, due to the highly complex nature of an argument and its characteristics, its automated recognition
is hard to implement. Given this overall challenge, as part of the objectives of the RecomRatio project, we are
interested in the traceable, automated stance detection of arguments, to enable the construction of explainable
pro/con argument ontologies. In our research, we design and evaluate an explainable machine learning based
classifier, trained on two publicly available data sets. The evaluation results proved that explainable argument
stance recognition is possible with up to .96 F1 when working within the same set of topics and .6 F1 when
working with entirely different topics. This informed our hypothesis, that there are two sets of features in
argument stance recognition: General features and topic specific features.

1 INTRODUCTION

The RecomRatio project seeks to implement an
information system that supports medical
professionals by recommending treatment options
and supplying rational arguments why a specific
treatment is suggested. The recommendation will be
based on an argument ontology that compares pro and
contra arguments to given topics in medicine. Basis
for the ontology instantiation are specific information
units, extracted from publicly available data sets, as
e.g. provided by PubMed or other similar sources (US
National Library of Medicine, 2018). The necessity to
explain the recommendations is important because of
two reasons. Firstly, medical practitioners have more
trust in the system’s recommendations if they are
shown the reasons for the recommendation.
Secondly, the General Data Protection Regulation
(GDPR) contains a right to explanation, which
demands explanations for the results of machine
learning and artificial intelligence systems if they
impact an EU citizen (EU, 2016). This requirement is
relatively new and has not been an aspect of machine

a https://orcid.org/0000-0003-2464-8461
b https://orcid.org/0000-0002-3060-7052
c https://orcid.org/0000-0001-8293-2802

learning and artificial intelligence research until
recently (Clos et al., 2017).

An essential task in generating explanations for
recommendations is to reliably detect the stance of an
argument, to correctly represent it in the ontology and
to provide further information to support the
traceability of reasons that led to the specific
classification. Hence, our work is in the area of
Argument Mining (AM). More specifically in the task
of determining whether a statement is a pro argument
supporting a given topic or a contra argument against
this topic. In order to explain why an argument was
classified in a specific way, one needs a classification
system that grants a high degree of insight into its
internal processes. To learn stance detection we
applied an adoption of the LibSVM classifier tool to
a set of arguments (see section 2.4). The main
hypothesis that we intend to analyze is:

There are two sets of terms that serve as argument
stance features:

1. The set of general argument stance feature G.

2. The set of topic specific argument stance features
F(t).

Eljasik-Swoboda, T., Engel, F. and Hemmje, M.
Using Topic Specific Features for Argument Stance Recognition.
DOI: 10.5220/0007769700130022
In Proceedings of the 8th International Conference on Data Science, Technology and Applications (DATA 2019), pages 13-22
ISBN: 978-989-758-377-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

13

If one has G and F(t) for topic t along with a machine
learned model for the combination of these features,
high effectiveness, explainable classification can be
achieved. If one works with another topic, F(t)
becomes noise decreasing overall effectiveness.

This contribution, supporting our hypothesis is
structured as follows. Firstly we introduce the
relevant state of the art in the fields of Argument
Mining, Neural-Symbolic Integration, Machine
Learning based Text Classification, Feature
Assessment and evaluation metrics. Secondly, we
introduce the experimental setup and applied
methodology. Thirdly, we document and analyze the
experimental results. Last but not least we discuss our
outcome and provide an overview of future work.

2 STATE OF THE ART

2.1 Argument Mining (AM)

Generally speaking, research in Argument Mining
aims to automate the process of detecting arguments
in large quantities of text. Essentially AM brings
together a quite broad set of different disciplines like
Artificial Intelligence, Natural Language Processing
and Computational Linguistics. Seeking for answers
to challenges related to “… natural language
processing and understanding, information
extraction, feature discovery and discourse analysis”
(Lippi and Torroni, 2015).

A specific challenge within AM is the detection of
the stance of an argument. Essentially meaning, the
detection if an argument is a pro or contra argument
given a specific topic. Various stance detection
approaches have been evaluated e.g. on the
Semeval16 conference (Mohammad et al., 2016).

2.2 Neural-Symbolic Integration

Neural-Symbolic Integration is the fundamental idea
to merge symbolic knowledge representation, for
example expressed in ontologies, with neural network
based supervised learning (Bader and Hitzler, 2016).

Reasons to adopt this approach are to utilize
benefits of both approaches: Symbolic, or semantic
systems are logic-based, declarative and explicitly
model how humans think. Neural networks on the
other hand are much more tolerant against noise and
more robust when working with previously unseen
data. Neural networks are trained on example data
and automatically generate their functionality during
training. This way they express the regularities of

their training set but not explicit human-generated
knowledge. Neural-Symbolic Integration attempts to
benefit from the strengths of both approaches.

Figure 1: Neural-Symbolic Integration (Bader and Hitzler,
2016).

Even though the name implies neural networks,
Neural-Symbolic Integration is not necessarily
limited to neural networks but can be used with any
supervised machine learning approach one can easily
integrate with a symbolic, semantic application.

2.3 Cloud Classifier Committee

The Cloud Classifier Committee (C3) is a suite of
microservices that implement different machine
learning approaches making it feasible to combine
their results in a committee fashion. C3 implements a
modern and flexible microservice-oriented
architecture (Swoboda et al., 2016); (Wolf, 2017).
The goal of these microservices is to make Text
Categorization (TC) easily available for any type of
application, including explainable AM pro / contra
recognition. C3 exposes a number of endpoints on a
REST/JSON interface which any network capable
application can connect to. This makes integrating TC
techniques into arbitrary applications as difficult as
accessing an external database. C3 uniquely enables
neural-symbolic integration because it uses a
common API for any supervised learning TC
algorithm that a symbolic application can interface
with. We use Support Vector Machine (see next sub-
section) based microservices because their model is
easy to explain in comparison to more obscure
models such as neural networks. In TC, documents
can be of arbitrary length, ranging from a few words,
over sentences to lengthy texts. For us, a document is
a string of different words of arbitrary length.

To the best of our knowledge, there are no best
practices and design patterns to enable machine
learning based text categorization in microservice-
oriented architectures. We therefore developed the
trainer-athlete pattern, which is adopted by C3.
Within the trainer-athlete pattern there are two roles
of services: The trainer learns a model by applying
supervised learning algorithms to the available corpus
of documents, categories, and their assignments (the

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

14

target function). After the model is learned, it is made
available as JSON file using a specific endpoint of the
Trainer. The Athlete service needs such a model to
function and must be configured with it after starting
the service.

This pattern is loosely based on the Command
Query Responsibility Segregation (CQRS) pattern,
which dictates that different microservices are
responsible for reading or writing data (Wolff, 2017).
Trainer- as well as athlete microservices can write
data. The difference is, that the fundamental model
used by athletes must first be generated and written
by a trainer.

While using a model in a specific application can
be time critical, the computation of the model by the
trainer service can be much lengthier. As soon as the
model is computed, athlete services can be scaled out
as required by the application. Launching additional
containers running the athlete service and initializing
them with the same model can easily perform this
feat.

Figure 2: The trainer/athlete pattern for microservice-
oriented machine learning.

Microservices, especially when flexibly packed
e.g. using Docker, have advantages when compared
to legacy architectures in regards to the GDPR.
Implementing a machine learning based application
is a non-trivial task. Outsourcing this task to external
providers can be difficult for technical as well as
jurisdictional reasons. Simply adding microservices
to an environment already hosting sensitive data
eliminates such difficulties as well as lengthy data
transfer operations.

To do so, the C3 API uses common endpoints for
documents, categories, the relationships between
categories, the target function and categorization
results. The configuration of hyper-parameters as
well as generated (trainer) or utilized (athlete) models
are algorithm specific. Which algorithm /
microservice can use which model is controlled by
embedded metadata objects that are part of every
configuration and model JSON. Additionally, every

C3 service has a metadata endpoint which returns all
metadata about the service itself easing orchestration.

In addition to this API, every C3 service includes
a web-based graphical user interface. There is also a
scriptable command line interface utility further
enhancing the systems flexibility.

2.4 Machine Learning based Text
Categorization

Text Categorization (TC) is the task of automatically
assigning documents to predetermined categories.
The target function defines which document belongs
to which category. A classifier is any piece of
software, which approximates the target function as
effectively as possible (Sebastiani, 2002). There are
two fundamental approaches to tackle TC: Rule-
based or machine learning based. The first approach
requires expert knowledge and manual labor to
explicitly capture said experts experience. The second
one requires a target function to learn from and has
been reported to be more robust to noise and
previously unseen data. The C3 API supports
microservices implementing both approaches.

Figure 3: Support Vector Machine example.

Our work focuses on a Support Vector Machine
(SVM) based approach combined with an
automatically created controlled vocabulary
generating bag of words (BOW) based document
representations.

We chose SVMs because they are relatively easy
to explain. Like most machine learning based
classifiers, SVMs expect their document expressed as
a vector modeling the document. After having these
points representing the documents, SVMs use
optimization algorithms to find a hyperplane
bisecting the space occupied by the document
representing points so that the documents belonging

Using Topic Specific Features for Argument Stance Recognition

15

to one category are on one side of the hyperplanes,
while the others are on the other. It does so by
maximizing the margin between the closest vector
and the hyperplane (see figure 3).

LibSVM can work with different kernels. Kernels
essentially substitute the formula to compute the dot
product used in the computation of distances. This
means, that not only a linear hyperplane, but more
sophisticated functions, like the radial basis function
(RBF) can be used to tell categories from each other.

LibSVM is a standard library implementing
SVMs (Chang and Lin, 2011). We used it as core for
a C3 trainer and athlete. Generating feature vectors
from documents is referred to as feature extraction.
Selecting the most representative features for a
specific document is called feature selection.

Our classifier performs feature extraction and
selection, using the bag of words (BOW) model. In
the BOW model, a controlled vocabulary tells
relevant words from irrelevant word. How the
controlled vocabulary is generated and the actually
feature extraction and selection is performed is
subject of section 3.3.

This doesn’t mean, that the same BOW model
cannot be used for feature extraction and selection for
a neural network based or completely different
learner algorithm.

Besides this SVM approach, Clos et al. have
proposed the explainable, lexicon based ReLexNet
classifier (Clos et al., 2017). Lexicon based classifiers
are comparatively simple constructs, that are trained
by generating an association matrix between
individual terms and classes. The more terms of high
association exist, the more likely a document belongs
to a category. Besides these association terms
themselves, there are strength modifiers and negator
terms that are looked for in the words accompanying
the association terms. Negators multiply the term’s
association with -1 while strength modifiers like very
can boost a term’s association value by e.g. 1.3.
Besides computing the class, these association terms
can be used to explain, why a specific class was
chosen. There are three basic approaches to
generating the required lexica: Firstly, they can be
manually created. Secondly, one can base it on
ontologies by manually specifying class-indicating
terms and using ontologies to find terms equally as
specific. Thirdly, one can use the conditional
probability of a term occurring in a specific document
within the corpus to extrapolate to the probability of
the term specifying the category.

Even though being an intriguing, explainable TC
approach, we have not yet implemented lexicon based
classifiers in C3 because it requires manually

described modifiers. The primary goal of C3 is to
minimize manually provided requirements to use TC.

2.5 Feature Assessment and Evaluation
Metrics

Feature assessment, extraction, selection and rating of
classification approaches in this publication lean on
concepts from the Information Retrieval community.
The so-called Term Frequency Inverse Document
Frequency (TFIDF) is a statistic value that reflects the
importance of a term in a document, taking into
account its occurrence in the whole data set.
Essentially TFIDF rates the number of times a
specific term is contained in a document (normalized
by the frequency the term occurs in the text), in
proportion to the logarithm of the proportion between
the number of documents in the database to the
number of documents containing the term. TFIDF is
used e.g. as a weighting schema to detect words with
a high discriminative value (Salton and McGill,
1983).

To evaluate the ability of a retrieval system in a
specific retrieval task, the basic evaluation metrics are
precision and recall. Precision is the proportion
between the intersection of relevant and retrieved
documents to retrieved documents. Recall, in turn is
calculated as the proportion of the intersection
between relevant documents and retrieved documents
to relevant documents. On base of these core
measures several further metrics have been proposed.
E.g. the F1 score that measures the accuracy of a
retrieval system, by calculating the harmonic mean
between precision and recall.

Introduced for information retrieval, these
evaluation metrics have been widely applied in the
evaluation of other fields like text categorization,
natural language processing or argument detection.
There are different averaging methods for these
effectiveness measures (Sebastiani, 2002): In
macroaveraging, the results of individual categories
are averaged. In microaveraging, the individual true
positive, false positive, and false negative results of
all categories are summed up and then used to
calculate the effectiveness measures.

3 METHODOLOGY AND
EXPERIMENTAL SETUP

Having G and F(t) as controlled vocabulary, one can
automatically explain classification decisions with
sentences like: “The argument is considered contra,

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

16

because it contains multiple occurrences of the terms
tragedy, leaks, soldiers and blood. These terms have
been detected as contra indicators in the given data
set containing 27,538 arguments about the topic
policy”.

Figure 4: Structure of a topic specific argument stance
feature ontology.

The pro/contra argumentation ontology could
therefore decide how this argument relates to a contra
argument by referencing the terms of G and F(t) as
“argument stance features”. These terms are
potential existing concepts in topic specific
ontologies.

Further reasoning can be performed by the
relationships between the concepts that serve as
argument stance features. This is similar to a neural-
symbolic integrated application.

Therefore, our goal is to generate such a
controlled vocabulary as part of a machine-learned
model for argument stance recognition. A second
goal is to determine if the terms within the controlled
vocabulary are part of F(t) or G.

3.1 Argument Corpus

We evaluated our system using an annotated corpus
of argumentive microtexts (ACAM) (Peldszus, 2016).
In total, the corpus contains 25,351 argument pairs
from arguments about 795 different topics. However,
the corpus is a composition of two corpora. On the
one hand, a corpus that is composed of a set of
arguments collected during an experiment that
involves 23 subjects. Participants are discussing
controversial topics in German. The resulting
arguments have then been professionally translated to
English. On the other hand, a corpus that contains
arguments written by Andreas Peldszus mainly used
for teaching activities.

In order to additionally validate our classifier, we
used the UKP Sentential Argument Mining Corpus
(Stab et al., 2018). Stab et al. sourced this corpus by
querying Google to eight controversially discussed

topics. They then automatically collected sentences
from Google previews and had crowd workers
annotate them using three classes: No Argument,
Argument For, and Argument Against. For our
purpose, we filtered the No Argument values in order
to obtain pro arguments (Argument For) and contra
arguments (Argument Against). It is noteworthy, that
C3 can also be used to tell arguments from non-
arguments and also annotate these decisions with
explanations

3.2 Service Implementation

Two C3 classifier microservice implementations
have been used for our experiments: The first one is a
classifier committee service. Its actual purpose is to
combine the results of multiple classifiers. We use it
to externally and automatically evaluate the results of
other C3 classifiers, as it weights the effectiveness of
the external classifiers to determine its own model.
The other C3 classifier is built on LibSVM and uses
TFIDF for feature extraction (see previous sections).
We chose Support Vector Machines over Neural
Network based algorithms because they are
computationally lightweight and can be intuitively
explained: A document was categorized in a certain
way, because its features are above the hyperplane
defining the category. This is especially easy to
understand, when linear hyperplanes are used. We
chose this combination of techniques over Naïve
Bayes or Decision Rule classification, because
literature suggests results of higher effectiveness and
no manual labor to define decision rules are required
(Sebastiani, 2002)(Swoboda et al., 2016). This makes
our approach not strictly neural-symbolic
nevertheless providing the same benefits.

3.3 Training

In detail, the C3 TFIDF SVM classifier trainer works
as follows: In a first step, the TFIDF value for every
term (tk) existing in any available document (TS) is
computed. This requires counting every word
occurrence within every document. A principal goal
of C3 is to eliminate the need for additional resources,
such a stop word lists and key phrase concept
definitions. Therefore no such filtering of terms
within the documents takes place. A benefit of the
TFIDF equation is, that if a term tk occurs in all or
almost all documents of the training set, its log goes
towards zero. Therefore, stop words that occur in
most documents automatically have low TFIDF
values.

tfidf(tk,di)=#(tk,di)*log(|TS|/#TS(tk)) (1)

Using Topic Specific Features for Argument Stance Recognition

17

After computing all TFIDF values, the trainer
determines which terms are used for feature
extraction within the athlete services. To do so, the
trainer identifies a configurable number of terms with
the highest TFIDF values across all documents
belonging to a given category. We used the default
value of 20, which means that it identifies the 40
TFIDF values most representative for pro- and contra
arguments. In the next step, this list is augmented with
the single highest TFIDF term of every document.
These terms are only added to this automatically
created controlled vocabulary, if they are not already
in it. This scheme eliminates the necessity to
manually define a controlled vocabulary, is relevant
for any natural language and greatly accelerates the
adoption of this machine learning based TC technique
for argument stance detection. Additionally, the
identified feature terms serve as basis for the
construction of the argument ontology within the
RecomRatio project.

For training and subsequent productive
classification, feature vectors are passed to a LibSVM
based SVM. LibSVM requires its feature vectors to
be normalized per dimension. This means that for
example in all feature vectors the scalars representing
the term good need to have a combined length of 1.
For every document, a feature vector is generated
containing entries for all terms that are part of the
automatically generated controlled vocabulary.
LibSVM expects sparse vectors in the form of arrays,
which contain tupels consisting of the dimension and
value for every feature. The dimension is specified by
the term’s id within the controlled vocabulary. Its
value is its normalized TFIDF value. In order to
compute the normalized TFIDF value for previously
unseen documents, the document frequency of the
term within the training set (#TS(tk)) is stored
alongside the term in the model as well as the size of
the overall training set (|TS|). Additionally the model
contains the sum of the squares of all TFIDF values
for every term of the controlled vocabulary in the
training set. This is necessary to perform dimensional
normalization of the values when extracting features
from a new document.

Besides the ability to express a document as a
feature vector suited for LibSVM, the JSON based
model is human readable so that one can read which
terms are taken into consideration when performing
classification. This is a necessity to render the system
explainable and determine the sets G and F(t).

Another important step for working with LibSVM
is to perform weighting of the individual categories.
LibSVM weights the error for each category
differently in the training process. The results are

best, if the weights express the ratio of available
training samples for every category. Like the
controlled vocabulary, the weighing is automatically
determined by the C3 TFIDF SVM microservice, so
that no additional resources and configurations are
required.

3.4 Evaluation

After feature extraction, the trainer applies n-fold
cross-validation to find the best deciding hyperplanes
using a linear kernel. In n-fold cross-validation the
available documents (in this case arguments) are split
up into n subsets. In n different training sessions,
individual classifiers are generated using different n-
1 subsets of documents to learn from. After training,
the classifier is evaluated with the document subset
not used during training. Its performance is measured
in the before mentioned effectiveness values.

In previous experiments, we found that linear
kernels work better than RBF kernels when using our
feature extraction approach. During this training, we
used LibSVM’s default settings. As they are fine-
tunable, they can be parameterized in C3. Without
additional configuration, C3 uses the libraries
defaults, which we did in our experiments. It is
noteworthy, that the optimization of classifier hyper-
parameters is a problem in itself that can take
excessive experimentation in order to maximize
effectiveness. Aubakirov et al. implemented a
distributed genetic algorithm for that specific task
(Aubakirov, 2018). Albeit generating highly effective
classifiers for the dataset they are trained on, this
approach can lead to overfitting to the training data.
We therefore chose to commonly use the default
parameters.

The SVM hyperplanes that performed best during
cross validation are stored in the trainers’ model. The
trainer automatically logs the performance in terms of
precision, recall and F1 in microaverage,
macroaverage as well as for every category. As
default configuration, C3 selects the model with the
highest microaverage F1. This can also be
parameterized. As previously mentioned, we used a
classifier committee trainer service to evaluate the
effectiveness of one model on another set of
arguments by initializing an athlete service with said
model and performing the training of the committee
trainer which automatically called the TFIDF-SVM
athlete’s C3-API. It automatically logs the
performance of the utilized athletes in order to
ascertain their effectiveness for optimizing its
weighting function.

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

18

4 RESULTS: GENERAL AND
TOPIC SPECIFIC FEATURES
FOR ARGUMENT STANCE
RECOGNITION

In our first experiment, we trained a model on 5
individual topics of the ACAM. These topics were
wildly mixed ranging from a discussion about record
stores vs. internet-bought, downloaded music
collections to the statement that the United States
policy on illegal immigration should focus on attrition
through enforcement rather than amnesty. Doing so,
the trainer achieved F1 values of up to .96. The F1 for
contra arguments was oftentimes at 1 meaning perfect
results. As expected, these models contained
primarily topic specific terms like cd, record, and
collection for the musical discussion or violence,
national, or supporters for immigration policy. The
next step was to train the classifier on larger sets of
topics using C3’s default 3-fold cross validation.

After training the microservice with arguments
from up to 40 topics, a drawback of the automatically
generated TFIDF feature extraction approach became
apparent: Its time requirements grow almost
quadratically. The amount of features grows only
slightly sub-linearly to the amount of arguments,
because the most representative term for a document
(in TFIDF) oftentimes is not already part of the
automatically generated controlled vocabulary. This
means that per new document (or argument), a new
term is added to the BOW model. This increases the
length of document representing vectors. As
obviously there is a new vector per document (or
argument), the size of the training set for the SVM
grows almost quadratically, drastically increasing
training time for larger datasets. As training a
classifier with all 795 topics was unfeasible on our
available hardware, we computed models for the first
10, 20 and 40 topics. Their size and evaluation results
are shown in table 1. The F1 values are promising
even though the almost quadratic growth in size is
apparent.

To see if this model generalizes well, we used the
already computed model generated from the first 40
topics to initialize an athlete service. We then used a
committee trainer service to evaluate the
effectiveness of the athlete by querying it with the
remaining topics. Besides enabling us to evaluate our
approach with the remaining topics, this also shows
that we can use a model generated from less than 5%
of all topics and generalize to all remaining topics of
the ACAM. As expected, we obtained less effective
results than in the previous experiments (see table 2).

Like in the previous experiments, the effectiveness to
recognize contra arguments was much better that that
to detect pro arguments.

It is noteworthy, that the SVM model doesn’t have
the information that both categories (pro and contra)
are mutually exclusive. As we know the models
effectiveness for identifying pro and contra
arguments, we can use this information in order to
boost the systems overall effectiveness. For instance,
only considering something a pro argument if it is
identified as pro argument and simultaneously not
identified as contra argument will boost the pro-
category’s precision to at least that of contra-category
(>.83 instead of >.15). This will also increase the
system’s overall F1 values.

Table 1: 3-Fold cross validation results when training from
the first topics.

Topic 1 to 10 1 to 20 1 to 40
Arguments 202 449 813

Terms: 84 157 260
F1: .88 .89 .85

Table 2: Effectiveness of a model trained on topics 1-40.

Topics: 41 to 120 41 to 200
41 to 795

(all topics)
F1 .6 .57 .57

Precision .6 .57 .57
Recall .6 .57 .57
Pro F1 .23 .21 .21

Pro Precision .17 .16 .15
Pro Recall .35 .34 .35
Contra F1 .73 .7 .71

Contra Precision .83 .82 .83
Contra Recall .64 .62 .62

Using this information in a symbolic system
forms a fundamental neural-symbolic integration
albeit no neural networks were used. Obviously,
neural network based C3 classifiers can be used in the
same fashion.

In all previous experiments, the trainer performed
3-fold cross-validation, which is C3’s default
configuration. An additional round of
experimentation was performed using 10-fold cross-
validation. Switching to 10-fold cross-validation
directly boosted effectiveness for the best model
during training (see table 3). On the other hand, the
effectiveness when applying this model to the
remaining topics was reduced in all effectiveness
measures for up to 9%. This indicates that the 10-fold
cross-validated models are over-fitted to the initial
topics when compared to the models generated by 3-
fold cross-validation.

Using Topic Specific Features for Argument Stance Recognition

19

We then performed multiple experiments,
creating a model based on the UKP corpus and
evaluating it with the ACAM and vice versa (see table
4). As expected, the effectiveness measures for
evaluating the UKP based model on the UKP corpus
(during 3-fold cross-validation) were better than
evaluating the UKP model on the ACAM corpus or
vice versa. Interestingly, whenever the ACAM corpus
is involved (either as source for the model or as
evaluation set) the detection of contra arguments is
more effective than that of pro arguments. It is
noteworthy, that the UKP corpus is inherently more
difficult than the ACAM. It contains shorter
arguments that are only single sentences, whereas the
ACAM contained longer debate points. Stab et al.
reported F1 values of .67 in their experiments using
an attention based neural network for the task (Stab et
al., 2018).

Even though our system is slightly less effective,
it can be adapted to different tasks in a rapid fashion.
It also allows for an easily understandable
explanation of its results. This easy explanation aids
us in the construction of the pro- and contra argument
ontology within the RecomRatio project. Therefore
we did not benchmark any other approaches used in
literature with our datasets.

For comparison: The winner of the Semeval 16
stance detection challenge produced .68 F1 results
while the average was .62 when working with
previously seen topics (Mohammad et al., 2016).
When detecting stance for a previously unseen topic,
the winner of the same challenge had .56 F1 with the
competition average at .37. Even though different
datasets were used, this means that our results are
comparable to those reported in literature.

Table 3: Effectiveness for 10-fold cross-validation.

Topic 1 to 10 1 to 20 1 to 40
Arguments 202 449 813

Terms: 84 157 260
F1: .95 .91 .96

Table 4: Experiments with different corpora.

Experiment
UKP on
ACAM

UKP on
UKP

ACAM
on UKP

F1 .48 .6 .46
Precision .48 .6 .46

Recall .48 .6 .46
Pro F1 .25 .64 .25

Pro Precision .16 .62 .55
Pro Recall .52 .65 .16
Contra F1 .6 .56 .58

Contra Precision .83 .57 .44
Contra Recall .47 .55 .83

5 DISCUSSION

Between our experiments, we manually inspected the
model’s controlled vocabulary for every learned
topic. This was feasible for the first 40 topics of
ACAM containing up to 260 terms. The system
identified over 1000 terms per topic in the UKP
model, making manual inspection impracticable.

Besides the afore mentioned topic specific terms,
the model also contained more general terms such as
incredibly, uncomfortable, radical, death, stress,
knowledge, greedy, tragedy, concern, racist, cruel,
presents, reason, justice, pleasure, and punishment.

These more general terms often carry a specific
sentiment. Especially a negative sentiment is more
easily identifiable. We think that this is the reason
why the recognition of contra arguments tends to
outperform the recognition of pro arguments in
ACAM.

These terms and our experimental results support
our hypothesis of general and topic specific terms as
features. When evaluating the classifier with
arguments about the same topic or topic collection it
was trained on, high effectiveness results were
observed (>.85 F1 for ACAM, >.6 F1 for UKP).
When switching to different topics, effectiveness is
decreased (>.57 F1 for ACAM, >.46 F1 for UKP).

Argument specificity and therefore the
intersections of F(n) and F(m) for topics n and m can
be seen as flexible because certain terms can have
completely different meanings in other topics or the
topics have overlapping concerns. In any case, the
machine learned model, in our classifier the
hyperplanes, should compensate for this, e.g. by
being under or above most values for this dimension.
An example for this is the term drug. It is entirely
different in the context of medical treatment than in
the context of policies on drug abuse.

In order to further support our thesis, we
generated models on other topic blocks of ACAM
(41-80, 81-120, and 121-160). We then evaluated
these against the remaining topic blocks obtaining
similar results to those shown in table 2. Like before,
we manually assessed the controlled vocabularies
generated by these trainers to identify terms that
occur in more than one of them.

The set of terms that occur in the controlled
vocabularies of different topic mixes (e.g. terms
identified in topics 1-40, 41-80 and 81-120) contains
many more general terms like local, prisoners, test,
information, money, team, death, love, workers,
women, rights, knowledge, child, gifts, unhealthy,
exists, over, uncomfortable, power, students, and war.
It also contains some words indicating who is

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

20

referring to what like my, I, he, your, or she. Some of
the terms seem to be specific to more than one topic.
Like the afore mentioned drugs or the term marriage
which can be seen as literal or proverbial.

6 OUTLOOK

Our contribution is three-fold: We firstly developed a
classifier for argument-stance recognition, which is
explainable by the features it uses. As such, it serves
as basis for creating an ontology of argument stance
features that aids in the construction of the overall
argument ontology of the RecomRatio project. We
secondly proposed our thesis of general and topic
specific features, which is supported by our
experiments. These can be of further use to structure
the argument stance feature ontology and connect it
to topic specific ontologies. Such integrated topic
specific argument stance ontologies form the basis for
explainability in a non-semantic application.

Secondarily, the short development time needed
to generate these results proves the versatility of the
C3 microservices and its utilized trainer/athlete
pattern, which we see as our third contribution.
Neural-symbolic integrated applications are easy to
develop if one only has to focus on the symbolic part
as the machine learning based aspect is encapsulated
behind an easy to use API that does not require any
hyper-parameter tuning to produce useful results.
This is includes the design philosophy to
automatically generate model parameters, e.g. the
category weights and controlled vocabulary.

In future experiments, we are aiming to precisely
identify general and topic specific argument stance
features for the specific knowledge domains of our
research project. This means, that we aim to extend
existing medical ontologies with an explainability-
dimension that specifies, whether concepts are
features for certain classification algorithm concepts.
These algorithms are in turn linked to explanation
templates and the corpora from which their model
was generated. To the best of our knowledge, existing
medical ontologies lack this explainability angle,
which we identify as important extension.

Based on these ontologies, additional lexicon
based classifiers including modifier terms can be
created and put into a committee with the proposed
TFIDF-SVM classifier.

As the new lexicon-based system as well as our
existing system are explainable, the committee
decision can also be explained by referring to the
individual classifications and mentioning, how well
these classifiers performed in evaluations.

Additionally, evaluation results for the individual
mutually exclusive classes can be taken into account
when computing combined classification decisions.

We also intent to generalize our approach to
determine arguments from non-arguments as we
expect that there are also sets of general and topic
specific words for this task. Comparing them to those
identified in argument stance recognition can further
aid in developing a feature ontology, capable of not
only explaining why something is considered pro- or
contra but also why it is an argument at all.

ACKNOWLEDGEMENTS

This work has been funded by the Deutsche
Forschungsgemeinschaft (DFG) within the project
Empfehlungsrationalisierung, Grant Number 643018,
as part of the Priority Program "Robust
Argumentation Machines (RATIO)" (SPP-1999).

REFERENCES

Aubakirov, S., Trigo, P., Ahmed-Zaki, D., Distributed
Optimization of Classifier Committee
Hyperparameters, Proceedings of the 7th International
Conference on Data Science, Technology and
Applications (DATA 2018), pages 171-179, 2018.

Bader, S., Hitzler, P. (2005). Dimensions of neural-
symbolic integration-a structured survey. arXiv
preprint cs/0511042.

Chang, C., Lin, C., LIBSVM: A library for support vector
machines, ACM Transactions on Intelligent Systems
and Technology, volume 2, issue 3, pp 27:1 –27:27,
2011.

Clos, J., Wiratunga, N., Massie, S., Towards Explainable
Text Classification by Jointly Learning Lexicon and
Modifier Terms. In IJCAI-17 Workshop on Explainable
AI (XAI), 2017.

Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of
personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data
Protection Regulation) (Text with EEA relevance); OJ
L 119, 4.5.2016, p. 1–88.

Lippi, M., & Torroni, P. (2015, July). Argument mining: A
machine learning perspective. In International
Workshop on Theorie and Applications of Formal
Argumentation (pp. 163-176). Springer, Cham.

Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., &
Cherry, C. (2016). Semeval-2016 task 6: Detecting
stance in tweets. In Proceedings of the 10th
International Workshop on Semantic Evaluation
(SemEval-2016) (pp. 31-41).

Using Topic Specific Features for Argument Stance Recognition

21

Peldszus, A., An annotated corpus of argumentative
microtexts, https://githuzb.com/peldszus/arg-
microtexts, November 2016.

Salton, G., McGill, M., Introduction to Modern Information
Retrieval, McGraw-Hill, 1983

Sebastiani, F., Machine Learning in Automated Text
Categorization, ACM Computing Surveys, Vol 34, pp.
1-47, 2002

Stab, C., Moller, T., Schiller, B., Rai, P., Gurevych, I.,
Cross-topic argument mining from heterogeneous
sources, Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP
2018), October 2018.

Swoboda, T., Kaufmann, M., Hemmje, M. L., Toward
Cloud-based Classification and Annotation Support,
Proceedings of the 6th International Conference on
Cloud Computing and Services Science (CLOSER
2016) – Volume 2, pp. 131-237, 2016.

US National Library of Medicine National Institutes of
Health pubmed.gov; https://www.ncbi.nlm.nih.gov/
pubmed/ accessed March 11, 2018.

Wolff, E., Microservices – Flexible Software Architecture,
Pearson Education, ISBN-13: 978-0-134-60241-7,
2017.

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

22

