
Using Topic Specific Features for Argument Stance Recognition 

Tobias Eljasik-Swoboda1 a, Felix Engel2 b and Matthias Hemmje2 c 
1Faculty of Mathematics and Computer Science, University of Hagen, Hagen, Germany 

2FTK e.v. Forschungsinstitut für Telekommunikation und Kooperation, Dortmund, Germany 

Keywords: Argument Stance Detection, Explainability, Machine Learning, Trainer-athlete Pattern, Ontology Creation, 
Support Vector Machines, Text Analytics, Architectural Concepts. 

Abstract: Argument detection and its representation through ontologies are important parts of today’s attempt in 
automated recognition and processing of useful information in the vast amount of constantly produced data. 
However, due to the highly complex nature of an argument and its characteristics, its automated recognition 
is hard to implement. Given this overall challenge, as part of the objectives of the RecomRatio project, we are 
interested in the traceable, automated stance detection of arguments, to enable the construction of explainable 
pro/con argument ontologies. In our research, we design and evaluate an explainable machine learning based 
classifier, trained on two publicly available data sets. The evaluation results proved that explainable argument 
stance recognition is possible with up to .96 F1 when working within the same set of topics and .6 F1 when 
working with entirely different topics. This informed our hypothesis, that there are two sets of features in 
argument stance recognition: General features and topic specific features. 

1 INTRODUCTION 

The RecomRatio project seeks to implement an 
information system that supports medical 
professionals by recommending treatment options 
and supplying rational arguments why a specific 
treatment is suggested. The recommendation will be 
based on an argument ontology that compares pro and 
contra arguments to given topics in medicine. Basis 
for the ontology instantiation are specific information 
units, extracted from publicly available data sets, as 
e.g. provided by PubMed or other similar sources (US 
National Library of Medicine, 2018). The necessity to 
explain the recommendations is important because of 
two reasons. Firstly, medical practitioners have more 
trust in the system’s recommendations if they are 
shown the reasons for the recommendation. 
Secondly, the General Data Protection Regulation 
(GDPR) contains a right to explanation, which 
demands explanations for the results of machine 
learning and artificial intelligence systems if they 
impact an EU citizen (EU, 2016). This requirement is 
relatively new and has not been an aspect of machine 
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learning and artificial intelligence research until 
recently (Clos et al., 2017).  

An essential task in generating explanations for 
recommendations is to reliably detect the stance of an 
argument, to correctly represent it in the ontology and 
to provide further information to support the 
traceability of reasons that led to the specific 
classification. Hence, our work is in the area of 
Argument Mining (AM). More specifically in the task 
of determining whether a statement is a pro argument 
supporting a given topic or a contra argument against 
this topic. In order to explain why an argument was 
classified in a specific way, one needs a classification 
system that grants a high degree of insight into its 
internal processes. To learn stance detection we 
applied an adoption of the LibSVM classifier tool to 
a set of arguments (see section 2.4). The main 
hypothesis that we intend to analyze is: 
 

There are two sets of terms that serve as argument 
stance features: 

1. The set of general argument stance feature G. 

2. The set of topic specific argument stance features 
F(t).  
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If one has G and F(t) for topic t along with a machine 
learned model for the combination of these features, 
high effectiveness, explainable classification can be 
achieved. If one works with another topic, F(t) 
becomes noise decreasing overall effectiveness. 

 

This contribution, supporting our hypothesis is 
structured as follows. Firstly we introduce the 
relevant state of the art in the fields of Argument 
Mining, Neural-Symbolic Integration, Machine 
Learning based Text Classification, Feature 
Assessment and evaluation metrics. Secondly, we 
introduce the experimental setup and applied 
methodology. Thirdly, we document and analyze the 
experimental results. Last but not least we discuss our 
outcome and provide an overview of future work.  

2 STATE OF THE ART 

2.1 Argument Mining (AM) 

Generally speaking, research in Argument Mining 
aims to automate the process of detecting arguments 
in large quantities of text. Essentially AM brings 
together a quite broad set of different disciplines like 
Artificial Intelligence, Natural Language Processing 
and Computational Linguistics. Seeking for answers 
to challenges related to “… natural language 
processing and understanding, information 
extraction, feature discovery and discourse analysis” 
(Lippi and Torroni, 2015).  

A specific challenge within AM is the detection of 
the stance of an argument. Essentially meaning, the 
detection if an argument is a pro or contra argument 
given a specific topic. Various stance detection 
approaches have been evaluated e.g. on the 
Semeval16 conference (Mohammad et al., 2016). 

2.2 Neural-Symbolic Integration 

Neural-Symbolic Integration is the fundamental idea 
to merge symbolic knowledge representation, for 
example expressed in ontologies, with neural network 
based supervised learning (Bader and Hitzler, 2016). 

Reasons to adopt this approach are to utilize 
benefits of both approaches: Symbolic, or semantic 
systems are logic-based, declarative and explicitly 
model how humans think. Neural networks on the 
other hand are much more tolerant against noise and 
more robust when working with previously unseen 
data. Neural networks are trained on example data 
and automatically generate their functionality during 
training. This way they express the regularities of 

their training set but not explicit human-generated 
knowledge. Neural-Symbolic Integration attempts to 
benefit from the strengths of both approaches.  

 

 

Figure 1: Neural-Symbolic Integration (Bader and Hitzler, 
2016). 

Even though the name implies neural networks, 
Neural-Symbolic Integration is not necessarily 
limited to neural networks but can be used with any 
supervised machine learning approach one can easily 
integrate with a symbolic, semantic application. 

2.3 Cloud Classifier Committee 

The Cloud Classifier Committee (C3) is a suite of 
microservices that implement different machine 
learning approaches making it feasible to combine 
their results in a committee fashion. C3 implements a 
modern and flexible microservice-oriented 
architecture (Swoboda et al., 2016); (Wolf, 2017). 
The goal of these microservices is to make Text 
Categorization (TC) easily available for any type of 
application, including explainable AM pro / contra 
recognition. C3 exposes a number of endpoints on a 
REST/JSON interface which any network capable 
application can connect to. This makes integrating TC 
techniques into arbitrary applications as difficult as 
accessing an external database. C3 uniquely enables 
neural-symbolic integration because it uses a 
common API for any supervised learning TC 
algorithm that a symbolic application can interface 
with. We use Support Vector Machine (see next sub-
section) based microservices because their model is 
easy to explain in comparison to more obscure 
models such as neural networks. In TC, documents 
can be of arbitrary length, ranging from a few words, 
over sentences to lengthy texts. For us, a document is 
a string of different words of arbitrary length. 

To the best of our knowledge, there are no best 
practices and design patterns to enable machine 
learning based text categorization in microservice-
oriented architectures. We therefore developed the 
trainer-athlete pattern, which is adopted by C3. 
Within the trainer-athlete pattern there are two roles 
of services: The trainer learns a model by applying 
supervised learning algorithms to the available corpus 
of documents, categories, and their assignments (the 
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target function). After the model is learned, it is made 
available as JSON file using a specific endpoint of the 
Trainer. The Athlete service needs such a model to 
function and must be configured with it after starting 
the service.  

This pattern is loosely based on the Command 
Query Responsibility Segregation (CQRS) pattern, 
which dictates that different microservices are 
responsible for reading or writing data (Wolff, 2017). 
Trainer- as well as athlete microservices can write 
data. The difference is, that the fundamental model 
used by athletes must first be generated and written 
by a trainer.  

While using a model in a specific application can 
be time critical, the computation of the model by the 
trainer service can be much lengthier. As soon as the 
model is computed, athlete services can be scaled out 
as required by the application. Launching additional 
containers running the athlete service and initializing 
them with the same model can easily perform this 
feat. 

 

 

Figure 2: The trainer/athlete pattern for microservice-
oriented machine learning. 

Microservices, especially when flexibly packed 
e.g. using Docker, have advantages when compared 
to legacy architectures in regards to the GDPR. 
Implementing a machine learning based application 
is a non-trivial task. Outsourcing this task to external 
providers can be difficult for technical as well as 
jurisdictional reasons. Simply adding microservices 
to an environment already hosting sensitive data 
eliminates such difficulties as well as lengthy data 
transfer operations. 

To do so, the C3 API uses common endpoints for 
documents, categories, the relationships between 
categories, the target function and categorization 
results. The configuration of hyper-parameters as 
well as generated (trainer) or utilized (athlete) models 
are algorithm specific. Which algorithm / 
microservice can use which model is controlled by 
embedded metadata objects that are part of every 
configuration and model JSON. Additionally, every 

C3 service has a metadata endpoint which returns all 
metadata about the service itself easing orchestration. 

In addition to this API, every C3 service includes 
a web-based graphical user interface. There is also a 
scriptable command line interface utility further 
enhancing the systems flexibility. 

2.4 Machine Learning based Text 
Categorization 

Text Categorization (TC) is the task of automatically 
assigning documents to predetermined categories. 
The target function defines which document belongs 
to which category. A classifier is any piece of 
software, which approximates the target function as 
effectively as possible (Sebastiani, 2002). There are 
two fundamental approaches to tackle TC: Rule-
based or machine learning based. The first approach 
requires expert knowledge and manual labor to 
explicitly capture said experts experience. The second 
one requires a target function to learn from and has 
been reported to be more robust to noise and 
previously unseen data. The C3 API supports 
microservices implementing both approaches.  

 

Figure 3: Support Vector Machine example. 

Our work focuses on a Support Vector Machine 
(SVM) based approach combined with an 
automatically created controlled vocabulary 
generating bag of words (BOW) based document 
representations.  

We chose SVMs because they are relatively easy 
to explain. Like most machine learning based 
classifiers, SVMs expect their document expressed as 
a vector modeling the document. After having these 
points representing the documents, SVMs use 
optimization algorithms to find a hyperplane 
bisecting the space occupied by the document 
representing points so that the documents belonging 
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to one category are on one side of the hyperplanes, 
while the others are on the other. It does so by 
maximizing the margin between the closest vector 
and the hyperplane (see figure 3). 

LibSVM can work with different kernels. Kernels 
essentially substitute the formula to compute the dot 
product used in the computation of distances. This 
means, that not only a linear hyperplane, but more 
sophisticated functions, like the radial basis function 
(RBF) can be used to tell categories from each other.  

LibSVM is a standard library implementing 
SVMs (Chang and Lin, 2011). We used it as core for 
a C3 trainer and athlete. Generating feature vectors 
from documents is referred to as feature extraction. 
Selecting the most representative features for a 
specific document is called feature selection.  

Our classifier performs feature extraction and 
selection, using the bag of words (BOW) model. In 
the BOW model, a controlled vocabulary tells 
relevant words from irrelevant word. How the 
controlled vocabulary is generated and the actually 
feature extraction and selection is performed is 
subject of section 3.3. 

This doesn’t mean, that the same BOW model 
cannot be used for feature extraction and selection for 
a neural network based or completely different 
learner algorithm.  

Besides this SVM approach, Clos et al. have 
proposed the explainable, lexicon based ReLexNet 
classifier (Clos et al., 2017). Lexicon based classifiers 
are comparatively simple constructs, that are trained 
by generating an association matrix between 
individual terms and classes. The more terms of high 
association exist, the more likely a document belongs 
to a category. Besides these association terms 
themselves, there are strength modifiers and negator 
terms that are looked for in the words accompanying 
the association terms. Negators multiply the term’s 
association with -1 while strength modifiers like very 
can boost a term’s association value by e.g. 1.3. 
Besides computing the class, these association terms 
can be used to explain, why a specific class was 
chosen. There are three basic approaches to 
generating the required lexica: Firstly, they can be 
manually created. Secondly, one can base it on 
ontologies by manually specifying class-indicating 
terms and using ontologies to find terms equally as 
specific. Thirdly, one can use the conditional 
probability of a term occurring in a specific document 
within the corpus to extrapolate to the probability of 
the term specifying the category. 

Even though being an intriguing, explainable TC 
approach, we have not yet implemented lexicon based 
classifiers in C3 because it requires manually 

described modifiers. The primary goal of C3 is to 
minimize manually provided requirements to use TC. 

2.5 Feature Assessment and Evaluation 
Metrics 

Feature assessment, extraction, selection and rating of 
classification approaches in this publication lean on 
concepts from the Information Retrieval community. 
The so-called Term Frequency Inverse Document 
Frequency (TFIDF) is a statistic value that reflects the 
importance of a term in a document, taking into 
account its occurrence in the whole data set. 
Essentially TFIDF rates the number of times a 
specific term is contained in a document (normalized 
by the frequency the term occurs in the text), in 
proportion to the logarithm of the proportion between 
the number of documents in the database to the 
number of documents containing the term. TFIDF is 
used e.g. as a weighting schema to detect words with 
a high discriminative value (Salton and McGill, 
1983). 

To evaluate the ability of a retrieval system in a 
specific retrieval task, the basic evaluation metrics are 
precision and recall. Precision is the proportion 
between the intersection of relevant and retrieved 
documents to retrieved documents. Recall, in turn is 
calculated as the proportion of the intersection 
between relevant documents and retrieved documents 
to relevant documents. On base of these core 
measures several further metrics have been proposed. 
E.g. the F1 score that measures the accuracy of a 
retrieval system, by calculating the harmonic mean 
between precision and recall. 

Introduced for information retrieval, these 
evaluation metrics have been widely applied in the 
evaluation of other fields like text categorization, 
natural language processing or argument detection. 
There are different averaging methods for these 
effectiveness measures (Sebastiani, 2002): In 
macroaveraging, the results of individual categories 
are averaged. In microaveraging, the individual true 
positive, false positive, and false negative results of 
all categories are summed up and then used to 
calculate the effectiveness measures. 

3 METHODOLOGY AND 
EXPERIMENTAL SETUP 

Having G and F(t) as controlled vocabulary, one can 
automatically explain classification decisions with 
sentences like: “The argument is considered contra, 
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because it contains multiple occurrences of the terms 
tragedy, leaks, soldiers and blood. These terms have 
been detected as contra indicators in the given data 
set containing 27,538 arguments about the topic 
policy”. 
 

 

Figure 4: Structure of a topic specific argument stance 
feature ontology. 

The pro/contra argumentation ontology could 
therefore decide how this argument relates to a contra 
argument by referencing the terms of G and F(t) as 
“argument stance features”. These terms are 
potential existing concepts in topic specific 
ontologies. 

Further reasoning can be performed by the 
relationships between the concepts that serve as 
argument stance features. This is similar to a neural-
symbolic integrated application. 

Therefore, our goal is to generate such a 
controlled vocabulary as part of a machine-learned 
model for argument stance recognition. A second 
goal is to determine if the terms within the controlled 
vocabulary are part of F(t) or G. 

3.1 Argument Corpus 

We evaluated our system using an annotated corpus 
of argumentive microtexts (ACAM) (Peldszus, 2016). 
In total, the corpus contains 25,351 argument pairs 
from arguments about 795 different topics. However, 
the corpus is a composition of two corpora. On the 
one hand, a corpus that is composed of a set of 
arguments collected during an experiment that 
involves 23 subjects. Participants are discussing 
controversial topics in German. The resulting 
arguments have then been professionally translated to 
English. On the other hand, a corpus that contains 
arguments written by Andreas Peldszus mainly used 
for teaching activities. 

In order to additionally validate our classifier, we 
used the UKP Sentential Argument Mining Corpus 
(Stab et al., 2018). Stab et al. sourced this corpus by 
querying Google to eight controversially discussed 

topics. They then automatically collected sentences 
from Google previews and had crowd workers 
annotate them using three classes: No Argument, 
Argument For, and Argument Against. For our 
purpose, we filtered the No Argument values in order 
to obtain pro arguments (Argument For) and contra 
arguments (Argument Against). It is noteworthy, that 
C3 can also be used to tell arguments from non-
arguments and also annotate these decisions with 
explanations 

3.2 Service Implementation 

Two C3 classifier microservice implementations 
have been used for our experiments: The first one is a 
classifier committee service. Its actual purpose is to 
combine the results of multiple classifiers. We use it 
to externally and automatically evaluate the results of 
other C3 classifiers, as it weights the effectiveness of 
the external classifiers to determine its own model. 
The other C3 classifier is built on LibSVM and uses 
TFIDF for feature extraction (see previous sections). 
We chose Support Vector Machines over Neural 
Network based algorithms because they are 
computationally lightweight and can be intuitively 
explained: A document was categorized in a certain 
way, because its features are above the hyperplane 
defining the category. This is especially easy to 
understand, when linear hyperplanes are used. We 
chose this combination of techniques over Naïve 
Bayes or Decision Rule classification, because 
literature suggests results of higher effectiveness and 
no manual labor to define decision rules are required 
(Sebastiani, 2002)(Swoboda et al., 2016). This makes 
our approach not strictly neural-symbolic 
nevertheless providing the same benefits. 

3.3 Training 

In detail, the C3 TFIDF SVM classifier trainer works 
as follows: In a first step, the TFIDF value for every 
term (tk) existing in any available document (TS) is 
computed. This requires counting every word 
occurrence within every document. A principal goal 
of C3 is to eliminate the need for additional resources, 
such a stop word lists and key phrase concept 
definitions. Therefore no such filtering of terms 
within the documents takes place. A benefit of the 
TFIDF equation is, that if a term tk occurs in all or 
almost all documents of the training set, its log goes 
towards zero. Therefore, stop words that occur in 
most documents automatically have low TFIDF 
values. 
 

tfidf(tk,di)=#(tk,di)*log(|TS|/#TS(tk)) (1)
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After computing all TFIDF values, the trainer 
determines which terms are used for feature 
extraction within the athlete services. To do so, the 
trainer identifies a configurable number of terms with 
the highest TFIDF values across all documents 
belonging to a given category. We used the default 
value of 20, which means that it identifies the 40 
TFIDF values most representative for pro- and contra 
arguments. In the next step, this list is augmented with 
the single highest TFIDF term of every document. 
These terms are only added to this automatically 
created controlled vocabulary, if they are not already 
in it. This scheme eliminates the necessity to 
manually define a controlled vocabulary, is relevant 
for any natural language and greatly accelerates the 
adoption of this machine learning based TC technique 
for argument stance detection. Additionally, the 
identified feature terms serve as basis for the 
construction of the argument ontology within the 
RecomRatio project.  

For training and subsequent productive 
classification, feature vectors are passed to a LibSVM 
based SVM. LibSVM requires its feature vectors to 
be normalized per dimension. This means that for 
example in all feature vectors the scalars representing 
the term good need to have a combined length of 1. 
For every document, a feature vector is generated 
containing entries for all terms that are part of the 
automatically generated controlled vocabulary. 
LibSVM expects sparse vectors in the form of arrays, 
which contain tupels consisting of the dimension and 
value for every feature. The dimension is specified by 
the term’s id within the controlled vocabulary. Its 
value is its normalized TFIDF value. In order to 
compute the normalized TFIDF value for previously 
unseen documents, the document frequency of the 
term within the training set (#TS(tk)) is stored 
alongside the term in the model as well as the size of 
the overall training set (|TS|). Additionally the model 
contains the sum of the squares of all TFIDF values 
for every term of the controlled vocabulary in the 
training set. This is necessary to perform dimensional 
normalization of the values when extracting features 
from a new document.  

Besides the ability to express a document as a 
feature vector suited for LibSVM, the JSON based 
model is human readable so that one can read which 
terms are taken into consideration when performing 
classification. This is a necessity to render the system 
explainable and determine the sets G and F(t). 

Another important step for working with LibSVM 
is to perform weighting of the individual categories. 
LibSVM weights the error for each category 
differently in the training process. The results are 

best, if the weights express the ratio of available 
training samples for every category. Like the 
controlled vocabulary, the weighing is automatically 
determined by the C3 TFIDF SVM microservice, so 
that no additional resources and configurations are 
required.  

3.4 Evaluation 

After feature extraction, the trainer applies n-fold 
cross-validation to find the best deciding hyperplanes 
using a linear kernel. In n-fold cross-validation the 
available documents (in this case arguments) are split 
up into n subsets. In n different training sessions, 
individual classifiers are generated using different n-
1 subsets of documents to learn from. After training, 
the classifier is evaluated with the document subset 
not used during training. Its performance is measured 
in the before mentioned effectiveness values. 

In previous experiments, we found that linear 
kernels work better than RBF kernels when using our 
feature extraction approach. During this training, we 
used LibSVM’s default settings. As they are fine-
tunable, they can be parameterized in C3. Without 
additional configuration, C3 uses the libraries 
defaults, which we did in our experiments.  It is 
noteworthy, that the optimization of classifier hyper-
parameters is a problem in itself that can take 
excessive experimentation in order to maximize 
effectiveness. Aubakirov et al. implemented a 
distributed genetic algorithm for that specific task 
(Aubakirov, 2018). Albeit generating highly effective 
classifiers for the dataset they are trained on, this 
approach can lead to overfitting to the training data. 
We therefore chose to commonly use the default 
parameters. 

The SVM hyperplanes that performed best during 
cross validation are stored in the trainers’ model. The 
trainer automatically logs the performance in terms of 
precision, recall and F1 in microaverage, 
macroaverage as well as for every category. As 
default configuration, C3 selects the model with the 
highest microaverage F1. This can also be 
parameterized. As previously mentioned, we used a 
classifier committee trainer service to evaluate the 
effectiveness of one model on another set of 
arguments by initializing an athlete service with said 
model and performing the training of the committee 
trainer which automatically called the TFIDF-SVM 
athlete’s C3-API. It automatically logs the 
performance of the utilized athletes in order to 
ascertain their effectiveness for optimizing its 
weighting function. 
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4 RESULTS: GENERAL AND 
TOPIC SPECIFIC FEATURES 
FOR ARGUMENT STANCE 
RECOGNITION 

In our first experiment, we trained a model on 5 
individual topics of the ACAM. These topics were 
wildly mixed ranging from a discussion about record 
stores vs. internet-bought, downloaded music 
collections to the statement that the United States 
policy on illegal immigration should focus on attrition 
through enforcement rather than amnesty. Doing so, 
the trainer achieved F1 values of up to .96. The F1 for 
contra arguments was oftentimes at 1 meaning perfect 
results. As expected, these models contained 
primarily topic specific terms like cd, record, and 
collection for the musical discussion or violence, 
national, or supporters for immigration policy. The 
next step was to train the classifier on larger sets of 
topics using C3’s default 3-fold cross validation. 

After training the microservice with arguments 
from up to 40 topics, a drawback of the automatically 
generated TFIDF feature extraction approach became 
apparent: Its time requirements grow almost 
quadratically. The amount of features grows only 
slightly sub-linearly to the amount of arguments, 
because the most representative term for a document 
(in TFIDF) oftentimes is not already part of the 
automatically generated controlled vocabulary. This 
means that per new document (or argument), a new 
term is added to the BOW model. This increases the 
length of document representing vectors. As 
obviously there is a new vector per document (or 
argument), the size of the training set for the SVM 
grows almost quadratically, drastically increasing 
training time for larger datasets. As training a 
classifier with all 795 topics was unfeasible on our 
available hardware, we computed models for the first 
10, 20 and 40 topics. Their size and evaluation results 
are shown in table 1. The F1 values are promising 
even though the almost quadratic growth in size is 
apparent.  

To see if this model generalizes well, we used the 
already computed model generated from the first 40 
topics to initialize an athlete service. We then used a 
committee trainer service to evaluate the 
effectiveness of the athlete by querying it with the 
remaining topics. Besides enabling us to evaluate our 
approach with the remaining topics, this also shows 
that we can use a model generated from less than 5% 
of all topics and generalize to all remaining topics of 
the ACAM. As expected, we obtained less effective 
results than in the previous experiments (see table 2). 

Like in the previous experiments, the effectiveness to 
recognize contra arguments was much better that that 
to detect pro arguments. 

It is noteworthy, that the SVM model doesn’t have 
the information that both categories (pro and contra) 
are mutually exclusive. As we know the models 
effectiveness for identifying pro and contra 
arguments, we can use this information in order to 
boost the systems overall effectiveness. For instance, 
only considering something a pro argument if it is 
identified as pro argument and simultaneously not 
identified as contra argument will boost the pro-
category’s precision to at least that of contra-category 
(>.83 instead of >.15). This will also increase the 
system’s overall F1 values.  

Table 1: 3-Fold cross validation results when training from 
the first topics. 

Topic 1 to 10 1 to 20 1 to 40
Arguments 202 449 813

Terms: 84 157 260
F1: .88 .89 .85

Table 2: Effectiveness of a model trained on topics 1-40. 

Topics: 41 to 120 41 to 200 
41 to 795 

(all topics)
F1 .6 .57 .57

Precision .6 .57 .57
Recall .6 .57 .57
Pro F1 .23 .21 .21

Pro Precision .17 .16 .15
Pro Recall .35 .34 .35
Contra F1 .73 .7 .71

Contra Precision .83 .82 .83
Contra Recall .64 .62 .62
 

Using this information in a symbolic system 
forms a fundamental neural-symbolic integration 
albeit no neural networks were used. Obviously, 
neural network based C3 classifiers can be used in the 
same fashion. 

In all previous experiments, the trainer performed 
3-fold cross-validation, which is C3’s default 
configuration. An additional round of 
experimentation was performed using 10-fold cross-
validation. Switching to 10-fold cross-validation 
directly boosted effectiveness for the best model 
during training (see table 3). On the other hand, the 
effectiveness when applying this model to the 
remaining topics was reduced in all effectiveness 
measures for up to 9%. This indicates that the 10-fold 
cross-validated models are over-fitted to the initial 
topics when compared to the models generated by 3-
fold cross-validation. 
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We then performed multiple experiments, 
creating a model based on the UKP corpus and 
evaluating it with the ACAM and vice versa (see table 
4). As expected, the effectiveness measures for 
evaluating the UKP based model on the UKP corpus 
(during 3-fold cross-validation) were better than 
evaluating the UKP model on the ACAM corpus or 
vice versa. Interestingly, whenever the ACAM corpus 
is involved (either as source for the model or as 
evaluation set) the detection of contra arguments is 
more effective than that of pro arguments. It is 
noteworthy, that the UKP corpus is inherently more 
difficult than the ACAM. It contains shorter 
arguments that are only single sentences, whereas the 
ACAM contained longer debate points. Stab et al. 
reported F1 values of .67 in their experiments using 
an attention based neural network for the task (Stab et 
al., 2018).  

Even though our system is slightly less effective, 
it can be adapted to different tasks in a rapid fashion. 
It also allows for an easily understandable 
explanation of its results. This easy explanation aids 
us in the construction of the pro- and contra argument 
ontology within the RecomRatio project. Therefore 
we did not benchmark any other approaches used in 
literature with our datasets.  

For comparison: The winner of the Semeval 16 
stance detection challenge produced .68 F1 results 
while the average was .62 when working with 
previously seen topics (Mohammad et al., 2016). 
When detecting stance for a previously unseen topic, 
the winner of the same challenge had .56 F1 with the 
competition average at .37. Even though different 
datasets were used, this means that our results are 
comparable to those reported in literature.  

Table 3: Effectiveness for 10-fold cross-validation. 

Topic 1 to 10 1 to 20 1 to 40
Arguments 202 449 813

Terms: 84 157 260
F1: .95 .91 .96

Table 4: Experiments with different corpora. 

Experiment 
UKP on 
ACAM 

UKP on 
UKP 

ACAM 
on UKP

F1 .48 .6 .46
Precision .48 .6 .46

Recall .48 .6 .46
Pro F1 .25 .64 .25

Pro Precision .16 .62 .55
Pro Recall .52 .65 .16
Contra F1 .6 .56 .58

Contra Precision .83 .57 .44
Contra Recall .47 .55 .83

5 DISCUSSION 

Between our experiments, we manually inspected the 
model’s controlled vocabulary for every learned 
topic. This was feasible for the first 40 topics of 
ACAM containing up to 260 terms. The system 
identified over 1000 terms per topic in the UKP 
model, making manual inspection impracticable. 

Besides the afore mentioned topic specific terms, 
the model also contained more general terms such as 
incredibly, uncomfortable, radical, death, stress, 
knowledge, greedy, tragedy, concern, racist, cruel, 
presents, reason, justice, pleasure, and punishment. 

These more general terms often carry a specific 
sentiment. Especially a negative sentiment is more 
easily identifiable. We think that this is the reason 
why the recognition of contra arguments tends to 
outperform the recognition of pro arguments in 
ACAM. 

These terms and our experimental results support 
our hypothesis of general and topic specific terms as 
features. When evaluating the classifier with 
arguments about the same topic or topic collection it 
was trained on, high effectiveness results were 
observed (>.85 F1 for ACAM, >.6 F1 for UKP). 
When switching to different topics, effectiveness is 
decreased (>.57 F1 for ACAM, >.46 F1 for UKP). 

Argument specificity and therefore the 
intersections of F(n) and F(m) for topics n and m can 
be seen as flexible because certain terms can have 
completely different meanings in other topics or the 
topics have overlapping concerns. In any case, the 
machine learned model, in our classifier the 
hyperplanes, should compensate for this, e.g. by 
being under or above most values for this dimension. 
An example for this is the term drug. It is entirely 
different in the context of medical treatment than in 
the context of policies on drug abuse. 

In order to further support our thesis, we 
generated models on other topic blocks of ACAM 
(41-80, 81-120, and 121-160). We then evaluated 
these against the remaining topic blocks obtaining 
similar results to those shown in table 2. Like before, 
we manually assessed the controlled vocabularies 
generated by these trainers to identify terms that 
occur in more than one of them. 

The set of terms that occur in the controlled 
vocabularies of different topic mixes (e.g. terms 
identified in topics 1-40, 41-80 and 81-120) contains 
many more general terms like local, prisoners, test, 
information, money, team, death, love, workers, 
women, rights, knowledge, child, gifts, unhealthy, 
exists, over, uncomfortable, power, students, and war. 
It also contains some words indicating who is 
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referring to what like my, I, he, your, or she. Some of 
the terms seem to be specific to more than one topic. 
Like the afore mentioned drugs or the term marriage 
which can be seen as literal or proverbial. 

6 OUTLOOK 

Our contribution is three-fold: We firstly developed a 
classifier for argument-stance recognition, which is 
explainable by the features it uses. As such, it serves 
as basis for creating an ontology of argument stance 
features that aids in the construction of the overall 
argument ontology of the RecomRatio project. We 
secondly proposed our thesis of general and topic 
specific features, which is supported by our 
experiments. These can be of further use to structure 
the argument stance feature ontology and connect it 
to topic specific ontologies. Such integrated topic 
specific argument stance ontologies form the basis for 
explainability in a non-semantic application. 

Secondarily, the short development time needed 
to generate these results proves the versatility of the 
C3 microservices and its utilized trainer/athlete 
pattern, which we see as our third contribution. 
Neural-symbolic integrated applications are easy to 
develop if one only has to focus on the symbolic part 
as the machine learning based aspect is encapsulated 
behind an easy to use API that does not require any 
hyper-parameter tuning to produce useful results. 
This is includes the design philosophy to 
automatically generate model parameters, e.g. the 
category weights and controlled vocabulary.  

In future experiments, we are aiming to precisely 
identify general and topic specific argument stance 
features for the specific knowledge domains of our 
research project. This means, that we aim to extend 
existing medical ontologies with an explainability-
dimension that specifies, whether concepts are 
features for certain classification algorithm concepts. 
These algorithms are in turn linked to explanation 
templates and the corpora from which their model 
was generated. To the best of our knowledge, existing 
medical ontologies lack this explainability angle, 
which we identify as important extension.  

Based on these ontologies, additional lexicon 
based classifiers including modifier terms can be 
created and put into a committee with the proposed 
TFIDF-SVM classifier.  

As the new lexicon-based system as well as our 
existing system are explainable, the committee 
decision can also be explained by referring to the 
individual classifications and mentioning, how well 
these classifiers performed in evaluations.  

Additionally, evaluation results for the individual 
mutually exclusive classes can be taken into account 
when computing combined classification decisions. 

We also intent to generalize our approach to 
determine arguments from non-arguments as we 
expect that there are also sets of general and topic 
specific words for this task. Comparing them to those 
identified in argument stance recognition can further 
aid in developing a feature ontology, capable of not 
only explaining why something is considered pro- or 
contra but also why it is an argument at all. 
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