
Integrity Issues for IoT: From Experiment to Classification

Introducing Integrity Probes

Pascal Urien
Telecom ParisTech, 23 Avenue d’Italie, Paris, France

Keywords: Security, Trust, Internet of Things, Software Update.

Abstract: This paper presents a tentative classification of IoT devices. The goal is to provide a qualitative estimation of

risks induced by device hardware and software resources involved in firmware update operations. We present

technical features available in existing devices, and comment associated threats. From this analysis we extract

five basic security attributes: one time programmable memory, firmware downloader, secure firmware

downloader, tamper resistant hardware, and diversified keys. From these parameters we deduce and comment

six security classes. We describe an innovative integrity probe working with commercial programmers, of

which goal is to verify a bootloader integrity.

1 INTRODUCTION

According to a report (SIA and SRC, 2015) from the

Semiconductor Industry Association (SIA) and the

Semiconductor Research Corporation (SRC), the

Internet of Things (IoT) could involve trillions of

devices by 2030. In this context "security and privacy

are two of the biggest challenges for future systems".

The paper (Ronen and Shamir, 2016) introduces "a

new taxonomy of attacks on IoT devices, which is

based on how the attacker deviates feature from their

official functionality". It defines four types of

attacking behavior, 1) Ignoring the functionality, 2)

Reducing the functionality, 3) Misusing the

functionality, 4) Extending the functionality. This

raises a critical issue about the trust level needed by

IoT devices, and how to get some integrity insurance

for embedded firmware. We propose a classification

model based on three software properties (bootloader,

secure bootloader, and diversified keys) and two

physical characteristics: OTP (One Time

Programmable) memory, and tamper resistance. This

approach results from experiments or analysis

performed on multiple processors. We also introduce

the integrity probe (ITP) concept, a firmware

downloaded thanks to bootloader, of which goal is to

verify the bootloader integrity.

The paper is constructed according to the

following outline. Section 2 presents IoT architecture

in our context; it introduces device programming

protocols, bootloader, device firmware upgrade,

secure bootloader and tamper resistant requirements.

Section 3 comments some processors used in IoT

systems and they update mechanisms; it details

FLASH controller, Bluetooth SoC, Wi-Fi SoC, and

AVR processors. Section 4 describes our security

classification proposal dealing with six classes, based

on five security attributes OTP, firmware loader,

secure firmware loader, tamper resistant hardware,

and diversified keys. Section 5 introduces integrity

probes tested with commercial SPI programmer

tokens. Finally section 6 concludes this paper.

2 IoT DEVICE ARCHITECTURE

This section attempts to define the hardware structure

of IoT devices addressed by this paper.

Figure 1: IoT device architecture.

An object is built (see figure 1) around a micro-

controller (that we call Main Processor, MP)

including RAM memory 1-10KB), non volatile

memory (such as FLASH 10-100KB), and optional

ROM (10-100KB). An optional second processor

(Communication Processor, CP) provides

communication resources (Wi-Fi, Bluetooth),

344
Urien, P.
Integrity Issues for IoT: From Experiment to Classification Introducing Integrity Probes.
DOI: 10.5220/0007746903440350
In Proceedings of the 4th International Conference on Internet of Things, Big Data and Security (IoTBDS 2019), pages 344-350
ISBN: 978-989-758-369-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

according to SoC (System on Chip) technology. When

used, it is controlled by the MP entity.

Internal memories programming can be

performed by several physical ways including JTAG

(Joint Test Action Group) interface, Parallel

Programming (PP, a set of dedicated pins), or Serial

Peripheral Interface (SPI).

SPI is a de facto standard widely used by the IoT

industry. The SPI bus comprises four logic signals:

SCLK serial clock, MOSI master out slave in, MISO

master in slave out, SS slave select. Normalized SPI

connectors include ground and power feeding; they

have 6 or 10 pins. Serial SPI commands are used to

erase, read or write memory content and special

security registers such as fuse or locks as detail in

section 3.4.

Figure 2: The Atmel free Flip Software is used to update

AVR processor, embedding a bootloader (usually referred

as DFU) implementing the DFU protocol.

In order to enable easy remote software update,

bootloader firmwares are inserted during

manufactory process. A bootloader is a command

interpreter, typically working over a communication

link (USB, UART...), used to store data in non

volatile memory. Numerous open bootloaders are

available, for example those belonging to the STK500

family (an ATMEL protocol) used for AVR (see

section 3.4) processors, which are enhanced versions

of the software designed in 2003 by Jason P. Kyle.

The popular AVRDUDE (AVR

Downloader/UploaDEr) open software is a utility to

download/upload/manipulate the non volatile

memory of AVR microcontrollers. It is compatible

with STK500 bootloaders, and some SPI

programmers. In section 5.1 we introduce USBasp, an

open hardware/software SPI programmer.

DFU (Device Firmware Upgrade) is a protocol

supported by Atmel bootloaders, usually referred as

DFU firmware. After a short circuit between the reset

pin and the ground, DFU is activated, and it becomes

possible to download a new firmware (see figure 2).

Some open versions have been developed, for

example the LUFA Library (2010) written by Dean

Camera.

It is obviously possible to add security features to

bootloader, typically to check the software update

authenticity. Firmware encryption can be needed for

intellectual property requirements. Public

asymmetric keys or symmetric keys are generally

used for information authentication (signature

checking), or firmware encryption. In that case

tamper resistance could be an important requirement,

since malware may be inserted in non genuine

firmware, or cryptographic keys can be recovered

from side channel attacks.

3 SOME IoT PROCESSORS

3.1 Flash Controller

Popular USB flash drives are built over FLASH

controller chips (see figure 3), which comprise a CPU

(8051 like), ROM, and RAM. Their detailed

specifications are usually not publicly available.

Figure 3: Structure of FLASH Controller PS2251-33 from

the Phison Electronics Corporation. A bootloader is stored

in the chip ROM.

The ROM stores a bootloader or a part of it when

an external ROM is available. Thanks to this

component and to USB connectivity, the drive

firmware is downloaded in FLASH. Dedicated

websites (flashboot.ru, www.usbdev.ru...) manage

FLASH drive databases bound to controller models;

they provide firmware images and recovery tools

required for their upload. The firmware may include

security features (Jago, 2018), for example FLASH

encryption bound to user’s password. Nevertheless

Integrity Issues for IoT: From Experiment to Classification Introducing Integrity Probes

345

there is generally no security mechanism for the

firmware upload. The paper (Nohl and KriBler and

Lell, 2014) demonstrated attacks against FLASH

drives using chips like the PS2251-33 (illustrated by

figure 3); the main idea is to upload modified

firmware providing USB profiles such as keyboard or

network interface (Wilson, 2014).

3.2 HC05 and SoC CSR BC417143

Figure 4: The CSR BC417143 SoC.

The BlueCoreTM-External is a single chip radio

and baseband IC (see figure 4) for Bluetooth 2.4 GHz

systems. It interfaces up to 8Mbit of external FLASH

memory. It is manufactured by CSR (Cambridge

Silicon Radio) a multinational fabless semiconductor

company acquired by Qualcomm in 2015.

Figure 5: HC05 Bluetooth dongle (upper left) and hardware

adapter needed to interface the BlueStack for Win32 PC.

The CSR Bluetooth software stack provides

Bluetooth features, including in particular a

RFCOMM profile.

The SoC (see figure 4) is equipped with 48 KB

RAM, but it doesn’t include ROM. According to its

datasheet, the external FLASH is programmed via a

serial interface (SPI) using 16-bit addresses and 16-

bit words. Updates may be performed when the

internal processor is running or is stopped. A DFU

(Device Firmware Upgrade) bootloader must be

loaded into the FLASH device, before the UART or

USB functional interfaces can be used. This initial

FLASH programming is done via the SPI interface. A

dedicated programmer (USB to SPI) performs this

operation, driven from BlueSuite proprietary software

stack (illustrated by figure 6). Nevertheless a SHIM

library was designed by (Willem, 2016), which in

conjunction with other open tools, enables to use

BlueSuite without dedicated adapter.

HC05/06 devices are popular Bluetooth dongles

based on BC417143 SoC with 8 Mbits FLASH. It is

possible to solder wires on the four SPI pins (CLK,

MOSI, MISO, CSB, see figure 5) and afterwards to

dump or download the embedded firmware.

Figure 6: The Blue Flash Software version 2.62 may upload

or download the HC05 Bluetooth dongle firmware.

3.3 SoC ESP8266

Figure 7: The ESP8266 SoC internal structure.

The ESP8266 (see figure 7) is a popular low cost

Wi-Fi SoC, manufactured by Espressif Systems. It is

based on a 32-bit RISC microprocessor, from the

Tensilica Company, running at 80 MHz. No detailed

specifications are publicly available. Nevertheless

some WEB sites (Filippov, 2015) manage

information addressing the physical memory layout.

The SoC embeds a 64KB ROM, a set of RAMs (about

80KB, including instruction cache), 80KB of DRAM

for user data, and FLASH (up to 16MB). Some

ESP8266 support "secure boot", i.e. the firmware

stored in the FLASH is encrypted by an AES key,

burnt in one time programmable (i.e. OTP) fuses.

The ROM embeds a bootloader associated to an

UART (Gratton, 2018), which enables firmware

USB
To

PC

IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

346

downloading in external FLASH, thanks to a

dedicated tool, illustrated by figure 8.

Figure 8: The ESP8266 firmware downloading tool.

The Espressif Systems Company provides a free

non OS software development kit (NONOS SDK)

whose code comprises compiled libraries (in

particular TCP/IP stack) and open sources.

Nevertheless most of market modules are

manufactured by a third-party Ai-Thinker and are

referred as "ESP-xx" product. Figure 8 illustrates the

downloading of such SDK combined with a firmware

(providing AT-Commands) from Ai-Thinker.

3.4 Atmel AVR

AVR is a family of microcontrollers developed the by

the Atmel Company, acquired by Microchip

Technology in 2016. It uses (see figure 9) on-chip

FLASH memory for program storage; RAM and

EEPROM resources are also provided for user’s data.

Because no ROM is available for code storage (see

figure 9), such electronic chips provides computing

environment that we refer as "Bare Metal" because

FLASH memory contents can be fully erased.

The security of AVR chips is controlled by two

kinds of registers: locks and fuses (see figure 10).

Locks are reset thanks to commands sent over

programming interfaces such as SPI. They manage

the FLASH memory access policy (read and write

operations), the fuses security policy (read and write
policy), the bootloader optional use and its available

sizes. Fuses are not erased by the SPI reset command;

Figure 9: The ATMEGA8 AVR includes 8KB FLASH, up

to 2KB bootloader, 1KB RAM, 512B EEPROM. The chip

programming is managed through an SPI interface.

they are modified by dedicated commands. They

control some programming features such as RESET

pin or SPI protocol use, and other physical parameters

dealing with clock or logical voltages.

Because AVR chips have no ROM it is not

possible to permanently disable FLASH writing

operations. In other words it is always possible to

erase and upload code in FLASH memory.

Figure 10: AVR Fuses and Locks.

4 SECURITY CLASSES

Based on the previous observations, we propose

security classes for IoT devices. The goal is to

provide a qualitative estimation of risks induced by

firmware remote updates according to device logical

and hardware security resources. We identify five

security attributes leading to six classes of IoT

devices including or not OTP (One Time

Programming) memory indicated by the "+" suffix.

Integrity Issues for IoT: From Experiment to Classification Introducing Integrity Probes

347

4.1 Security Attributes

The five security attributes are the following:

4.1.1 One Time Programming (OTP)

The OTP availability means that a device cannot be

fully reprogrammed, and have some permanent code

and data such as cryptographic keys. When OTP is

missing we qualify the device of "Bare Metal".

4.1.2 Firmware Loader (FLD)

A firmware loader is mainly a command interpreter

that enables logical/remote firmware update. It avoids

the use of physical procedures such as Serial

Programming or Parallel Programming. It is stored

in non volatile memory, either erasable or not.

4.1.3 Secure Firmware Loader (FLD-SEC)

A secure bootloader checks the authenticity and

integrity of firmware updates by cryptographic

means. This implies the use of symmetric secret keys,

asymmetric private/public keys associated to

certificates.

4.1.4 Tamper Resistant Key (TRT-KEY)

Cryptographic keys can be recovered by side-channel

attacks. A tamper resistant computing environment

implements hardware and software countermeasures

that avoid these threats. For example bank cards

include secure elements implementing such physical

and logical features.

4.1.5 Diversified Key (DIV-KEY)

The use of diversified secret keys limits the side

channel attack scope to a single object. The lack of

tamper resistant computing and the use of single

secret shared by multiple nodes may lead to major

security threats. An attack against smart bulbs was

detailed in the paper (Ronen and O'Flynn and Shamir

and Weingarten, 2016), in which a single symmetric

key shared by multiple bulbs and used for secure

uploading, was recovered by a side channel attack.

4.2 Security Classes

The figure 10 illustrates our proposed classification,

according to a tree structure dealing with the five

security attributes previously defined.

The availability of OTP is indicated by the "+"

suffix.

Figure 11: Definition of security classes.

Class0-0+ devices have no firmware loader, so they

can only be programmed by physical means, i.e.

dedicated protocols and physical ports.

Class1-1+ devices have unsecure firmware

loaders, located either in FLASH or OTP. No

cryptographic keys are needed; firmware can be

updated during the device lifetime by logical means

dealing with various hardware interfaces such as USB

ports or serial links.

Class2-2+ devices use secure bootloader, without

tamper resistant features and no diversified keys. A

single key is shared by devices. It can be a symmetric

one (i.e. AES) like in smart bulbs from Philips, or an

asymmetric one for example a public key needed to

check the signature of software updates.

Classe3-3+ devices use secure bootloader,

without tamper resistant features, but with diversified

keys. This use case typically target devices storing

asymmetric AES keys.

Class4-4+ devices deal with secure bootloader,

based on tamper resistant hardware, but no diversified

keys. This means that it is not possible (at least very

difficult) to modify the key (for example a public key

used for software update authentication) or to recover

a symmetric key value thanks to side channel attacks.

Class5-5+ devices comprise a secure bootloader

with tamper resistant hardware and diversified keys.

It enables high security IoT frameworks, in which

software updates are encrypted with symmetric

(AES) key bound to device serial number.

4.3 Example

AVR micro-controller units (MCU) without

bootloader belong to Class0.

AVR micro-controller units (MCU) with

bootloader (for example the "Arduino" family)

belong to Class1.

USB flash drives embedding ROM and

bootloader belong to Class1+.

Philips hue smart bulbs belong to Class2; they

embed secure bootloader with a shared single

symmetric key.

IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

348

The IETF working group SUIT (Software

Updates for Internet of Things) target Class2+

devices embedding secure bootloader with public

key, and Class3+ devices supporting bootloader and

diversified symmetric key.

Class4+ is a tamper resistant enhancement of

Class2+, it could address devices compatible with

SUIT of which public key cannot be modified.

Highly secure devices such as bank cards belong

to Class5+.

5 USECASE: INTEGRITY PROBE

We believe that is not possible to check the firmware

integrity for Class0 devices. Nevertheless a possible

alternative is to re-program the device if a malware is

suspected.

Another direction is to flash a bootloader in the

device, which according to our approach, is labelled

as Class1 (unsecure bootloader without OTP).

Thereafter dedicated software, referred as integrity

probe (ITP) is downloaded. ITP verifies the

bootloader integrity thanks to algorithms based on

one way function, whose result cannot be predict by

malware without the knowledge of keys used to

compute memory content hashes in a pseudo random

way.

5.1 About USBASP

USBasp is a USB in-circuit programmer for Atmel

AVR controllers, designed by Thomas Fischl (2011).

It is based on ATMega8 processor, illustrated by

figure 9. It uses a firmware-only USB driver, and is

compatible with open framework such as ARVDUDE

(AVR Downloader/UploaDEr), libusb, and libusbK.

An open firmware written by Thomas Fischl

(2011) is freely available for these devices, as

previously mentioned, it works with AVRDUDE,

used for example by the Arduino IDE. USBasp tokens

can be bought from numerous vendors, at very low

prices (less than 5$).
Because SPI flashers are used to program devices,

their firmware integrity is a major security issue.
Furthermore their firmware can be easily modified
during the delivery process. In the next section we
develop the early concept of an innovative integrity
probe, of which goal is to verify the bootloader
integrity, before the loading of the ISP programmer
firmware. More details are available in (Urien, 2019).

Figure 12: Schematics of the open USBasp SPI

programmer. It is possible to program the device with a

bootloader.

5.2 Open DFU for USBasp

The blog (Thomson, 2011) details the design of open

Device Firmware Upgrade (DFU) software dedicated

to commercial USBasp tokens. Thanks to this DFU

the USBasp token belongs to Class1, previously

defined. The DFU is activated thanks to a short circuit

between ground and the reset pin of the ATMEGA8

processor; a slot of 5 seconds is thereafter available

for firmware upload, handled by the AVRDUDE

software. The DFU code size is 2KB. Commercial

USBasp tokens can be erased and re-flashed by such

DFU. This operation may be performed via the free

Atmel Studio software, which supports a device

programming tool working with the SPI protocol.

5.3 Integrity Probe

An integrity probe (ITP) is software whose goal is to

check the bootloader (or DFU) integrity. It is

downloaded in the processor memory by the

bootloader (or DFU) firmware. The basic ITP concept

is to hash the code of both the DFU and ITP, and the

data stored in the processor memories, in a pseudo

random way. In our case the DFU size is 2KB and the

ITP size is 6KB. The ATMEGA8 has 1KB RAM and

512B EEPROM; so the total memory amount is

9,5KB. Memories are hashed in a pseudo random

order, according to a permutation (P) working in the

address space (A = [0, 9728[)

iCode= SHA3(A(0) || A(1) ||...|| A(i) ||...|| A(9727))

Integrity Issues for IoT: From Experiment to Classification Introducing Integrity Probes

349

Unused memory locations are filled with pseudo

random values, computed from a pseudo random

number generator (PRNG). The code size of the

SHA3 digest function is about 3KB. The less

significant part (2 bytes, an integer ranging between

0 et 65635) of the integrity code (IC, 32 bytes) is

displayed to the user, thanks to LEDs blinking

according to each decimal digit value (up to 5 digits).

Depending of the USBasp hardware the final digest

value (32 bytes), including the computation time

(ICT) may be read via an UART. The integrity probe

runs in about 10,000ms. The execution time is also

included in the integrity measurement process.

6 CONCLUSIONS

In this paper we propose a classification of IoT

devices based on five security attributes. We also

introduce the idea of integrity probes for Class1

devices that embeds bootloader without security or

OTP. We hope that this approach could lead to a

better security characterisation of industrial IoT

devices.

REFERENCES

SIA, SRC, 2015, "Rebooting the IT Revolution: A Call to

Action", Semiconductor Industry Association /

Semiconductor Research Corporation report.

Ronen, E., Shamir, A., 2016. "Extended Functionality

Attacks on IoT Devices: The Case of Smart Lights",

2016 IEEE European Symposium on Security and

Privacy (EuroS&P).

Nohl, K., KriBler, S., Lell, J., 2014. "BadUSB - On

Accessories that Turn Evil", Blackhat 2014 USA.

Jago, D., 2018, "Security analysis of USB drive", Master’s

thesis report.

Wilson, B., 2014, "Phison 2251-03 (2303) Custom

Firmware & Existing Firmware Patches (BadUSB)",

https://github.com/brandonlw/Psychson.

Filippov, M., 2015, ESP8266 Community Forum,

"Memory Map", https://github.com/esp8266/esp8266-

wiki/wiki/Memory-Map, seen January 2019

Gratton, A., 2018, ESP8266 Community Forum, "Serial

Protocol", https://github.com/espressif/

esptool/wiki/Serial-Protocol, seen January 2019.

Ronen, E, O'Flynn, C., Shamir, A; Weingarten, A., 2016,

"IoT Goes Nuclear: Creating a ZigBee Chain

Reaction", Cryptology ePrint Archive, Report

2016/1047.

Thomson, J., 2011, "Project Ouroboros - Reflashing A

Betemcu USBasp Programmer", Jonathan Thomson’s

web journal, https://jethomson.wordpress.com/

2011/08/18/project-ouroboros-reflashing-a-betemcu-

usbasp-programmer/, seen January 2019.

Willem, F., 2016, CSR BlueCore USB SPI

programmer/debugger, https://github.com/lorf/csr-spi-

ftdi, seen January 2019.

Urien, P., 2019," Integrity Probe: Using Programmer as

Root Of Trust For Bare Metal Blockchain Crypto

Terminal", Fifth International Conference On Mobile

And Secure Services, MobiSecServ2019.

IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

350

