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Abstract: Target data for tactical moving objects are streaming data collected in real time via radar, sonar, and other 
sensors. A system of continuous complex event query with dynamic rule definitions and high performance is 
needed to process that target data. We develop a continuous complex event query system with rule-based 
layered architecture. A continuous processing flow is decomposed into four modules hierarchically, which 
are event filtering, event capture, Continuous Queries (CQ) and Complex Event Processing (CEP). Each 
module has its responsibility but works together for a completed continuous processing flow. This paper 
shows that it is possible to dynamically insert, update, delete and search rule specifications of each layered 
modules through the decomposition of the whole system. Many rules are registered in the system for 
processing input event data continuously in real time. To improve the performance of getting matching CQs 
for each incoming event, CQ index is developed. Finally, experimentations and performance evaluations are 
carried out. 

1 INTRODUCTION 

Different from traditional database management 
system, data stream management system (DSMS) 
processes the input stream data then produces the 
output results continuously in real time. A data stream 
is a sequence of tuples that are generated 
continuously and incrementally over time with no 
end. Many applications process high volumes of 
streaming data.  

If in the following situations, it should be 
considered to use DSMS: (1) Too large amounts of 
interesting data to store in hard disks. For example, 
data from sensor networks with a massive number of 
measurement points. (2) Require real-time analysis 
and feedbacks. In a DSMS, the processing model is 
push-based or data-driven. It evaluates persistent 
queries on transient, append-only data and outputs 
results automatically if incoming data meet query 
conditions. There is a trade-off between latency and 
accuracy, because of processing single-pass stream 
data in main memory.  

Our target data from tactical moving objects are 
stream data collected in real time via radar, sonar, and 
other sensors. The data have the following 
characteristics: (1) Temporal generating and dynamic 

changing, (2) Detected data only contains information 
on simple events. The data might be duplicated, 
missing, outlier and so on. (3) Large volume from a 
massive number of measurement points. The target 
data should be processed to detect emergencies within 
1 second. Our motivation is to analyze real-time 
situations and make alert decisions of tactical moving 
objects. We develop a DSMS with the ability of 
complex event query over the target data. By using 
the system, we query complex events and detect 
potential threats in real time. 

 

  

Figure 1: Scenarios of fighter invasion and detection by 
radars and sonars. 

From inputting source data to performing a 
complex event query, the system goes through a 
series of processing procedures, including data 
filtering, data adapting, event tracking, meaning 
refinement, continuous queries, and complex event 
queries. The system could contain hundreds of given 
rule specifications and runs based on them. It should 
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support adding, updating and deleting rule 
specifications dynamically without restarting the 
whole system. Several rules might work together for 
a complete processing flow. So how to make it easy 
and flexible to add, update or delete a rule without 
affecting other rules? Finding a flexible and dynamic 
way to define, organize and manage the rule 
specifications is one of the motivations in this paper.  

To find out matching CQs for an arriving event, a 
naïve approach is to check conditions of each CQ one 
by one. It is simple but time-consuming. In our 
system, we build a CQ index to solve this issue. 

In conclusion, our contributions in this paper are: 
 To propose a layered rule-based architecture for 

complex event queries.  
 To define rule specifications based on the 

decomposition of the layered architecture. In 
order to make it flexible and dynamic to define, 
add, update and delete a rule specification. 

 To develop a CQ index by using R*-tree to solve 
the performance issue of CQ matching. 

The rest of this paper is organized as follows. Section 
2 presents an event processing flow. Section 3 
presents rule definitions. Section 4 presents the CQ 
index. Section 5 presents experiment and section 6 
shows results of performance evaluation. Section 7 
presents related work. Finally, we conclude the paper 
in section 8. 

2 EVENT PROCESSING FLOW 

 

Figure 2: An example of a complex event processing flow. 

Before the explanation of event processing flow, let 
us take an example shown in Figure 2. First, we filter 
out duplicated and unusual input stream data. Second, 
we track each data and assign a new meaning to them. 
Here, if a data whose field IFF equals to “Ally”, it 
belongs to “allyTarget”, else belongs to 
“enemyTarget”. Next, we perform CQ to count the 
data of “enemyTarget” based on condition 
“speed>150 & elevation > 300”. Finally, we perform 
CEP to get a complex event “top_threat_level_2”. 

The data from input to output goes through a 
continuous processing flow. We decompose the flow 
into four sub-modules to make the flow clear and 
simplify rule definitions. A rule processing flow goes 
through four steps as follows: 

Step 1: Filter out duplicated and unusual incoming 
data. 

Step 2: Capture and track events to assign new 
meanings to them.  

Step 3: Continuous query events using operators 
based on query conditions and window. The input 
data is from step 2. 

Step 4: Perform complex event queries over the input 
simple events from step 2 or step 3. Its results can 
trigger pre-defined response actions. 

In Figure 3, we show the architecture and event 
processing flow of our system. There are four 
layers/modules, and each has its own registered rules 
and output results. They connect together by their 
output results to form a complete flow of continuous 
complex event queries. 
 

 

Figure 3: Layered architecture on continuous complex 
event queries. 
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Each module has its responsibilities. Event 
Module is responsible for filtering incoming raw data 
and adapting them to simple events. Event Capture 
Module is responsible for tracking and refining the 
simple events from the Event Module. For example, 
as for simple event that meets the condition 
speed>150km/s & elevation>100m, we could assign 
it new meaning: it is an event of a flying target. CQ 
Module is responsible for continuous queries, 
consisting of sliding/tumble windows, 
stateful/stateless operators, and query expressions 
and so on. CEP module is responsible for complex 
event processing. It derives complex events from 
multiple simple events. The module takes the output 
results of the Event Capture Module and CQ Module 
as input data, then performs rule matching and 
responses actions. 

3 RULE-BASED STREAM DATA 
PROCESSING 

In the previous section, we talk about layered 
architecture. The system is decomposed into four 
modules. Each module has its own registered rules. 
Users tell the system what to do through inputting 
rules for each module. In this section, we talk about 
how to define rule specifications. 

3.1 Rule Format of Event Filtering 

The rule of this module is to filter out duplicated and 
unusual data. We define the rule format of the Event 
Module as follows. IF clause defines the 
unduplicated fields and not unusual fields for input 
data. It is the filter condition of this rule. FROM 
clause defines the DDS topic name. THEN clause 
defines the name of output results that satisfy the filter 
conditions. 
 

IF <not duplicate(target field)*> AND <not 
unusual(target field)*> 
FROM <DDS Topic> 
THEN <target object> 
 

Example: filter out the data if it has duplicated id or 
an unusual value of speed field (Figure 4).  
 

 

Figure 4: Example of event filtering. 

IF not duplicate(id) AND not unusual(speed) 
FROM moving_object 
THEN target_object 

3.2 Rule Format of Event Capture 

Event Capture Module is responsible for tracking and 
refining the simple events from the Event Module. We 
define the rule format of the Event Capture Module 
as follows. FROM clause defines the input target 
object from the Event Module. If the object satisfies 
the conditions in IF clause, it will be assigned a new 
meaning.   
 

IF <condition*> 
FROM <target object> 
THEN <target object with new meaning> 
 

Example: tracking enemy target objects if data meets 
the condition “IFF=’unknown’ OR IFF=’enemy’”. 
(IFF, Identification Friend or Foe) (Figure 5) 
 

 

Figure 5: An example of event capture.  

IF IFF=’unknown’ OR IFF=’enemy’ 
FROM moving_object 
THEN enemy_object 

3.3 Rule Format of CQ 

CQ Module is responsible for continuous queries. A 
CQ rule consists of query conditions, input data, a 
window, object field names for projection and 
operators. A window (sliding window or tumble 
window) buffers data for supporting aggregate 
operations, defined in the WINDOW clause. 
 

IF <condition*> 
FROM <target object from Event Capture Module > 
WINDOW <length, trigger> 
THEN <field name for projection*, operator*> 
 

Example: query the count of flying event belonging 
to an enemy in the last 1 second and output the results 
every 1 second. (Figure 6) 
 

 

Figure 6: An example of CQ. 
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IF speed>150km/s AND elevation>100m 
FROM  enemy_object 
WINDOW  length=1000ms, trigger=1000ms 
THEN count 

3.4 Rule Format of CEP 

We define the rule of CEP to indicate how to denote 
a complex event. To derive a complex event from 
multiple simple events, it is necessary to analyze the 
relationships among different types of simple events. 
The format of CEP rule is almost the same as CQ rule. 
However, the input target data defined in the FROM 
clause is from the Event Capture Module or CQ 
Module. We define it as follows: 
 

IF <condition*> 
FROM <objects from Event Capture or CQ Module> 
WINDOW <length, trigger> 
THEN <complex event> 
 

Example: derive complex event top_threat_level_2 
if simple events approachingAirplane and 
approachingMissile both exist in the last 2 seconds. 
Perform the query every 2 seconds (Figure 7).  
 

 

Figure 7: An example of a complex event query. 

IF exist(approachingAirplane)  
AND exist(approachingMissile) 

FROM  approachingAirplane, approachingMissile 
WINDOW length=2000ms, trigger=2000ms 
THEN top_threat_level_2 

4 CQ INDEX 

For an incoming event, we need to find out its 
matching CQs based on the CQ conditions. Because 
only the matching CQs should process the event. We 
call the procedure as CQ stabbing (Figure 8). 
 

 

Figure 8: CQ stabbing for incoming events. 

The time complexity is O(n) if we make CQ 
stabbing by checking conditions of each CQ one by 
one. So we are thinking whether there is a way to get 
matching CQs directly based on the field values of the 
event and condition values in each CQ. To achieve 
that, we use R*-tree as CQ index. 

There are three steps to build and use a CQ index 
(Figure 9): 
 Extract values provided by expressions of CQ. 

Use the values to build or update the R*-tree 
index. 

 For an incoming event, use its values to search in 
the index, and get candidate CQs.  

 Not all candidate CQs from step 2 match the 
event. So next, check their conditions one by one 
to find out the final matching CQs.  

 

 

Figure 9: Filtering and refinement strategy of CQ index. 

R*-tree could be a multi-dimensions index. Two 
examples are shown in Figure 10. In the first sub-
figure, the index only stores values of two fields in 
two dimensions, speed, and elevation. For example, a 
CQ whose condition is “30 < speed < 50 & 10 < 
elevation < 30” can store in the index. One rectangle 
indicates one CQ, while one point in the sub-figure 
indicates one incoming event. Therefore, for an 
arriving event, to get the candidate CQs, it only needs 
to find out all rectangles that contain the point. It is 
almost the same if the index is in three dimensions, 
which is shown in sub-figure 2 as an example.  
 

COMPLEXIS 2019 - 4th International Conference on Complexity, Future Information Systems and Risk

70



 

Figure 10: Examples for R*-tree index with (1) two 
dimensions, (2) three dimensions. 

The data stored in an R*-tree are all points or all 
regions. The data type of each dimension in an R*-
tree is the same. However, some predicates in a CQ 
condition includes different data types. For example, 
the condition “IFF=’enemy’ AND 30<speed<100 
AND elevation < 10” includes string and integer two 
data types. In such a case, the shapes in the index are 
not rectangles or cuboids. It is not suitable to add the 
CQ condition to the index directly. We take a strategy 
to solve this problem without modifying the 
implementation of R*-tree, which is described in the 
next section. 

5 IMPLEMENTATION FOR 
SUPPORTING REAL-TIME 
PROCESSING 

We have already implemented a prototype system in 
C++ program language, running in a single computer 
with Windows OS. We use a flexible structure to 
organize processing flow among continuous 
processing (CP) units. A CP could be a CEP, CQ, 
event capture processing or event filtering. Two CPs 
connect through a queue (Figure 11). The whole 
graph is a directed acyclic graph (DAG). 

How to maintain the data in each queue shown in 
Figure 11 on the right? Our strategy is consuming the 
data in the queues as soon as possible. First, we 
maintain a “CP-queue” to store those CPs whose 
input streams are not empty. Second, we create a 
round-robin scheduler running in a new thread. The 
scheduler does two things: one is popping a CP from 
the head of the CP-queue, and two is consuming data 
from its connecting input queue (called input-queue) 
until empty or consuming more than 100 events. If the 
input-queue is not empty after popping out more than 
100 events, push back the CP to the tail of the CP-
queue, and turn to process another CP. Let us take an 
example. In Figure 11, we assume all CPs are 
stateless. Initially, only the inputs of CP1 and CP2 are 
not empty. So push them to the CP-queue. The round-

robin scheduler pops out CP1, processes it and stores 
results in the input-queue that connects to CP3, 
causing the input of CP3 becoming not empty. So 
push back CP3 to the tail of CP-queue. Next, pop out 
CP2 and do the same procedure until the CP-queue 
becomes empty. 
 

 

Figure 11: Implementation of a continuous processing flow. 

A CP could be stateless or stateful. If an operation 
whose calculation result is affected by history 
processed data, it is stateful, such as aggregate 
operations Sum and Count. For aggregate operators, 
we use a sliding window or tumble window, which is 
organized as a data structure queue.  
 

 

Figure 12: Multi-thread for maintaining data in different 
kinds of queues. 

Now the question is how to maintain the queue 
inside a stateful operation? For a clear explanation, 
we focus on the queue of a sliding window or tumble 
window. A window is called time window if its length 
is based on time, while a window is called count 
window if its length is based on event count. In Figure 
12, the arrow that is before a queue indicates inserting 
data to the queue, while the arrow after a queue 
indicates consuming data from the queue. The 
components in red color are stateless or contain a 
count window. They are processed by the thread of 
round-robin scheduler, which is mentioned above in 

Real-time Processing of Rule-based Complex Event Queries for Tactical Moving Objects

71



this section. The components in blue color are stateful 
and contain time window. They are processed by a 
new thread, which is responsible for time trigger, 
called time trigger scheduler. The time trigger 
scheduler schedules the re-processing time for CPs, 
processes it when the time up for each and store 
results to the output queues. 

In our system, the output results of CP upstream 
have high possibility to be used by multiple CPs 
downstream. There is an example shown in Figure 13.  
If there are many CPs consuming input data from the 
same queue, it will have a performance problem to 
check conditions of each CP downstream one by one. 
We notice that the case shown in Figure 13 is the 
same as the one shown in Figure 8. For this case, we 
use CQ index to solve the problem, which is to find 
out matching CPs directly by using an index, rather 
than checking query conditions one by one.  

 

Figure 13: The case to use CQ index. 

In section 4, we mentioned that a CQ condition 
includes different data types cannot be added to an 
R*-tree directly. Our strategy to solve this problem is 
to transform the data type of each predicate to be the 
same. Also, we transform equation predicates to 
interval predicates. For example, an equation 
predicate “id=3” can be expressed as “3≤ id ≤3”. Here 
is a complete example to transform predicates 
“IFF=’enemy’ AND 30<speed<100 AND elevation 
< 10” to fit the R*-tree. Firstly, we uniform their data 
type to be Integer by using “std::hash<std::string>” 
in C++ to calculate the hash value of string “enemy”, 
assuming its hash value equals to number 1389. 
Secondly, we transform all equation predicates to 
interval predicates. Thirdly, make “elevation < 10” to 
be “MIN < elevation < 10” (MIN denotes the 
minimum integer number). So finally we get the 
result that is “1389≤IFF≤1389 AND 30<speed<100 
AND MIN < elevation < 10”, which can be added to 
an R*-tree.  

An incoming event tuple can be expressed as 
{“id=3, IFF=enemy, speed=50, elevation=9”} for 
example. It indicates a point in the R*-tree. We can 
query all regions in the R*-tree that contain the point 

by using the function “void 
intersectsWithQuery(const IShape& query, IVisitor& 
v)” provided by open-source libspatialindex 
(libspatialindex, 2019) project.  

Our prototype system provides GUI for users to 
register rule specifications. Users input a rule 
specification and click the button “add” to finish the 
registration (Figure 14). Our system will create a 
graph of processing flow based on input and output 
stream names of each rule specification. Users can 
display all or search the graph by an output stream 
name (Figure 15). 

 

 

Figure 14: GUI for adding rule specifications. 

Our system can insert, search, display, update and 
delete rule specifications dynamically. In Figure 15, 
we show the GUI components for these 
functionalities. By inputting the name of an output 
stream, users can search or delete a specified rule 
specification. The system starts to work after clicking 
the button “start processing”. Figure 16 shows the 
way to display processing results. 

 

 

Figure 15: GUI to search, display, delete and update rule 
specifications, and to display processing flow graph. 
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Figure 16: GUI for display stream data. 

6 PERFORMANCE 

To evaluate the system performance compared with 
Esper (EsperTech, 2019), we set up 50 rule 
specifications and calculate processing time with 
different numbers of input data (Figure 17). To 
evaluate the effect of using CQ index, we set up 50 
CEP rules and calculate the processing time with and 
without using CQ index (Figure 18) and calculate the 
time after processing 10,000 events with and without 
CQ index (Figure 19). 
 

 

Figure 17: Set up 50 CEP rules, calculate processing time. 

We generate event tuples as input stream data with 
randomly assigned values. Attributes of a tuple are id, 
time, speed, elevation, IFF, longitude, latitude and so 
on. The evaluation result shown in Figure 17 indicates 
that the performance of our system is slower than 
Esper but not different too much. The evaluation 
results in Figure 18 and 19 indicate that the system 
has a higher performance by applying CQ index. 

 

 

Figure 18: Processing time for 50 CEP rules. 

 

Figure 19: Processing time for 10000 events. 

7 RELATED WORK 

CEP Language: Much research has been carried out 
on CEP language and several languages of CEP have 
been proposed. The paper (Sadri et al., 2004) 
proposed a language SQL-TS, which is an extension 
of SQL to express complex sequential patterns in a 
database. Paper (Demers et al., 2007) presents query 
language Cayuga based on Cayuga Algebra for 
naturally expressing complex event patterns. Papers 
(Agrawal et al., 2008), (Wu et al., 2006) present the 
language SASE and use NFA-based technology to 
implement high-performance complex event 
processing over streams. Also, CEDR (Barga et al., 
2006) presents the language for temporal stream 
modeling. Those languages have common 
components. They support Sequencing, Kleene 
closure, Negation, Value predicates, Windowing, 
Return and so on. The languages could be 
implemented with high performance by using NFA-
based technology. The event selection strategy is 
Strict or partition contiguity, Skip till next match and 
Skip till any match. 
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Optimizing CEP Performance: Paper (Mozafari et 
al., 2012) proposes a high-performance approach that 
supports CEP on XML streams. It uses XSeq 
language to extend XPath with natural operators over 
XML streams. The papers (Agrawal et al., 2008), 
(Wu et al., 2006) use NFA-based technology to 
improve the performance of pattern matching over 
streams. Papers (Krishnamurthy et al., 2006), (Yang 
et al., 2009) try to improve CEP performance by 
making use of sharing among similar queries. 
(Johnson et al., 2007) Uses out of order stream data 
by maintaining a small state and without complete 
stream reconstruction to improve the efficiency of 
regular expression matching on streams. Paper 
(Schultz et al., 2009) rewrites event patterns in a more 
efficient form before translating them into event 
automata. The work (Akdere et al., 2008) uses plan-
based techniques to minimize event transmission 
costs and can efficiently perform CEP across 
distributed event sources. 

8 CONCLUSIONS 

In this paper, we propose a layered architecture to 
decompose a complex event query into four parts, 
corresponding four modules of the system. By doing 
that, we make the responsibilities of each module 
clearer and simply the rule definitions. Besides, it 
helps to insert, delete, search rules dynamically. For 
each module, we make rule definitions and describe 
their format in detail. This paper shows that it is 
possible to process various input rules for continuous 
processing dynamically in layered specifications. We 
use R*-tree as a multi-dimension index to speed up 
continuous queries.  
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