
Chat Language Normalisation using Machine Learning Methods

Daiga Deksne
Tilde, Vienibas Gatve 75a, Riga, Latvia

Keywords: Non-Canonical Language, Language Normalisation, Intelligent Virtual Assistants, Intent Detection.

Abstract: This paper reports on the development of a chat language normalisation module for the Latvian language.

The model is trained using a random forest classifier algorithm that learns to rate normalisation candidates

for every word. Candidates are generated using pre-trained word embeddings, N-gram lists, a spelling

checker module and some other modules. The use of different means in generation of the normalisation

candidates allows covering a wide spectre of errors. We are planning to use this normalisation module in the

development of intelligent virtual assistants. We have performed tests to detect if the results of the intent

detection module improve when text is pre-processed with the normalisation module.

1 INTRODUCTION

Utterances used on social media platforms,

chatrooms and internet discussion forums are a

valuable source used in the creation of Artificial

Intelligence applications (AI). The central task of an

intelligent virtual assistant is to understand a

communication partner and to detect the user’s

intent expressed by his/her utterance. Unfortunately,

processing conversational text used on the Web with

existing NLP tools is not an easy task because

conversational text is significantly different from the

canonical form of language. Several researchers

report improvement of results when they perform

normalisation of noisy user generated text prior to

part-of-speech tagging (Damnati et al., 2018) or

parsing (van der Goot et al., 2017). It is mentioned

that two approaches can be used in such a situation:

either adapt the tools or adapt the data (Eisenstein,

2013). In our work, we have focused on data

normalisation.

In this paper, we describe our experience in the

creation of a chat text normalisation model for the

Latvian language. This model is based on a random

forest classifier algorithm and uses different features

for error correction, e.g. word embeddings, n-grams,

spell checking suggestions and others.

We would like to fix the gross orthographic and

grammar issues while preserving the style of the

original text. Our goal is to make the user-created

text comprehensible for other readers and valid for

further processing.

2 DATA

The chat text may contain two types of errors:

unconscious errors (committed either by ignorance

or by accident) and deliberate errors. However, we

should not refer to the second of type errors as

errors; it would be more accurate to call them a

derogation from the literary norm, from canonical

language.

Normalisation is a subjective process. In

Guideline for English Lexical Normalisation Shared

Task (Baldwin et al., 2015a), annotators were asked

to correct English Twitter messages by providing

replacements for non-standard words, i.e. misspelled

words, phonetic substitutions, informal

abbreviations or correct words that are not

appropriate for the context. Non-English words,

exclamative words, proper nouns and non-

alphanumeric tokens were left unchanged. While

performing this task, annotators faced difficulties in

reaching a consensus on drawing the border between

standard and non-standard words (Baldwin et al.,

2015b). In our work, we have faced similar

difficulties for the Latvian language.

We have manually annotated 2,493 sentences

collected from Internet discussion forums and

Internet comments and 500 sentences of Twitter

data. We have also created a corpus where errors are

introduced artificially. This corpus contains around

2,500 entries.

Deksne, D.
Chat Language Normalisation using Machine Learning Methods.
DOI: 10.5220/0007693509650972
In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), pages 965-972
ISBN: 978-989-758-350-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

965

2.1 Corpus Analysis

To define what should be normalised in Latvian chat

texts, we started with analysis of the Latvian Tweet

corpus (Pinnis, 2018). We tagged unique Tweet

sentences (399,010 sentences) with the part-of-

speech (POS) tagger and extracted the words not

recognised by the POS tagger. We assumed that

these words can reveal peculiarities of chat

language. We created a list of these words (1,252

items) and included the words occurring at least

twice. The word groups found in the list are the

following:

 Contractions with vowels dropped (some have

even spelling variations), e.g. ‘mnpr’, ‘mnprt’

and ‘mprt’ for the canonical ‘manuprāt’ (in

English, ‘in my opinion’);

 Acronyms;

 Hyphenated abbreviations, e.g. ‘D-tilts’ for the

canonical ‘Dienvidu tilts’ (in English, ‘the South

bridge’);

 Neologisms, mostly new compounds, e.g. there

are 14 Latvian compounds starting with ‘tviter’,

English equivalents would be ‘twitterfellow’,

‘twitternation’, ‘twittername’, ‘twittertalks’,

‘twitterists’, ‘twittertrolls’;

 Slang;

 Words without diacritic marks (there are 11

letters with diacritics in the Latvian alphabet, and

the use of diacritics is mandatory, e.g. ‘lapa’

(‘leaf’) and ‘lāpa’ (‘torch’) are different words);

 Words in some other language, mostly in

English, e.g. ‘fakenews’, ‘megasale’;

 Orthographic errors;

 Non-words, e.g. hashtags, url-s, e-mails, etc.

2.2 Creation of Data Sets for Training,
Testing and Development

For development, we have created a set of 500

manually corrected Twitter sentences. This set

contains 4,611 tokens, of which 767 tokens (~16%)

have been corrected.

A small part of the training corpus is also manually

annotated. Originally, we had 6,522 sentences

collected from Internet discussion forums and

Internet comments. After an annotator has corrected

the texts, data is tokenized and the words from the

original and the corrected file are aligned. Only

sentences with the same number of tokens are kept

as our normalisation system does not allow N-to-1

changes and only allows limited cases of 1-to-N

changes. For example, we do not consider inserting

missing commas, although the use of commas is

mandatory in canonical language. As a result, we

have 2,493 sentences with 29,277 aligned tokens,

and 4,416 tokens (15%) have corrections.

Table 1: Examples of regular expressions used for error

creation.

Search Replace Type

\b(([^\s]*)ēž([^\s]+))\b $2ez$3 Diacritics

\b(manuprāt)\b mnprt Missing

vowels

\b(kaut kur)\b kkur Words

together

\b(ak mans dievs)\b omg Slang

abbrev.

\b(jā)\b yup Colloquial

\b(vēl([^\s]*))\b vel$2 Long vowel

There is no ready-made annotated chat language

corpus for Latvian that would be large enough for

automatic normalisation model training. Creation of

such a corpus takes a lot of time and requires

significant human resources. Besides, it is

problematic to develop strict guidelines for

normalisation. This depends on the purpose of

further use - whether we want to create a literary text

or make it more comprehensive for further

processing with the existing NLP tools. For this

reason, we decided to create a corpus where errors

are introduced artificially. Based on error types

learned in Twitter corpus n-gram analysis, we

defined a set of 688 regular expressions (see Table

1) that introduces different types of errors - dropped

vowels, doubled letters, switched letters, missing

diacritics, common spelling errors, words written

together, etc. From the POS tagged Tweet corpus,

we take only correct sentences, e.g. sentences in

which every word is recognised by the POS tagger.

We apply the regular expressions to these sentences.

In every sentence, a random number of errors is

introduced.

Table 2: Summary of the data.

Name Description Size

train1 Manually annotated Internet

discussion forums and

Internet comments

2,493

sentences

train2 Twitter data with artificially

introduced errors

199,097

sentences

dev1 Manually annotated Twitter

data

500

sentences

test1 Twitter data and utterances

from live chat with

artificially introduced errors

509

sentences

NLPinAI 2019 - Special Session on Natural Language Processing in Artificial Intelligence

966

The test corpus is prepared in a similar way; the

errors are created artificially. Part of the test corpus

is formed from the Twitter utterances. As we are

planning to use the normalisation module for the text

pre-procession prior to intent detection, the other

part of the test set is composed from the utterances

found in logs of some company’s customer service

live chat. See Table 2 for summary of the data.

3 METHOD

For the normalisation of the Latvian chat language,

we adapt the modular normalisation system

MoNoise proposed by van der Goot and van Noord

(2017). This system uses the random forest classifier

(Breiman, 2001) to choose the best normalisation

candidate for every word considering different

features. Candidates are generated by different

modules. As different types of anomalies require

different normalisation actions, the use of spell

checker, word embeddings, N-gram module and

some other features allows beating the state-of-the-

art results on the normalisation task for the English

LexNorm corpus and for the Dutch GhentNorm

corpus.

Table 3: The data sources used for the generation of the

normalisation candidates and the ranking of the candidates

for Latvian.

Type Quantitative parameters

Word

embeddings, built

on general text

corpus

dimensions: 100

tokens: 1,163,817

N-grams, built on

general text

corpus

unigrams: 352,503

bigrams: 1,463,503

N-grams, built on

Twitter corpus

unigrams: 67,953

bigrams: 181,381

Spelling checker

supplemented

with slang lexicon

stems: 105,235

affix classes: 304

A list of regular

expressions

items: 799

A list of correct

and popular words

Words from the Latvian Balanced

Corpus (available from

http://www.korpuss.lv/id/LVK201

8) occurring at least 100 times:

11,000

Words used as corrections in

train1: 21,904

We start with the features similar to the

MoNoise. The normalisation task has two steps: 1)

the generation of the normalisation candidates for

every word (token) in a sentence (token string) and

2) the ranking of the candidates in order to

distinguish the correct normalisation candidate (the

one with the highest score).

3.1 Generation of the Normalisation
Candidates

Generation of the candidates is performed with the

help of several modules employing diverse data sets

(see Table 3) and some hardcoded rules. As the first

candidate with the top most score is added to the list

of candidates the original word itself (as most words

in an utterance does not need to be normalised).

3.1.1 Word Embeddings

Training models for different NLP tasks using

machine learning methods requires a large,

appropriately prepared (labelled) text corpus, which

is not always available. It has been verified that

better results could be achieved when using pre-

trained word vectors. For example, syntactical

analysis (Socher et al., 2013) or a module for error

detection in learners writing (Rei et al., 2016) show

better results when using pre-trained word

embeddings. Such vectors are trained using a larger

corpus without specific marking. In this process, the

multidimensional real-number vectors are assigned

to the names or phrases in the corpus. Words that are

in the vicinity of the certain word or that are used in

a similar context acquire similar vectors in the

vector space.

There are several toolkits available for word

embedding training. We use the Word2Vec toolkit

(Mikolov et al., 2013). This toolkit offers two

methods. With the Continuous Bag-of-Words

architecture, the neural feed-forward language

model is employed. The current word is predicted by

its context and by surrounding words; the order of

surrounding words is ignored. With the skip-gram

architecture, prediction of surrounding words

depends on the current word; the word order is

considered, and the nearest words have a greater

weight compared to more distant words.

We train the 100-dimensional word embeddings

model using Continuous Bag-of-Words architecture

and the context window of 10 surrounding words.

3.1.2 Spelling Checker with Slang Lexicon

As our goal was to preserve the style of user

generated text, we replenished the lexicon of our

spelling checker with the words used in the

Chat Language Normalisation using Machine Learning Methods

967

conversational language that were not included in

the general canonical lexicon.

The number of stems in the lexicon of the

general spelling checker is 106,019, but it is 108,109

in the new jargon spelling checker.

The jargon spelling checker’s noun list is

complemented with new compounds and

abbreviated words with pejorative tone or colloquial

nature. There are also person names found in the

Tweet corpus. Those words should probably be

added to the lexicon of the general spelling checker

as well.

The new verbs in the jargon spelling checker’s

verb list come from different sources. Some are

found in printed jargon dictionaries. The largest part

is collected from the transcripts of the SAEIMA

(Latvian Parliament) sessions, from the corpora of

IT domains and from the corpora of websites in the

Latvian language.

While generating spelling suggestions, the

engine of the general spelling checker uses a set of

rules like phonetically wrong letters, missing

diacritics, one or two letters dropped or inserted,

transposed adjacent letters, etc. These rules don’t

always cover the typical mistakes made by users. A

very common habit of writing in chat language is to

write without diacritic marks. Sometimes, double

vowels are used to signal a long vowel (‘aa’‘ā’,

‘ee’‘ē’, ‘ii’‘ī’, ‘uu’‘ū’), the letter ‘j’ is used

after some consonants to signal the softness of the

consonant (‘gh’‘ģ’, ‘kj’‘ķ’, ‘lj’‘ļ’, ‘nj’‘ņ’),

and the letter ‘h’ is used to signal some other

phonetical peculiarities (‘ch’‘č’, ‘sh’‘š’,

‘zh’‘ž’). Yet, this system is not consistently

respected even in the boundaries of a single word.

The habit not to use diacritics is probably related to

the situation in the past when electronic devices

supported only a limited set of symbols, i.e. the

Latin alphabet.

We are using the open-source Hunspell engine

for the spelling checker (available from

https://github.com/hunspell/hunspell). In the jargon

spelling checker engine, additional rules for

suggestion generation are defined; there are 95

expressions in total. The rules describe replacements

of more than one character or in consideration of the

context. The rules fix errors concerning phonetic

writing (as in (1)) and the use of diacritics (as in

(2)).

REP zdam sdam (1)

REP nsh ņš (2)

3.1.3 Regular Expressions

We used 688 regular expressions for artificial error

creation. For generation of normalisation candidates,

we reversed this list and added more regular

expressions (there are 799 regular expressions in

total). We use this module together with the spelling

checker. After substituting some characters with the

help of the regular expression module, we add the

changed word to the normalisation candidate list and

also pass this new candidate to the spelling checker

engine. If the spelling checker generates some

suggestions, they are also added to the candidate list.

If a word has several mistakes, there is a greater

chance to get the correct candidates by a joint effort

of the regular expression module and the spelling

checker module. For example, for the erroneous

word filmeshana (‘the filming’) the regular

expression module generates the less erroneous

word filmešana; in turn, the spelling checker

suggests two candidates for this word - filmēšana

and filmēšanā (‘the filming’ in nominative and in

locative).

3.1.4 N-grams

We use two sets of N-grams: build on data from the

general corpus and build on data from the Tweets

corpus. In the candidate generation process, the

current word is looked up in the unigram list.

Unigrams give more weight to the popular words.

Bi-grams, with the left and the right adjoining word,

encode information about the current word’s

context; the pairs that are found in a corpus with

higher frequency are normalisation candidates with a

higher degree of credibility.

3.1.5 Dictionary of Corrections

Prior to generation of the normalisation candidates,

the system reads through the training data and builds

a dictionary of corrections with information about

every corrected word in the training corpus and how

many times it is corrected to another word. This data

is used in the next step when the system generates

the candidates for every word in a sentence. The

current word is looked up in the dictionary, and, if it

contains some corrections, it is added to the

correction list along with the occurrence frequency

number.

3.1.6 Word Splitting

One of the errors found in user created text is a

missing space between some words. If a word is

NLPinAI 2019 - Special Session on Natural Language Processing in Artificial Intelligence

968

more than two letters long, we try to split it in two

parts. We accept candidates consisting of two parts

if such a word combination is found in the bigram

dictionary built on data from the general corpus.

Our first approach was to check if the two

separated words are accepted by the spelling

checker. Unfortunately, this approach led to the

production of never occurring candidates. The

typical faults for such action are a prefix separated

from a prefixed verb or both parts of a compound

written separately (in Latvian, compound parts must

always be written together). For example, the verb

aplikt (‘to put on’) is separated as ap (‘around’) and

likt (‘to put’), or the compound asinsvadi (‘blood-

vessels’) is separated as asins (‘blood’) and vadi

(‘wires’ or ‘cords’). Such results prompted to change

the algorithm and perform lookup in the bigram

dictionary.

3.1.7 Words with Same Root

The Latvian language is an inflectional language;

most word-forms are formed by combining the root

and the ending. We search for the candidates in a list

of correct and popular words. We accept the

candidates that have one or two extra letters at the

end compared to the current word. We cut the

typical endings from the end of the current word (the

single letter ‘a’, ‘e’, ‘i’ or ‘u’ and two letters if the

last one is ‘s’ or ‘m’) and search for the candidates

that differ in length from the current word by no

more than two symbols. We also add the same root

base-form of a word supplied by the spelling

checker module. For example, for the word komanda

(‘a command’ in singular nominative), the following

candidates are chosen: komandai (‘a command’ in

singular dative), komandas (‘a command’ in singular

genitive or plural nominative), komandu (‘a

command’ in singular accusative or plural genitive),

komandām (‘a command’ in plural dative), komandē

(‘commands’ a verb in the 3rd pers.), komandēt (‘to

command’).

3.1.8 Diacritic Marks

The diacritic restauration module tries to add

diacritic marks to every character in the current

word. Correctness of the newly constructed word is

checked with the spelling checker module. The

words with correct diacritics are added to the

candidate list. With this method, for the incorrect

word speletajs, the correct candidate spēlētājs (‘a

player’) is generated. Also, for the nominative of the

correct word attiecības (‘relationship’), a locative

form attiecībās is generated.

3.2 Ranking of the Candidates

For the ranking of the candidates, the features

related to the candidates are employed. The list of

features is similar to the ones used in the

normalisation system MoNoise (van der Goot et al.,

2017). For every candidate, a feature vector is

constructed containing the following values:

 a binary value (the number ‘0’ or ‘1’) signalling

if the candidate is the original word;

 the candidate’s and the original word’s cosine

similarity in the vector space and the rank of the

candidate in a list of top 20 most similar words if

the candidate is supplied by the word

embeddings module;

 a binary value signalling if the candidate is

generated by the spelling checker module and the

candidate’s rank among other correction

candidates that spelling checker generates for the

misspelled original word;

 a number of times the original word is changed

to particular candidate in the dictionary of

corrections built on the basis of the training data;

 a binary value signalling if the candidate is

created by changing some final characters of the

original word, i.e. has the same root, or by

adding diacritic marks to some letters of the

original word;

 a binary value signalling if the candidate is

created by splitting the original word;

 the candidate’s unigram probability in the

general corpus and in the Twitter corpus;

 the candidate’s bigram probabilities with the left

and the right adjoining word in the general

corpus and in the Twitter corpus;

 a binary value signalling if the candidate is in the

good and popular word list;

 a binary value signalling if the original word and

the candidate have a matching symbol order;

 the length of the original word and the candidate;

 a binary value signalling if the original word and

the candidate are constructed of valid utf-8

symbols, are not e-mail addresses or Web links.

Random forest classifier algorithm creates an

ensemble of decision trees taking into account

different features. Different trees are responsible for

different normalisation actions. Classifier ranks

every candidate at every position in a given text

string (see Table 4). Candidates with a top score

form the normalised text string.

Chat Language Normalisation using Machine Learning Methods

969

Table 4: Results of normalisation for the sentence ‘I want

to pay the bill.’.

Input string Gribu apmaksat rekinu.

Normalised string Gribu apmaksāt rēķinu.

Normalised string

with top 5

candidates

0 Gribu 1 0.999686

0 griba 1 0.000157

0 gribam 1 0.000115

0 gribētu 1 0.000030

0 es 1 0.000012

1 apmaksāt 2 0.998305

1 maksāsimies 2 0.000678

1 apmaksāti 2 0.000431

1 apmaksāta 2 0.000425

1 apmaksātas 2 0.000160

2 rēķinu 3 0.998016

2 rēķina 3 0.001495

2 rēķinās 3 0.000250

2 rēķins 3 0.000172

2 rēķinos 3 0.000066

3 . 4 1.000000

4 RESULTS AND DISCUSSION

While trying to improve the results, we have trained

several models. Recall, precision and F1 score

(Rijsbergen, 1979) for different experiments are

reported in Table 5.

For Model 1, we use a reduced set of training

data (13,378 examples out of 201,589) since we

encountered memory problems while training the

model using a full set of training data.

For Model 2, we use the reduced training data for

lookup dictionary creation, but we generate

normalisation candidates and build the feature

matrix for random forest classifier training only for

the first 5000 examples. As the results for Model 2

are even better than for Model 1, we conclude that it

is not necessary to use more examples for feature

matrix building. This new approach allows us to

reduce the memory amount required for training. For

Model 3, we return to the full set of training data for

lookup dictionary creation and use the first 5000

sentences for feature matrix building.

For Model 4, we introduce two changes. While

generating normalisation candidates, we try to split

every word only if the two new words are found in

the bigram dictionary. The second change is that we

process the text twice while performing

normalisation. If there are several errors in a text, the

normalisation model cannot deal with all errors in a

single run. The results improve after the second run.

For the sample (3) (‘Just going with the flow as to

say’), the first four words are erroneous. After the

first run (4), three words are fixed, but the first word

still remains incorrect. After the second run (5), all

errors have been corrected.

Vienkarsi laujos pluusmai kaa saka (3)

Vienkarsi ļaujos plūsmai kā saka (4)

Vienkārši ļaujos plūsmai kā saka (5)

There are cases when the correct word is not

among the generated normalisation candidates. It is

difficult to predict in advance the whole range of

errors that a potential user could make and generate

corrections according to it. For Model 5, we improve

our function of diacritics restoration and add some

suggestion generation patterns for the spelling

checker module.

Table 5: Results of normalisation performed by different

models (for the development set).

No Model Recall Precision F1

1 13,378

examples for

dictionary

building and

training

0.7817 0.8092 0.7952

2 As Model 1, but

only first 5000

for training

0.7843 0.8186 0.8011

3 201,589

examples for

dictionary

building, only

first 5000 for

training

0.8105 0.8367 0.8234

4 As Model 3, but

split word if

both parts in the

bigrams and

correct text

twice

0.8288 0.8431 0.8359

5 As Model 4, but

use improved

rules for

spelling

candidate

generation and

restoration of

diacritics

0.8353 0.8397 0.8375

The results of normalisation for the test set are

better than for the development data (see Table 6).

The test set contains sentences with artificially

introduced errors. The high results attest that the

model has learned to normalise such errors quite

well. Most utterances in the test set are from some

company’s customer service live chat. Besides, these

utterances are short, and the quality is better than for

the Twitter data included in the development corpus.

NLPinAI 2019 - Special Session on Natural Language Processing in Artificial Intelligence

970

This explains an increase in accuracy and precision.

Table 6: Results of normalisation performed by Model 5

(for the development and the test sets).

Data Recall Precision F1

Development

set

0.8353 0.8397 0.8375

Test set 0.9633 0.949 0.9561

5 EVALUATION

We test the normalisation module in practice by

normalising user created text prior to intent

detection.

While developing a virtual assistant for customer

service, we have created a module for intent

detection in users’ utterances (Balodis et al., 2018).

This intent detection module is based on

convolutional neural network architecture. From the

company’s live chat log, we have compiled a test set

of 236 utterances for testing of the intent detection

module.

Table 7: Results of intent detection for different data sets.

Data set Accuracy

(mean)

Accuracy

(median)

Original 43.13% 43.43%

Normalised 44.84% 45.30%

Manually corrected 45.41% 46.02%

The results acquired after running the intent

detection module 10 times (see Table 6) testify to

the positive impact of prior text normalisation on the

quality of intent detection. After normalisation, the

median value of accuracy increases by 1.87%

compared to the original text and stays behind the

manually corrected text by only 0.72%.

6 CONCLUSION AND FUTURE

WORK

We have achieved our goal of creating a

normalisation module that is able to normalise most

typical errors found in user created text. By

experimenting with different properties and training

several models we have gradually found the optimal

set of features that allowed us to increase precision

of the model from 0.8092 to 0.8397 and recall from

0.7817 to 0.8353. We have overcome the lack of

marked training data by creating a corpus with

artificially introduced errors. The types of errors

were determined by analysing the most common

errors in Twitter data. We have also examined

whether the use of such a model in pre-processing

could improve the accuracy of the intent detection

module. The results are good, text normalisation

helps to detect the user’s intent more precisely.

Still, there remain some unresolved questions

about what to consider a mistake. In informal

conversation, users often change the language of the

text by introducing some common English words or

phrases (‘priceless’, ‘free shipping’, ‘like’, ‘my life

goals’) or using loanwords formed from some

English word stem with a Latvian ending

(followeriem, settingi, friendslisti, storiji). We

should try to detect them and not normalise or

normalise using some special rules. Otherwise, we

can get a word with a completely different meaning

(the current normalisation model changes friendslisti

‘friendslist’ to orientālisti ‘orientalist’).

ACKNOWLEDGEMENTS

The research has been supported by the European

Regional Development Fund within the project

“Neural Network Modelling for Inflected Natural

Languages” No. 1.1.1.1/16/A/215.

REFERENCES

Baldwin, T., de Marneffe, M., Han, B., Kim, Y., Ritter, A.

and Xu, W., 2015a. Guidelines for English lexical

normalisation. https://github.com/noisy-text/

noisytext.github.io/blob/master/2015/files/annotation_guid

eline_v1.1.pdf.

Baldwin, T., de Marneffe, M. C., Han, B., Kim, Y. B.,

Ritter, A., and Xu, W., 2015b. Shared tasks of the

2015 workshop on noisy user-generated text: Twitter

lexical normalization and named entity recognition. In

Proceedings of the Workshop on Noisy User-

generated Text (pp. 126-135).

Balodis, K., and Deksne, D., 2018. Intent Detection

System Based on Word Embeddings. In International

Conference on Artificial Intelligence: Methodology,

Systems, and Applications (pp. 25-35). Springer,

Cham.

Breiman, L., 2001. Random forests. Machine learning,

45(1), 5-32.

Damnati, G., Auguste, J., Nasr, A., Charlet, D., Heinecke,

J., and Béchet, F., 2018. Handling Normalization

Issues for Part-of-Speech Tagging of Online

Conversational Text. In Eleventh International

Conference on Language Resources and Evaluation

(LREC 2018).

Chat Language Normalisation using Machine Learning Methods

971

Eisenstein, J., 2013. What to do about bad language on the

internet. In Proceedings of the 2013 Conference of the

North American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, ACL, Atlanta, Georgia, pp. 359.

van der Goot, R., and van Noord, G., 2017. MoNoise:

Modeling Noise Using a Modular Normalization

System. arXiv preprint arXiv:1710.03476.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and

Dean, J., 2013. Distributed representations of words

and phrases and their compositionality. In Advances in

neural information processing systems (pp. 3111-

3119).

Pinnis, M. 2018. Latvian Tweet Corpus and Investigation

of Sentiment Analysis for Latvian. Frontiers in

Artificial Intelligence and Applications. Volume 307:

Human Language Technologies – The Baltic

Perspective (pp 112-119).

Rei, M. and Yannakoudakis. H. 2016. Compositional

Sequence Labeling Models for Error Detection in

Learner Writing. In Proceedings of the 54th Annual

Meeting of the Association for Computational

Linguistics.

Rijsbergen, C.J., 1979. Information Retrieval, Vol. 2,

University of Glasgow.

Socher, R., Bauer, J. and Manning, C.D., 2013. Parsing

with compositional vector grammars. In Proceedings

of the 51st Annual Meeting of the Association for

Computational Linguistics (Vol. 1, pp. 455-465).

NLPinAI 2019 - Special Session on Natural Language Processing in Artificial Intelligence

972

