
Modelling the Behaviour of Context-aware Systems: State-of-the-Art

Analysis and Introduction of a Customized UML Profile

Patrick Rosenberger a, Detlef Gerhard b and Stefan Dumss c
Institute of Engineering Design and Product Development, TU Wien, Getreidemarkt 9/307, 1060, Vienna, Austria

Keywords: Context-aware Systems, Systems Modelling, Unified Modeling Language, Context-aware System Analysis,

Context-aware System Design.

Abstract: The usage of smart devices in combination with the extensive deployment of sensors enables the development

of systems that can recognize their environment and act accordingly. These so-called context-aware systems

allow the automation of the user interactions by providing the desired functionality based on an understanding

of the users' current context. During the development of such systems, the context-related system properties,

the contextual functionalities, as well as the underlying contexts must be defined. UML models are a valuable

tool for such tasks. In this publication, the previous research regarding the graphical representation of context-

aware systems is analysed. It is shown that the modelling of contextual behaviour is still not addressed

sufficiently. To counter this issue, contextual design templates are introduced. These templates allow the

visualization of different system properties by combining the UML standard notation with a newly introduced

notation for stating contexts. Further, a profile for the modelling of contexts and related system functionalities

is presented.

1 INTRODUCTION

Graphical models are an important tool of software

development projects. They allow to handle the ever-

increasing complexity by mapping a system’s structure,

its behaviour, and other properties at various levels of

abstraction (Weilkiens, 2014). In that regard,

modelling languages define the rules and guidelines

that are needed for their creation (Ohst et al., 2003).

Over the previous decades, the Unified Modelling

Language (UML) (OMG, 2015) has prevailed as the

leading standard for software systems (Grönniger,

2010). One of its strengths lies in the high number of

diagrams and elements the language defines.

Nevertheless, it is not feasible for any modelling

language to provide elements for all system properties

in all domains. To keep a manageable size and still

meet the requirements of specialized use cases, the

UML defines an interface for customized extensions

(Rupp and Queins, 2012). By introducing new profiles,

users can adapt the language to their needs (OMG,

2015).

a https://orcid.org/0000-0002-5504-0267
b https://orcid.org/0000-0002-3266-7526
c https://orcid.org/0000-0001-8679-0821

One domain that cannot fully be modelled with the

UML standard notation are context-aware systems

(Perera et al., 2014). To address this issue, different

contextual profiles have been developed. Nevertheless,

it is still not possible to state all behaviour-related

aspects as the previous approaches only focused on

structural models, specific issues, or individual

diagram types. This publication introduces a general-

purpose extension for modelling the behaviour of

context-aware systems. Section 2 starts with a state-of-

the-art analysis of previously proposed extensions.

Afterwards, section 3 presents an industrial use case.

In the following chapters, excerpts of this use case are

presented to visualize practical examples of the

theoretical concepts. Section 4 discusses the structure

of contexts and introduces a notation for their

representation in UML diagrams. In section 5, different

design templates are discussed. These templates

combine the UML standard notation with the

previously introduced notation to model various

aspects of context-aware systems. Nevertheless, not all

behavioural properties can be described that way.

Rosenberger, P., Gerhard, D. and Dumss, S.
Modelling the Behaviour of Context-aware Systems: State-of-the-Art Analysis and Introduction of a Customized UML Profile.
DOI: 10.5220/0007685805190526
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 519-526
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

519

Therefore, section 6 introduces an adapted UML

profile that allows to visualize contexts as well as the

still missing behavioural characteristics in various

diagram types. Based on the use case of section 3,

section 7 finishes by presenting a case study. It is

shown how the previously introduced design templates

and profile can be applied during the development of a

context-aware system.

2 STATE OF THE ART

In the previous years, different authors have introduced

contextual UML extensions. Almutairi et al. (2012)

presented a heavy-weight extension for security-

related requirements in use case diagrams. Another

heavy-weight extension was proposed by Choi (2007).

This extension does not only introduce new elements,

but also three new diagram types that are only partly

compatible with the rest of the standard notation. Choi

and Lee (2012) proposed a light weight extension for

the visualization of context-aware systems. While

focusing on use case diagrams, they describe how the

stereotypes can be used to display contextual system

requirements. Ayed and Berbers (2006) introduced a

modelling approach that separates the contextual

functionalities from the base system. Following this

separation of concerns simplifies the development

process as the interaction only takes place through

defined interfaces. Ayed et al. (2007) extended the

previously described approach by adding a process

model for the development of context-aware systems.

Benselim and Seridi-Bouchelaghem (2012) introduced

a profile that focuses on the visualization of class

diagrams and contains two categories of stereotypes.

The first category is focused on describing contexts,

the second category is focused on the type of

association between different classes. Fuentes et al.

(2008) introduced a profile for the aspect-oriented

modelling of context-aware systems. The objective of

this approach is to enable the extraction of executable

code from the graphical models. Grassi and Sindico

(2007) followed the principles of the service-oriented

architecture and implemented a profile that enables the

separation of concerns. Disintegrating the contextual

extensions from the original system allows to design

the base system using standardized tools and to

introduce contextual features through defined

interfaces. In contrast to the previous publications,

Omasreiter and Metzker (2004) did not introduce a

profile, but they demonstrated how the standard use

case diagram can be used for the modelling of context-

aware use cases. Sheng and Benatallah (2005)

introduced the ContextUML profile, so far, the most

referenced extension for the graphical modelling of

context-aware systems. The focus lies on the

identification and the visualization of the relevant

structural properties of context-aware systems, which

includes contexts, contextual sources, and contextual

functionalities. Simons (2007) introduced a context

modelling profile that is focused on class diagrams.

The objective is to allow the creation of understandable

models with little experience. Van den Bergh and

Coninx (2005) presented the context-sensitive user

interface profile that focuses on the effects on the user

interface.

Despite the variety of proposed approaches, a

comprehensive profile for visualizing the behaviour of

context-aware systems is still missing. The analysis

shows that most research efforts are focused on

structural aspects and that behavioural models are still

a side issue. Further, many of the proposed behavioural

extensions are specialized on one diagram type or use

heavy-weight extensions that are only partly

compatible with the rest of the UML standard notation.

3 USE CASE

In the next chapters, the application of the introduced

design templates and stereotypes is demonstrated using

an industrial use case. As a supplier for the automotive

industry, the analysed injection moulding company

produces parts for various customers. Although the

production processes are automated to a high degree,

the workers are responsible for setting up the machines,

providing the raw material, controlling the quality of

the products, and packaging them for dispatch. As

industrial partner in the EU Horizon 2020 research

project FACTS4WORKERS, the company is – among

other things – improving its software systems.

Thereby, a context-aware information system is

introduced that provides the workers with the required

information based on an understanding of their context.

The development of this system is split into two parts.

First, a context-unaware version is deployed and

tested. Afterwards, the system is upgraded with a

variety of contextual features. Thereby, the design

templates and the profile of this publication are

applied.

4 CONTEXTS AND THEIR

NOTATION

Contexts are the key elements of context-aware

systems (Rosenberger and Gerhard, 2018b). A con-

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

520

text represents the description of a situation in a format

a system can understand and process. Thereby, only

situations that are relevant to the interaction between

the user and the system are considered contexts

(Rosenberger and Gerhard, 2018a). Each context

consists of one or more contextual attributes that are

used for the identification of the context. Among

others, possible attributes are a user's name (e.g. John

Doe) or her/his current location (e.g. at the warehouse).

Further, each contextual attribute can be related to a

specific contextual type. These types can be

understood as categories that cluster all attributes with

the same properties (e.g. all locations). For a detailed

discussion of this topic, please refer to Rosenberger

and Gerhard (2018a).

To model contexts, three different notations can be

used. The type-attribute notation states all attributes of

a specific context as well as the related types. While

this provides a comprehensive description, it requires a

substantial amount of space and can overload diagrams

with a low level of detail. The attribute notation only

states the attributes and therefore provides a shortened

description. Nevertheless, the omission of the types

can lead to misunderstanding. For example, the

number X1219857 can be used to identify a worker, a

machine, or a production order. The ID notation only

states a context's ID as a placeholder. While this

requires little space, additional tools for stating a

context's attributes and types are necessary.

Figure 1: Type-attribute notation (top), attribute notation

(middle), ID notation (bottom).

Not in all cases, the attributes are not known

beforehand, but rather they are learned by the system

during its usage. In these cases, the type-attribute

notation and the attribute notation are not suited.

Rather, it can either be stated that the context will be

learned autonomously by the system. Alternatively, the

ID notation can be used to make this statement at a

supporting tool like the context-activity matrix

(Rosenberger et al., 2018).

5 DESIGN TEMPLATES

The design templates combine the UML standard

notation with the notation of chapter 4 to model

contextual system properties. In the following, only the

context-related elements are described and explained,

as it is assumed that the reader is aware of the UML

standard notation. Due to the restricted extension of

this publication, only the ID notation will use in the

following models. Nevertheless, also the type-attribute

notation and the attribute notation can be applied.

5.1 Context-dependent Entry
Conditions

Context-dependent entry conditions prevent the

execution of a combined fragment, if the stated context

is not present. In sequence diagrams, this is modelled

by defining the corresponding context as the entry

condition for the combined fragment. It is important to

note that context-dependent entry conditions can only

be used, if the combined fragment allows entry

conditions. The following example shows the fragment

"option", whereby a worker is requesting his/her tasks

for the day. If the context "C34" is present (shift start,

authentication OK, training level sufficient, etc.), the

fragment is executed, otherwise it is passed.

Figure 2: Example of a context-dependent entry condition.

5.2 Context-dependent State Invariants

Context-dependent state invariants are runtime

constraints that impact the interaction between the

participants. In sequence diagrams, this is modelled by

defining the corresponding context as the state

invariant. The following example shows a maintenance

worker that is requesting an overview over all open

machine errors. Thereby, the interaction can only start,

if the context "C32" (maintenance worker,

authentication OK, etc.) is present.

Modelling the Behaviour of Context-aware Systems: State-of-the-Art Analysis and Introduction of a Customized UML Profile

521

Figure 3: Example of a context-dependent state invariant.

5.3 Context-dependent Decisions

Context-dependent decisions describe a choice

between several paths that depends on the context. If

the process flow reaches such a decision, the current

context is evaluated and the process continues at the

corresponding edge.

5.3.1 Sequence Diagrams

In sequence diagrams, context-dependent decisions are

modelled using the combined fragment "alternative" in

combination with context-dependent entry conditions.

The following example shows a user requesting a

machine status. The system evaluates different

characteristics of the machine (heat level, oil level,

etc.) and determines its health. Based on the results (the

current context), different responses are sent to the

user.

Figure 4: Example of a context-dependent decision in a

sequence diagram.

5.3.2 Activity Diagrams

In activity diagrams, context-dependent decisions are

visualized using decision nodes. The following

example shows a maintenance worker who approaches

a machine. Whether the worker has to repair the

machine or just needs to maintain it, depends on the

machine's current status. Like for the previous

example, the context-aware system assesses the status

of the machine and returns the result the result the

worker. Finally, the worker either repairs the machine

or maintains it.

Figure 5: Example of a context-dependent decision in an

activity diagram.

5.3.3 State Machine Diagrams

In state machine diagrams, context-dependent

decisions are visualized using the UML element

decision. The following example shows a machine that

is started. Thereby, the machine can either start

normally, or an error can occur. During the process, the

system evaluates different characteristics of the

machine to determine its health. Depending on the

results, the corresponding the state is set.

Figure 6: Example of a context-dependent decision in a

state machine diagram.

5.4 Context-dependent State Changes

Context-dependent state changes are transition

between different states that are caused by the

appearance of a context. In state machine diagrams,

this is modelled by defining the corresponding context

as the trigger for the transition. The following example

shows a machine that is idle and ready to produce parts.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

522

The transition from "idle" to "producing parts" takes

place as soon as context "C26" becomes present

(production order assigned, worker at the machine,

etc.).

Figure 7: Example of a context-dependent state change.

5.5 Context-dependent Guards

Context-dependent guards visualize that the transition

between different states can only take place, if the

stated context is present. In state machine diagrams,

this is modelled by defining the corresponding context

as the guard for the transition. The following example

shows a state machine diagram of a machine in idle

mode. After triggering the production start, the current

context is evaluated. Only if the context "C26" is

present, the machine starts producing parts.

Figure 8: Example of a context-dependent guard.

6 CONTEXT-AWARE UML

PROFILE

Despite their expressive power, the design templates

are not capable of modelling all contextual properties.

In particular, they do not allow to state the contextually

assisted use cases, the contextual services, or the

related contexts. Therefore, a UML profile is

introduced that provides the required stereotypes to

model these still missing behavioural characteristics.

Using this profile in combination with the design

templates allows to fully visualize the behavioural

characteristics of a context-aware system.

Figure 9: CAS-BEH profile.

6.1 «CAS.UC»

The stereotype «CAS.UC» is used to identify the

contextually assisted use cases. The following example

shows an overview over the operator's activities during

the quality control. The activity "check product

quality" is assisted contextually. Therefore, the use

case is labelled with the stereotype «CAS.UC». In

contrast, the second use case "dispose product" does

not require any contextual support. It is important to

notice, that this does not exclude interactions with the

system in general. Instead, it only clarifies that the

support is not contextual.

Figure 10: Example «CAS.UC».

For larger or recurring activities, it can be

advantageous to outsource the contextual parts into

separate use cases using the "include" or "extend"

relationships. This allows a clear distinction between

the contextually assisted and the not contextually

assisted activities. In the following example, the

regular use case "refill raw materials" is expanded with

the two contextual use cases "determine raw materials"

and "purchase raw materials".

Modelling the Behaviour of Context-aware Systems: State-of-the-Art Analysis and Introduction of a Customized UML Profile

523

Figure 11: Example «CAS.UC» with «include» and

«extend» relationships.

6.2 «CAS.S»

The stereotype «CAS.S» is used to highlight activities

that are assisted by a context-aware system. Further, a

brief description of the provided service can be given

using the tagged value "Service". It is recommended to

keep the statement short and simple to prevent

overloading the model. If necessary, longer

descriptions should be outsourced to more appropriate

tools, like the context-activity matrix (Rosenberger et

al., 2018). Doing so, it might be helpful to assign each

service with a unique ID. The following example

shows a worker who checks the product quality. As

stated, the activity is assisted by the context-dependent

display of the checklist CL-23. Further, the contextual

service can be identified using the ID "S30".

Figure 12: Example «CAS.A».

6.3 «CAS.C»

The stereotype «CAS.C» is used to model contexts. It

can be applied to actions and accept event actions in

activity diagrams as well as to states in state machine

diagrams. The following characteristics must be

considered:

 A central requirement of contexts is their

uniqueness. As described by (Rosenberger et al.,

2018), a context can and must only describe one

specific situation. If the contexts are not unique, the

system will not be able to differentiate between

distinct situations.

 The multiplicity of contexts states that different sets

of contextual attributes can describe equal

situations. For example, a machine is not

functioning properly in case of a technical failure

as well as when the product dimensions did not

match the requirements. Further, different contexts

can require the same contextual service. As an

example, different users at different locations can

require a navigation to the same destination.

 Borders and regions are an important aspect of

continuous attributes (e.g. the position of a user or

the time), as they allow to define areas in which all

contextual attributes describe the same context.

Borders define the boundary values, whereby all

values within are describing the same context. An

example would be “from 8:00 am to 4:00 pm” with

“11:32 am” as acceptable value. In case of regions,

the acceptable area is stated. An example would be

the region “warehouse”. Here, all positions inside

the warehouse belong to the same context.

6.3.1 Actions

In activity diagrams, the contexts of contextually

assisted actions are stated using the stereotype

«CAS.C». The following example shows the quality

control actions performed by the machine operator.

Thereby, he/she is assisted autonomously based on the

systems understanding of the user's context (C52:

machine operator, production order assigned, worker

at the machine, etc.; C53: machine operator, part

faulty, etc.) as well as his/her needs.

Figure 13: Example «CAS.C» labelling an action.

6.3.2 Accept Event Actions

In activity diagrams, contextual accept event actions

are used to state that the start of a process depends on

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

524

the presence of a context. In the following model, the

raw material control process starts after the appearance

of the context "C58" (raw material delivery, warehouse

operator at the warehouse, etc.). According to the

principle of multiplicity, a context can be used to

identify different actions, if the provided contextual

service is identical for all elements. This is modelled

by assigning the same contextual note to all elements.

Figure 14: Example «CAS.C» labelling an accept event

action.

6.3.3 States

Although each context is also a state, not all states are

contexts. As stated in chapter 4, only situations with

relevance to the interaction between a user and the

system are considered as contexts. Therefore, the

stereotype «CAS.C» is used in state machine diagrams

to identify states that are also contexts. The following

example shows the contextual state "producing parts"

(C26: production order assigned, worker at the

machine, etc.). In contrast, the state “idle” is not linked

to any contextual assistance and therefore not labelled.

Compared to the design template "context-dependent

state change", the stereotype «CAS.C» visualizes that

the context not only triggers the state change, but that

the context is present as long as the system remains in

this state.

Figure 15: Example «CAS.C» labelling a state.

7 CASE STUDY

The following chapter describes the application of the

previously introduced design templates and profile

during the analysis and design of a context-aware

system. The case study is based on the industrial use

case of section 3 and follows the process model of

Rosenberger et al. (Rosenberger et al., 2018).

According to this model, the contextual systems

analysis consists of three steps that are performed in

addition to the analysis of the base system. Thereby,

the results of each stage are visualized using the profile

of section 6. Afterwards, a detailed system design is

elaborated that states the contextual system properties.

This design forms the basis for the following

development acitivities.

The contextual systems analysis starts with the

identification and documentation of the contextually

assisted user activities. Use case diagrams are created

and the stereotype «CAS.C» is used to highlight the

identified use cases. Two of these models are shown in

section 6.1. Additionally, activity diagrams are created,

whereby the contextually assisted actions are

highlighted using the stereotype «CAS.S». In the

second step, the contextual services are defined. These

services are provided by the system after recognizing a

context. For each assisted action, the corresponding

service is stated using the tagged value “Service”.

Figure 12 shows an example of the activity diagrams

that are created during this step. Finally, the contexts

are identified and modelled. Thereby, the stereotype

«CAS.C» and the tagged value “Context” are used to

visualize the individual contexts. To keep the diagrams

clear, only the ID notation is used. Figure 13 and 14

show two examples of the final activity diagrams.

After finishing the system analysis, the complete

system is designed. This includes the creation of

different structural and behavioural diagrams, whereby

only the behavioural aspects are addressed by this

publication. These diagrams are created with the help

of the design temples of section 5 and the stereotypes

of section 6. The figures 2 to 8 and figure 15 show

examples of the different models.

8 CONCLUSION AND FURTHER

RESEARCH

In general, graphical models are a crucial tool for the

development of modern software systems. Especially

for the development of context-aware systems, they are

vital to handle the inherent complexity. Currently no

modelling language provides the required elements to

Modelling the Behaviour of Context-aware Systems: State-of-the-Art Analysis and Introduction of a Customized UML Profile

525

visualize the behaviour of such systems. Nevertheless,

the UML already covers a wide spectrum of elements

and has a defined interface for extending the standard

notation. To address the still open research question,

this publication introduced different design templates

and a UML profile. Using these tools allows

expressing the behavioural characteristics of context-

aware systems in a clear and understandable way.

Therefore, we encourage to use the presented case

study as a reference for developing own models.

While the application of the proposed design

templates and profile in the stated use case was a

success, a large-scale evaluation is still missing. To

assess the approach more extensively, different

context-aware systems will be designed with help of

the proposed extension. Having a brother set of use

case applications will also provide a variety of example

implementations that other modellers can rely on.

REFERENCES

Almutairi, S., Bella, G. and Abu-Samaha, A. (2012),

"Specifying security requirements of context aware

system using UML", Seventh International Conference

on Digital Information Management (ICDIM), IEEE, pp.

259-265.

Ayed, D. and Berbers, Y. (2006), "UML profile for the design

of a platform-independent context-aware applications",

Proceedings of the 1st workshop on Model Driven

Development for Middleware (MODDM'06), ACM, pp.

1-5.

Ayed, D., Delanote, D. and Berbers, Y. (2007), "MDD

approach for the development of context-aware

applications", International and Interdisciplinary

Conference on Modeling and Using Context, Springer,

Berlin, Heidelberg, pp. 15-28.

Benselim, M. S. and Seridi-Bouchelaghem, H. (2012),

"Extended UML for the development of context-aware

applications", International Conference on Networked

Digital Technologies, Springer, Berlin, Heidelberg, pp.

33-43.

Choi, J. (2007), "Context-driven requirements analysis",

International Conference on Computational Science and

Its Applications, Springer, Berlin, Heidelberg, pp. 739-

748.

Choi, J. and Lee, Y. (2012), "Use-case driven requirements

analysis for context-aware systems", Computer

Applications for Bio-technology, Multimedia, and

Ubiquitous City, Springer, Berlin, Heidelberg, pp. 202-

209.

Fuentes, L., Gamez, N. and Sanchez, P. (2008), "Aspect-

oriented executable UML models for context-aware

pervasive applications", 5th International Workshop on

Model-based Methodologies for Pervasive and

Embedded Software (MOMPES 2008), IEEE, pp. 34-43.

Grassi, V. and Sindico, A. (2007), "Towards model driven

design of service-based context-aware applications",

International workshop on Engineering of software

services for pervasive environments, ACM pp. 69-74.

Grönniger, H. (2010), Systemmodell-basierte Definition

objektbasierter Modellierungssprachen mit semantischen

Variationspunkten, RWTH Aachen University.

Ohst, D., Welle, M. and Kelter, U. (2003), "Differences

between versions of UML diagrams", In ACM SIGSOFT

Software Engineering Notes Vol. 28, No. 5, ACM, pp.

227-236.

OMG (2015), "Unified Modeling Language specification".

[online] Available at:

https://www.omg.org/spec/UML/2.5 (14.11.2018)

Omasreiter, H. and Metzker, E. (2004), "A context-driven use

case creation process for specifying automotive driver

assistance systems", Proceedings of the 12th

International Requirements Engineering Conference,

IEEE, pp. 334-339.

Perera, C., Zaslavsky, A., Christen, P. and Georgakopoulos,

D. (2014), "Context aware computing for the internet of

things: A survey", IEEE communications surveys &

tutorials, 16(1), IEEE, pp. 414-454.

Rosenberger P. and Gerhard D. (2018a), "Context-awareness

in industrial applications: definition, classification and

use case", Procedia CIRP, Elsivier, pp.1172-1177.

Rosenberger P. and Gerhard D. (2018b), "Evaluating

context-aware systems: state-of-the-art analysis and

introduction of a customized framework", Proceedings

of the International Conference on Computers and

Industrial Engineering CIE48. Manuscript accepted,

publication in progress.

Rosenberger P., Gerhard D. and Rosenberger P. (2018),

"Context-Aware System Analysis: Introduction of a

Process Model for Industrial Applications", Proceedings

of the 20th International Conference on Enterprise

Information Systems - Volume 2: ICEIS, pp. 368-375.

Rupp, C. and Queins, S. (2012), UML 2 glasklar:

Praxiswissen für die UML-Modellierung, Carl Hanser

Verlag GmbH Co KG, Munich.

Sheng, Q. Z. and Benatallah, B. (2005), "ContextUML: a

UML-based modeling language for model-driven

development of context-aware web services",

International Conference on Mobile Business (ICMB

2005), IEEE, pp. 206-212.

Simons, C. (2007), "CMP: a UML context modeling profile

for mobile distributed systems", 40th Annual Hawaii

International Conference on System Sciences (HICSS

2007), IEEE, pp. 289b-289b.

Weilkiens, T. (2014), Systems Engineering mit

SysML/UML: Anforderungen, Analyse, Architektur,

dpunkt. Verlag, Heidelberg.

Van den Bergh, J. and Coninx, K. (2005), "Towards

modeling context-sensitive interactive applications: the

context-sensitive user interface profile (CUP)",

Proceedings of the 2005 ACM symposium on Software

visualization, ACM, pp. 87-94.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

526

