
From Requirements to Automated Acceptance Tests of Interactive
Apps: An Integrated Model-based Testing Approach

Daniel Maciel1, Ana C. R. Paiva1 and Alberto Rodrigues da Silva2

1INESC TEC, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Keywords: Requirements Specification Language (RSL), Test Case Specification, Model-based Testing (MBT), Test
Case Generation, Test Case Execution.

Abstract: Frequently software testing tends to be neglected at the beginning of the projects, only performed on the late
stage. However, it is possible to benefit from combining requirement with testing specification activities. On
one hand, acceptance tests specification will require less manual effort since they are defined or generated au-
tomatically from the requirements specification. On the other hand, the requirements specification itself will
end up having higher quality due to the use of a more structured language, reducing typical problems such as
ambiguity, inconsistency and incorrectness. This research proposes an approach that promotes the practice of
tests specification since the very beginning of projects, and its integration with the requirements specification
itself. It is a model-driven approach that contributes to maintain the requirements and tests alignment, namely
between requirements, test cases, and low-level automated test scripts. To show the applicability of the ap-
proach, two complementary languages are adopted: the ITLingo RSL that is particularly designed to support
both requirements and tests specification; and the Robot language, which is a low-level keyword-based lan-
guage for the specification of test scripts. The approach includes model-to-model transformation techniques,
such as test cases into test scripts transformations. In addition, these test scripts are executed by the Robot test
automation framework.

1 INTRODUCTION

Software systems are constantly evolving becoming
more complex, which increases the need for efficient
and regular testing activity to ensure quality and in-
crease the product confidence. Software systems’
quality is usually evaluated by the software prod-
uct’s ability to meet the implicit and explicit customer
needs. For this purpose, it is important that customers
and developers achieve a mutual understanding of the
features of the software that will be developed.

Requirements Engineering (RE) intends to pro-
vide a shared vision and understanding of systems
among the involved stakeholders and throughout its
life-cycle. The system requirements specification
(SRS) is an important document that helps to struc-
ture the system’s concerns from an RE perspective
and offers several benefits, already reported in liter-
ature (Cockburn, 2001; Kovitz, 1998; Robertson and
Robertson, 2006; Withall, 2007), such as the estab-
lishment of an agreement between users and develop-
ers, support validation and verification of the project
scope, and support future system maintenance activi-

ties. The problem is that the manual effort required to
produce requirements specifications is high and it suf-
fers from problems, such as, incorrectness, inconsis-
tency, incompleteness, and ambiguity (Kovitz, 1998;
Robertson and Robertson, 2006; Pohl, 2010).

ITLingo is a long term initiative with the goal
to research, develop and apply rigorous specification
languages in the IT domain, namely Requirements
Engineering, Testing Engineering and Project Man-
agement (Silva, 2018). ITLingo adopts a linguistic
approach to improve the rigorous of technical docu-
mentation (e.g., SRS, test case specification, project
plans) and, as a consequence, to promote productiv-
ity through re-usability and model transformations, as
well as promote quality through semi-automatic vali-
dation techniques.

RSL (Requirements Specification Language) is
a controlled natural language integrated in ITLingo
which helps the production of requirements specifi-
cations in a systematic, rigorous and consistent way
(da Silva, 2017). RSL includes a rich set of con-
structs logically arranged into views according to RE-

Maciel, D., Paiva, A. and Rodrigues da Silva, A.
From Requirements to Automated Acceptance Tests of Interactive Apps: An Integrated Model-based Testing Approach.
DOI: 10.5220/0007679202650272
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 265-272
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

265

specific concerns that exist at different abstraction
levels, such as business, application, software or even
hardware levels.

Software testing can be used to track and evaluate
the software development process by measuring the
number of tests that pass or fail and by performing
continuous regression testing that allows to maintain
the product quality alerting developers of possible de-
fects as soon as the code is changed. Among differ-
ent types of tests, acceptance tests (Christie, 2008)
are those that have a greater relationship with the re-
quirements. They are used to test with respect to
the user needs, requirements and business processes,
and are conducted to determine whether or not a sys-
tem satisfies the acceptance criteria and to enable
users, customers or other authorized entities to deter-
mine whether or not shall accept the system (ISTQB,
2015). In order to improve the acceptance testing and
requirements specification activities, it may be advan-
tageous to perform these activities in parallel which,
in addition to increasing the quality of the require-
ments, also allows to reduce the time and resources
spent with them. Even though, starting the testing ac-
tivities at the beginning of the project when the re-
quirements are elicited is considered a good practice,
this is not always the case because requirements elic-
itation and testing are separate in traditional develop-
ment processes.

This research proposes and discusses an approach
based on the Model-based Testing (MBT) technique
(ISTQB, 2015) capable of promoting the initiation
of testing activities earlier when specifying require-
ments. MBT is a software testing approach that gen-
erates test cases from abstract representations of the
system, named models, either graphical (e.g., Work-
flow models (Boucher and Mussbacher, 2017), PBGT
(Moreira et al., 2017; Moreira and Paiva, 2014)) or
textual (e.g., requirements documents in an interme-
diate format)(Paiva, 2007).

Figure 1: Approach terminologies.

Following the Figure 1, this approach uses RSL
Requirements specifications produced through a set of
constructs provided by the language according to dif-
ferent concerns. Then, each Requirement is aligned
with RSL Test Cases specifications. From the RSL
Test Cases specifications, it is possible to align and
generate Test scripts that can be executed automati-
cally by the Robot1 test automation tool over the Sys-
tem Under Test (SUT).

1http://robotframework.org/

This paper is organized in 6 sections. Section 2,
overviews the RSL language, showing its architec-
ture, levels of abstraction and concerns. Section 3 in-
troduces the concepts of the selected test automation
tool, the Robot Framework. Section 4 presents the
proposal approach with a running and illustrative ex-
ample. Section 5 identifies and analyzes related work.
Finally, Section 6 presents the conclusion and briefly
mention the future work.

2 RSL LANGUAGE

ITLingo research initiative intends to develop and ap-
ply rigorous specification languages for the IT do-
main, such as requirements engineering and testing
engineering, with the RSL (Silva et al., 2018). RSL
provides a comprehensive set of constructs that might
be logically arranged into views according to specific
concerns. These constructs are defined by linguistic
patterns and represented textually according to con-
crete linguistic styles. RSL is a process- and tool-
independent language, i.e., it can be used and adapted
by different organizations with different processes or
methodologies and supported by multiple types of
software tools (Silva, 2018). This paper focuses on
the RSL constructs particularly supportive of use case
approaches (e.g. actors, data entities and involved re-
lationships).

RSL constructs are logically classified according
to two perspectives (Silva, 2018): abstraction level
and specific concerns they address. The abstraction
levels are: business, application, software and hard-
ware levels. On the other hand, the concerns are:
active structure (subjects), behaviour (actions), pas-
sive structure (objects), requirements, tests, other con-
cerns, relations and sets. (This paper focuses the dis-
cussion on the requirements and tests concerns.)

2.1 Requirements Specification

Figure 2 shows a partial view of the RSL metamodel
that defines a hierarchy of requirement types, namely:
goals, functional requirement, constraint, use case,
user story and quality requirement. (This paper fo-
cuses the discussion on only the UseCase requirement
type.)

RSL specifications based on Use Cases can in-
volve the definition of some views with the respective
constructs and inherent relations:

• DataEntity View: defines the structural entities
that exist in an information system, commonly as-
sociated to data concepts captured and identified
from the domain analysis. A Data Entity denotes

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

266

Figure 2: RSL partial metamodel: The hierarchy of require-
ments.

an individual structural entity that might include
the specification of attributes, foreign keys and
other checkdata constraints;

• DataEntityCluster View: denotes a cluster of sev-
eral structural entities that present a logical ar-
rangements among themselves;

• Actor view: defines the participants of Use Cases
or user stories. Represent end-users and external
systems that interact directly with the system un-
der study, and in some particular situations can
represent timers that trigger the start of some Use
Cases;

• Use Case View defines the use cases of a system
under study. Traditionally a use case means a se-
quence of actions that one or more actors perform
in a system to obtain a particular result (Jacobson
and et al, 2015);

2.2 Tests Specification

Figure 3: RSL partial metamodel: the hierarchy of Tests.

RSL supports the specification and generation of
software tests, directly from requirements specifica-
tions. As showed in Figure 3, RSL provides a hierar-
chy of Test constructs and supports the specification
of the following specializations of test cases (Silva,
2018):
• DataEntityTest apply equivalence class partition-

ing and boundary value analysis techniques over
the domains defined for the DataEntities (Bhat
and Quadri, 2015) in RSL DataEntities;

• UseCaseTest explores multiple sequences of steps
defined in RSL use cases’ scenarios, and asso-
ciates data values to the involved data entities;

• StateMachineTest apply different algorithms to
traverse the RSL state machines so that it is possi-
ble to define different test cases that correspond to
valid or invalid paths through the respective state
machine;

• AcceptanceCriteriaTest define acceptance criteria
based on two distinct approaches: scenario based
(i.e., Given-When-Then pattern) or rule based;
this test case is applied generically to any type of
RSL Requirement

Regardless of these specializations, a Test shall be
defined as Valid or Invalid depending on the intended
situation. In addition, it may establish relationships
with other test cases through the TestsRelation; these
relationships can be further classified as Requires,
Supports, Obstructs, Conflicts, Identical, and Relates.

3 ROBOT FRAMEWORK

Test cases can be executed manually by the tester or
automatically by a test automation tool. When a test
case is executed manually, the tester must perform
all test cases, having to repeat the same tests several
times throughout the product life cycle. On the other
hand, when test cases are run automatically, there is
the initial effort to develop test scripts, but from there,
the execution process will be automatic. So if a test
case has to run many times, the automation effort will
be less than the effort of frequent manual execution.

The Robot framework stands out for its powerful
keyword-based language that includes out-of-the-box
libraries. Robot does not require any kind of imple-
mentation, since it is possible to use keywords with
implicit implementations (with the use of specific li-
braries such as Selenium2). Robot is an open source
framework, related to the acceptance test-driven de-
velopment (ATDD) (ISTQB, 2014), which is inde-
pendent of the operating system and is natively im-
plemented in Python and Java, and can be executed in
Jython (JVM) or IronPython (.NET) .

The script structure is simple and can be divided
into four sections. The first section, Settings, where
paths to auxiliary files and libraries used are config-
ured. The second section, Variables, specifies the list
of variables that are used, as well as the associated
values. The third and most important section is the
Test Cases, where test cases are defined. Lastly, the

2https://www.seleniumhq.org/

From Requirements to Automated Acceptance Tests of Interactive Apps: An Integrated Model-based Testing Approach

267

Keywords section define custom keywords to imple-
ment the test cases described in the Test Cases sec-
tion. Among the sections mentioned above, only the
Test Cases section is mandatory.

As can be seen in the example presented in List-
ing 1, the libraries used are initially defined. One of
the most used is the Selenium library that introduces
interactive applications test-related keywords, such as
‘Open Browser’ and ‘Input text’. The variables sec-
tion, assigns ‘Blouse’ to variable ‘product’ so, when-
ever ‘product’ is used, it will have value ‘Blouse’.
The Keywords section defines keywords and their pa-
rameters. In test cases using keywords, the values are
assigned to the corresponding parameters by placing
the values in the same place where parameters are de-
fined.

Listing 1: Robot Framework specification example.

*** Settings ***
Documentation Web Store Acceptance Test
Library Selenium2Library

*** Variables ***
${product} Blouse

*** Test Cases ***
Login
Open the browser on <www.http://

automationpractice.com>
Input Text id=searchBar ${product}
...

*** Keywords ***
Open the browser on <$(url)>

Open Browser $(url)

4 PROPOSED APPROACH

This research intends to encourage and support both
requirements and tests practices, namely by generat-
ing test cases from requirements or at least foster the
alignment of such test cases with requirements.

The proposed approach (as defined in Figure 4)
begins with the (1) requirements specification that
serves as a basis for the (2) test cases specification,
which can be further (3) refined by the tester. Then,
(4) tests scripts are generated automatically from the
high-level test cases, and (5) associated the Graphical
User Interface (GUI) elements. Finally, (6) these test
scripts are executed generating a test report.

To illustrate and discuss the suitability of the ap-
proach, we applied it on an web application: the Web
Store3, because this was specifically designed to be

3http://automationpractice.com

Figure 4: Proposed approach (UML activity diagram).

tested.

4.1 Specify Requirements

The first task is the requirements definition that usu-
ally involves the intervention of requirements engi-
neers, stakeholders and eventually testers. In this
example, the specification focuses on the most rele-
vant RSL constructors at the application and software
level, namely: Actor, UseCase, DataEntity. Listing
2 shows the constructs defined for the ”search of a
product in the store”.

4.2 Specify Test Cases

Use Case Tests are derived from the various process
flows expressed by a RSL UseCase. Each test con-
tains multiple test scenarios. A test scenario encom-
passes of a group of test steps and shall be executed
by an actor (Silva et al., 2018). UseCaseTest construct
begins by defining the test set, including ID, name and

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

268

the use case type. Then it encompasses the references
keys [Use Case] indicating the Use Case in which the
test is proceeding and [DataEntity] referring to a pos-
sible data entity that is managed (Silva et al., 2018).

Listing 2: Example of a RSL specification of Data Entity
Actor and UseCase.

DataEntity e_Product "Product" : Master [
attribute ID "ID" : Integer [isUnique]
attribute title "title" : Text [isNotNull]
attribute price "Price" : Integer [

isNotNull]
attribute composition "Composition" : Text
attribute style "Style" : Text
attribute properties "Properties" : Text
primaryKey (ID)]

Actor aU_Customer "Customer" : User

UseCase uc_Search "Search Products" :
EntitiesSearch [

actorInitiates aU_Customer
dataEntity e_Product]

4.3 Refine Test Cases

The generated test cases may be subject to manual
refinements (e.g., assign values to entities and cre-
ate temporary variables), resulting in other test cases.
The DataEntities and the temporary Variables are
fundamental for data transmission between TestSteps
involved in the test are defined within TestScenarios.

The values of DataEntities and Variables are de-
fined in a tabular format with several rows. In this
way, when an attribute is associated with N values,
it means that this scenario may be executed N times,
once for each value in the table.

Each scenario is also formed by Test-
Steps. A TestStep can have four types (Ac-
tor PrepareData, Actor CallSystem, System Execute,
System ReturnResult) and several OperationExten-
sions (see Table 1).

It is in the test cases that are introduced the funda-
mental concepts for the test scripts generation, which
include test scenarios and test steps. Listing 3 shows
the test cases for the ”search of products in the store”.

In the UseCaseTest specification the respective
UseCase and DataEntities specifications are associ-
ated and temporary variables are initialized, such as
the name of the product that will be searched and the
number of expected results. Also in the UseCaseTest,
the TestScenarios are specified where the values are
assigned to the variables and inserted the TestSteps,
which contain the necessary information for the test
scripts.

Listing 3: Example of ’Search Products’ test case TSL spec-
ification.

UseCaseTest t_uc_Search "Search Products" :
Valid [

useCase uc_Search actorInitiates aU_User
description "As a User I want to search

for a product by name or descripton"
variable v1 [
attribute search: String
attribute expectedResults: String]
testScenario Search_Products :Main [
isConcrete
variable v1 withValues (
| v1.search | v1.expectedResults +|
| "Blouse" | ’1’ +|
| "Summer" | ’3’ +|)
step s1:Actor_CallSystem:Click element(’

Home’)[\"The User clicks on the ’Home
’ element\"]

step s2:Actor_PrepareData:PostData
readFrom v1.search ["The User writes
’blouse’ in the search text field"]

step s3:Actor_CallSystem:Click button(’
Search_Product’)["The User clicks on
the ’Search’ button"]

step s4:System_Execute:Check
elementOnScreen(limit v1.
expectedResults)["The System checks
if the number of results is the
expected one"]]

4.4 Generate Test Scripts

Once the specification is complete, it follows the gen-
eration of the test scripts for the Robot tool. This
generation process is based on relations established
between the RSL specification and the syntax of the
Robot framework. It is possible to make an associa-
tion of the the RSL concepts with the Robot frame-
work syntax and some of the keywords made avail-
able by the Selenium library (Table 1).

First, in Actor PrepareData type, it is expected
that any type of data will be entered by the actor, such
as text, passwords or even choose a file to upload. The
value of the data to be entered is acquired through
the DataEntities defined previously in the TestSce-
nario when the OperationExtension of the TestStep is
‘readFrom’ followed by the identifiers of the respec-
tive DataEntity/Variable attributes.

Second, the Actor CallSystem type associates the
actions performed by the actor in the application, e.g.,
click a button, select checkbox. In OperationExten-
sion the type of action (e.g., Click, Select, Mouse
Over) and the element on which such action takes
place (e.g., button, checkbox, image) are identified.

Third, there is the System ReturnResult that is
used when it is necessary to collect application data to

From Requirements to Automated Acceptance Tests of Interactive Apps: An Integrated Model-based Testing Approach

269

Table 1: Mapping between test case (RSL) and test scripts (Robot).
Step Type Operation Extension Type Operation Extension Keyword generated

Actor PrepareData Input readFrom INPUT TEXT $locator $variable
Actor CallSystem Select checkbox SELECT CHECKBOX $locator

list by value SELECT FROM LIST BY VALUE $locator $value
Click button CLICK BUTTON $locator

element CLICK ELEMENT $locator
Over - MOUSE OVER $locator

System ReturnResult GetData writeTo $variable GET TEXT $locator
System Execute OpenBrowser - OPEN BROWSER $url

CloseBrowser - CLOSE BROSER
PostData readFrom INPUT TEXT $locator $variable
Check textOnPage PAGE SHOULD CONTAIN $text

elementOnPage PAGE SHOULD CONTAIN ELEMENT $locator $msg? $limit?
textOnElement ELEMENT SHOULD CONTAIN $locator $text
responseTime WAIT UNTIL PAGE CONTAIN ELEMENT $locator $timeout?
variableValue $variable = $expected
jScript EXECUTE JAVASCRIPT $code

be stored in temporary variables that will normally be
used for some type of verification. In this type of op-
eration, the OperationExtension is ‘writeTo’ followed
by the attribute of the variable where the value will be
stored.

Finally, there is the System Execute where the ac-
tions that are executed by the system, e.g., ‘Open-
Browser’ and ‘Check’, are associated. Each TestSce-
nario must end with a Check in order to evaluate the
success/insuccess of the test. The types of checks in-
troduced are: text on element, element on page, text
on element, response time, variable value or custom.

For instance, the code of the Listing 4 is gener-
ated from the test case of the Listing 3 through the
mapping discussed.

At the end of this phase, the test scripts are created
with the base structure of the Robot framework syntax
and the keywords of the Selenium library.

Listing 4: Generated Test Script example (in Robot).

Search_Products-Test_1
[Documentation] As a User I want to search

for a product by name or descripton
Click element [Home]
Input text [Point&Click] ${search1}
Click button [Search_Product]
Page Should Contain Element [Point&Click]

limit=${expectedResults1}

Search_Products-Test_2
[Documentation] As a User I want to search

for a product by name or descripton
Click element [Home]
Input text [Point&Click] ${search2}
Click button [Search_Product]
Page Should Contain Element [Point&Click]

limit=${expectedResults2}

4.5 Map GUI Elements to Keywords

At this stage, there is the need to complete the test
scripts generated in the previous phase with the loca-
tors (e.g. GUI element identifier, xpath) used for se-
lecting the target GUI elements (Leotta et al., 2016).
Web applications interfaces are formed by sets of
elements, namely, buttons, message boxes, forms,
among other elements that allow to increase the User
Interface (UI) interactivity. Each of these elements
has a specific locator, which allows it to be recognized
among all elements of the UI. During the acceptance
testing activity, these elements are used to achieve a
certain position defined by the test case. In order to
automate the acceptance test cases generation and ex-
ecution, it is necessary to identify these locators to
be able to use the respective GUI elements during the
execution of the test.

Listing 5: Test Script with GUI elements xpath (in Robot).

Search_Products-Test_1
[Documentation] As a User I want to

search for a product by name or
descripton

Click Element //*[@id="header_logo"]/a/img
Input text //*[@id="search_query_top"] ${

search1}
Click button //*[@id="searchbox"]/button
Page should contain element //*[@id="

center_column"]/ul/li limit=${
expectedResults1}

Search_Products-Test_2
[Documentation] As a User I want to

search for a product by name or
descripton

Click Element //*[@id="header_logo"]/a/img
Input text //*[@id="search_query_top"] ${

search2}
Click button //*[@id="searchbox"]/button
Page should contain element //*[@id="

center_column"]/ul/li limit=${
expectedResults2}

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

270

Since element identifiers usually do not follow any
specific pattern, it becomes complex to do an auto-
matic mapping. So, it is necessary the manual in-
tervention of a technician to make the mapping be-
tween the GUI elements and the test scripts keywords.
To establish this mapping the user can insert the cor-
responding identifiers of the UI elements in the test
script or use a ‘point and click’ process (similar to the
one in (Paiva et al., 2005)) where he points the UI ele-
ment on screen to capture the identifier of the clicked
element.

The elements of Listing 4 within the straight
parentheses ([]) are semi-automatically replaced by
the xpath of the web elements of the page to be tested
resulting the test script in Listing 5.

4.6 Execute Tests

Once the script is completely filled in, the tests are run
and the test results are displayed, as shown in Figure
5. In this test, when searching for ‘Blouse’, the test
returned one result as expected and so, the test suc-
ceeded. On the other hand, when searching for ‘Sum-
mer’, the test returned 4 which is different from the
expected result and so, the test failed.

Figure 5: Result of the test case execution.

5 RELATED WORK

Acceptance test cases for complex IT systems are usu-
ally done manually and derived from functional re-
quirements written in natural language. This manual
process is challenging and time consuming.

Generating automatically test cases from textual
or graphical models is not a new idea. Some ap-
proaches require that the system is captured by graph-
ical models (e.g. worfkflow models (Boucher and
Mussbacher, 2017) and domain models (Wang et al.,
2015)) and others require textual models (e.g., use
cases (Hsieh et al., 2013; Moketar et al., 2016)).

There is an approach that uses workflow nota-
tion focused on the casual relationship of the steps
in a workflow without requiring the specification of
detailed message exchange and data (Boucher and
Mussbacher, 2017). These models are transformed
into end-to-end acceptance test cases that can be auto-
mated with the Junit4 testing framework. Comparing

4https://junit.org/junit5/

with the approach proposed in this paper, this tech-
nique does not allow the alignment between require-
ments and tests.

Use Case Modeling for System Tests Generation
(UMTG) is an approach that automatically generates
system test cases from use case specifications and a
domain model, the latter including a class diagram
and constraints (Wang et al., 2015). Even though sup-
port test cases generation, this approach does not in-
tegrate any test execution automation tool associated
to run the generated tests.

Hsieh et al. proposed the TestDuo framework for
generating and executing acceptance tests from use
cases (Hsieh et al., 2013). In this approach specific
use case annotations are added by testers to explicate
system behaviours. Similar to the approach presented,
Robot compatible test cases are then generated. How-
ever, TestDuo does not cover the alignment between
requirements and test cases.

TestMEReq is an automated tool for early valida-
tion of requirements (Moketar et al., 2016). This tool
integrates semi-formalized abstract models called Es-
sential Use Cases. Abstract test cases that describe
the tested functionality of the requirements are gener-
ated from the abstract models, which helps to validate
requirements. However, this approach does not con-
template the generated tests execution.

In contrast to the tools and approaches refer above,
our proposed approach particularly promotes (i) the
alignment between high-level requirements and tests
specifications, with low-level test scripts, that is en-
sured by the adoption of languages like RSL and
Robol, as well as (ii) semi-automatic generation and
execution of test scripts, by the integration with tools
like Robot framework.

6 CONCLUSION

This paper describes a model-based testing approach
where acceptance test cases are derived from RSL re-
quirements specifications and automatically adapted
to the test automation Robot framework tool to be ex-
ecuted over a web application under test.

The process begins with the requirements elicita-
tion and specification in the RSL. From these require-
ment specifications are generated test case specifica-
tions. When the test cases are complete, it is made the
automatic generation of test scripts executable by the
Robot framework. This generation is based on map-
pings between the characteristic constructs of RSL
and the GUI elements identifiers of the SUT with the
syntax of the Robot automation tool. Once test scripts
are completed, they are executed and the results pre-

From Requirements to Automated Acceptance Tests of Interactive Apps: An Integrated Model-based Testing Approach

271

sented in a test report.
This approach allows to encourage the practice of

testing when specifying requirements. In addition to
reducing manual effort, time and resources dedicated
to the development of tests, also ensures higher qual-
ity of requirements. The RSL requirements specifi-
cation for the described generation will make the re-
quirements specified more consistently and systemat-
ically and therefore less prone to errors and ambigui-
ties.

As a future work, we intend to apply this ap-
proach in real context scenarios and automate further
the overall process by automatically generating the
test specification from RSL specification and convert-
ing these test specifications into executable test scripts
that may be executed by other test automation tools,
such as Gherkin/Cucumber5.

ACKNOWLEDGEMENTS

This work was partially supported by national
funds under FCT projects UID/CEC/50021/2019 and
02/SAICT/2017/29360.

REFERENCES

Bhat, A. and Quadri, S. (2015). Equivalence class parti-
tioning and boundary value analysis - A review. 2nd
International Conference on Computing for Sustain-
able Global Development (INDIACom).

Boucher, M. and Mussbacher, G. (2017). Transforming
Workflow Models into Automated End-to-End Accep-
tance Test Cases. Proceedings - 2017 IEEE/ACM 9th
International Workshop on Modelling in Software En-
gineering, MiSE 2017, pages 68–74.

Christie, J. (2008). Test automation - does it make sense?
TE - Testing Experience, The Magazine for Profes-
sional, pages 73––77.

Cockburn, A. (2001). Writing Effecive Use Cases. Addison-
Wesley.

da Silva, A. R. (2017). Linguistic patterns and linguis-
tic styles for requirements specification (i): An ap-
plication case with the rigorous rsl/business-level lan-
guage. In Proceedings of the 22Nd European Confer-
ence on Pattern Languages of Programs, EuroPLoP
’17, pages 22:1–22:27, New York, NY, USA. ACM.

Hsieh, C. Y., Tsai, C. H., and Cheng, Y. C. (2013). Test-
Duo: A framework for generating and executing auto-
mated acceptance tests from use cases. 2013 8th In-
ternational Workshop on Automation of Software Test,
AST 2013 - Proceedings, pages 89–92.

ISTQB (2014). ISTQB R© Foundation Level Extension Syl-
labus Agile Tester.

5https://cucumber.io/

ISTQB (2015). ISTQB R© Foundation Level Certified
Model-Based Tester Syllabus.

Jacobson, I. and et al (2015). Object oreinted software engi-
neering: A use case driven approach. Addison-Wesley.

Kovitz, B. (1998). Pratical software requirements: Manual
of content and style. manning.

Leotta, M., Clerissi, D., Ricca, F., and Tonella, P. (2016).
Approaches and Tools for Automated End-to-End Web
Testing, volume 101. Elsevier Inc., 1 edition.

Moketar, N., Kamalrudin, M., Sidek, S., Robinson, M.,
and Grundy, J. (2016). TestMEReq: Generating ab-
stract tests for requirements validation. Proceedings -
3rd International Workshop on Software Engineering
Research and Industrial Practice, SER and IP 2016,
pages 39–45.

Moreira, R. M. and Paiva, A. C. (2014). PBGT Tool:
An Integrated Modeling and Testing Environment for
Pattern-based GUI Testing. In Proceedings of the 29th
ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 863–866, New
York, NY, USA. ACM.

Moreira, R. M. L. M., Paiva, A. C. R., Nabuco, M., and
Memon, A. (2017). Pattern-based GUI testing: Bridg-
ing the gap between design and quality assurance.
Softw. Test., Verif. Reliab., 27(3).

Paiva, A. C. R. (2007). Automated Specification-based Test-
ing of Graphical User Interfaces. PhD thesis, Faculty
of Engineering of the University of Porto, Porto, Por-
tugal.

Paiva, A. C. R., Faria, J. C. P., Tillmann, N., and Vidal, R.
F. A. M. (2005). A model-to-implementation map-
ping tool for automated model-based GUI testing. In
Formal Methods and Software Engineering, 7th Inter-
national Conference on Formal Engineering Methods,
ICFEM 2005, Manchester, UK, November 1-4, 2005,
Proceedings, pages 450–464.

Pohl, K. (2010). Requirements Engineering: Fundamen-
tals, Principles, and Techniques. Springer, First edi-
tion.

Robertson, S. and Robertson, J. (2006). Mastering the Re-
quirements Process. Addison-Wesley, 2nd edition edi-
tion.

Silva, A. R. (2018). Rigorous Requirements Specifica-
tion with the RSL Language: Focus on Uses Cases.
INESC-ID Technical Report.

Silva, A. R., Paiva, A. C., and Silva, V. (2018). To-
wards a Test Speccification Language for Information
Systems: Focus on Data Entity and State Machine
Tests. Proceedings of the 6th International Confer-
ence on Model-Driven Engineering and Software De-
velopment (MODELSWARD 2018).

Wang, C., Pastore, F., Goknil, A., Briand, L., and Iqbal, Z.
(2015). Automatic Generation of System Test Cases
from Use Case Specifications. Proceedings of the
2015 International Symposium on Software Testing
and Analysis, pages 385–396.

Withall, S. (2007). Software Requirements Patterns. Mi-
crosoft Press.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

272

