
A Model-Driven Approach for Developing Responsive Web Apps

João Seixas, André Ribeiro and Alberto Rodrigues da Silva
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Keywords: Model-Driven Development, Responsive Web Application, Web Engineering.

Abstract: Nowadays users have multiple devices to access a myriad of web and mobile applications. This has

increased the importance of developing such applications in a responsive way, i.e. with the ability to

seamlessly display their contents on multiple devices. This paper proposes the XIS-Web technology as a

model-driven approach focused in the development of responsive web applications. XIS-Web technology

includes two main parts: the XIS-Web modeling language, implemented as a UML profile; and the XIS-

Web framework, which is a set of integrated software tools. XIS-Web stands out in four key aspects:

supports the modeling of web applications around six viewpoints, which ultimately promotes the separation

of concerns that is key to managing complexity; generates user-interface models from extended use-case

models, relieving this cumbersome and time consuming task from the user; employs latest generation web

technologies (such as HTML5, JavaScript, CSS) that allow the required flexibility of developing responsive

web applications; and allows the creation of platform-independent models without requiring a significant

learning curve. This paper also presents an evaluation conducted in a controlled environment with a group

of independent users, and briefly introduces simple case studies.

1 INTRODUCTION

The fragmentation of devices capable to accessing

the Web has increased the importance of developing

responsive applications. As an effect, software

complexity increased over the years, due to having

to design the same application several times, in order

to run properly on any device or platform (Charland

and Leroux, 2011; Heitktter et al., 2012). Several

Web Engineering approaches (Kappel et al., 2006;

Schwinger et al., 2008; Wakil and Jawawi, 2017) to

solve these problems have been proposed, namely

by adopting new generation of Web languages like

HTML, JavaScript and CSS. Both these approaches

address the issue by allowing flexibility in the User

Interface (UI), having it scale or even change

according to the size and shape of the device in

which is being displayed. However, designing

responsive web applications, even with the

mentioned approaches, still requires technical and

programming skills. Therefore, it is useful to define

an abstraction layer on the top of these software

frameworks, allowing both technical and non-

technical stakeholders to participate in the design

and development of these apps. Model-driven

development (MDD) is an emerging approach to

abstract the complexity of developing software

based on models that may represent the structure and

behavior of such apps (Atkinson and Khüne, 2003;

Saraiva and Silva, 2008 and 2010; Liddle, 2011;

Silva, 2015; Wakil and Jawawi, 2017).

This paper describes XIS-Web, a MDD approach

particularly focused in the development of

responsive web applications. XIS-Web is based on

previous work, namely it reuses and adapts concepts

from XIS (Silva et al. 2007), XIS-Mobile (Ribeiro

and Silva, 2014), WebRatio (Ceri et al., 2002) and

IFML (OMG, 2015).

XIS (Silva et al. 2007) proposed a MDD

approach for designing web and desktop interactive

systems at a platform-independent model (PIM)

level, using a domain specific language defined as a

UML profile, and from these models automatically

generate source code. The XIS UML profile is

organized in three main sets of views: Entities,

UseCases and User-Interfaces. XIS introduced the

idea of smart and dummy modeling approaches

(Silva et al. 2007). According to the smart approach,

the designer only needs to define the Domain,

BusinessEntities, Actors and UseCases views, and

based on a predefined set of UI patterns, the User-

Interfaces views are automatically generated through

Model-to-Model (M2M) transformations. Then it is

possible to refine these UI models through direct

Seixas, J., Ribeiro, A. and Rodrigues da Silva, A.
A Model-Driven Approach for Developing Responsive Web Apps.
DOI: 10.5220/0007678302570264
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 257-264
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

257

authoring/design. On the other hand, in the dummy

approach, the designer needs to manually define all

the views, what is cumbersome and time-consuming.

The XIS-Mobile approach was defined with the

focus on developing cross-platform mobile

applications (Ribeiro and Silva, 2014). XIS-Mobile

proposed a DSL that reuses the best concepts

proposed originally on XIS, namely its multi-view

organization and modeling approaches. XIS-Mobile

introduced new concepts (e.g. new types of widgets,

internet connection, localization and gesture

support) to be more appropriate to design mobile

applications scenarios. XIS-Mobile is organized in

six views: Domain, BusinessEntities, UseCases,

InteractionSpace, NavigationSpace and

Architectural. While the first four views share the

same constructs as in XIS, the latter is totally new

and represents the interactions between the mobile

application and external entities (e.g. web servers or

providers). XIS-Mobile is supported by a framework

that allows designing and validating the models

described in the XIS-Mobile language, generating

other models from them (through M2M

transformations) and in the end generating native

source code for multiple mobile platforms (Android,

iOS and Windows Phone), through Model-to-Text

(M2T) transformations.

WebML was a visual notation and an approach

for designing Web applications at a PIM level. A

WebML's Web app specification is defined by four

complementary views (Ceri et al., 2002): Structural,

Hypertext, Presentation and Personalization models.

First, the Structural view defines the data content of

the site, in terms of the relevant entities and

relationships. In spite WebML did not propose any

language for data modelling, it recommends to use

UML class diagrams. Second, Hypertext view

describes the site structure, which consists of two

sub-models: (i) the Composition view that specifies

the pages of the web site, and which content units

make up each page; and (ii) the Navigation view that

expresses how pages and content units are linked to

support their navigation. Third, Presentation view

describes the layout and graphic appearance of

pages, independently of the output device and of the

rendering language, by means of an abstract XML

syntax. Fourth, the Personalization view allows

defining users and user groups as a form of

predefined entities, and the features that these

entities can be used for defining profile-driven data

and business rules, which may guarantee an

effective personalization of the site.

WebML was then extended to cover a wider

spectrum of front-end interfaces, thus resulting in

the IFML (Interaction Flow Modeling Language),

adopted as a standard by the Object Management

Group (OMG, 2015). IFML provides a consistent

visual notation for the definition of PIM interaction

flow models that describe the main aspects of an

application front-end, namely: the view part of the

application, made of view containers and view

components; the objects that embody the state of the

application, and the references to business logic

actions that can be executed; the binding of view

components to data objects and events; the control

logic that determines the actions to be executed after

an event occurrence; and the distribution of control,

data, and business logic at the different tiers of the

architecture. There are tools that already support the

IFML, such as WebRatio or Sparxs Systems EA.

XIS-Web technology includes both a modelling

language and a companion framework tool support.

The language is defined as a UML profile and

provides the necessary concepts for web application

modeling. It is currently built on top of Sparx

Systems Enterprise Architect (EA) and Eclipse

Modeling Framework (EMF) for the M2M and M2T

transformations, respectively.

The paper is organized in seven sections. Section

2 details the key features of the language. Section 3

describes the framework tool support. Section 4

discusses some initial experiments and their

respective evaluation. Finally, Section 5 summarizes

the key points and raises open and future work.

2 XIS-WEB LANGUAGE

The XIS-Web takes advantage of its heritage by

reusing concepts originally found in XIS, XIS-

Mobile, WebML and IFML, and using its multi-

view organization. As depicted in Fig.1, XIS-Web

views maintain the same goal and detail as the

viewpoints proposed originally in XIS-Mobile;

however, some of their inner constructs are new for

adding a different ability to express concepts

commonly present in web applications. For instance,

there are constructs with different options, like in the

Architectural View where a “XisInternalService”

can be a webcam or microphone, and a

“XisRemoteService” can be a WebAPI or JavaScript

service. Moreover, the InteractionSpace View is

structurally different. While it contains building

blocks common to both mobile and web applications

such as buttons, labels or textboxes, there are some

that only make sense in the web application domain

(e.g. IFrames, embedded HTML and some types of

input controls).

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

258

The User-Interfaces View contains the key

models when it comes to the definition of the web

application’s appearance and behavior. It comprises

the InteractionSpace and NavigationSpace views.

The InteractionSpace describes the structure and

layout of each web page or screen, here designated

as interaction space, while the NavigationSpace

details the hierarchy and navigation flow between

each interaction space. Below we provide a more

detailed explanation of each one of these views.

2.1 NavigationSpace View

The NavigationSpace (NS) View is one of the

simplest, yet fundamental views of XIS-Web. It

allows the user to detail the flow and hierarchy of

the different interaction spaces. The stereotypes

present in this view are: the XisInteractionSpace,

which corresponds to an interaction space of the

application, and the XisInteractionSpaceAssociation,

which represents the navigation or transition

between the interaction spaces. Each

XisInteractionSpaceAssociation contain the

information of the action name that caused the

navigation. There could be several actions that can

cause navigation to a given InteractionSpace.

2.2 InteractionSpace View

The InteractionSpace (IS) View is the view that has

the highest number of stereotypes available, hence

the most complex one. The majority of the

stereotypes for this view are the widgets usually

present in the UI of web applications. The IS view

represents the UI layout, the events that some

widgets can trigger and the gestures used to interact

with the application. The modeling of this view is

done via a Composite Class Diagram. The process

starts with the creation of a XisInteractionSpace, a

class representing the screen, that should contain one

or more XisWidgets (classes representing the UI

widgets or controls). A Business Entity (BE) is

connected to the IS through a XisDomainAssociation,

this define the domain entities manipulated in the

context of that IS.

As depicted in Fig.2, XisWidget can either be: (i)

XisCompositeWidget, a container widget that

groups other XisWidgets; or (ii) XisSimpleWidget,

which represents the set of simple controls, i.e.,

controls that do not contain other widgets. Every

XisWidget must have a value, which is defined

using the tagged value “value” that can either be

bound to a domain entity’s attribute value or to a

constant value. In the first case, this tagged value is

filled following the expression: <EntityName>.

<AttributeName>, where EntityName corresponds

to the name of an entity belonging to the business

entity associated to the widget’s interaction space,

and AttributeName to an attribute of that entity.

Below, we detail XisSimpleWidget and

XisCompositeWidget.

XisCompositeWidget. We divided the

composite widgets in two groups: the ones that are

lists and the others. The XisAbstractList is an

abstract stereotype that aggregates the lists. It

specializes in: XisList, XisMenu, XisSlider and

XisDropdown. A XisList can be seen as the ordinary

list of items. To represent that, we have defined that

a XisList can only contain XisListItems, and since

these are also composite widgets they can have any

simple widget inside. This allows the user to have

any custom type of list.

Figure 1: Dependencies between the different XIS-Web

views.

Each screen has its own menu, providing the actions

that the user can perform on it. This is accomplished

via the XisMenu stereotype that is composed of

XisMenuItem. XisSlider is different from the

previous ones in the sense that is also an abstract

stereotype. It is a generalization of the

XisImageSlider that aggregates XisImages. The last

XisAbstractList is the XisDropdown, which is much

like a XisMenu with the difference that it can only

A Model-Driven Approach for Developing Responsive Web Apps

259

Figure 2: InteractionSpace View metamodel (partial view).

Figure 3: XIS-Web technologies and development process.

contain one or more XisLabels.

Other types of composite widgets are the

XisForm, XisDialog and XisVisibilityBoundary. A

XisForm represents the form element that is present

in web pages. A form typically is made of labels

followed by an input field, making a XisForm

having XisLabels followed by XisInputs inside. The

XisDialog stereotype corresponds to the alert dialog

in a web page. A XisVisibilityBoundary is a

stereotype that allows the user to define different

views inside the same screen.

2.3 Design Approaches

XIS-Web proposes two modelling approaches that

leverage model transformations, the “dummy” and

smart” approaches.

With the “dummy” approach the user shall

define all views (the Architectural View is optional,

since there may not be interactions with external

services) including the NS and IS views. This

approach is desirable if the user wants highly

customized interaction spaces and to have full

control of the model design. When the model is

finished, the user can trigger the generation of

source code, through a M2T transformations.

Taking the models defined by the user and

applying M2M transformations, the “smart”

approach automatically generates the User-Interface

views. Currently XIS-Web generates interaction

spaces applying the well-known “Master-Detail” UI

design pattern (Scott and Neil, 2009). Following the

guidelines stated by this pattern we shall have per

each BE two interaction spaces: the MasterIS, where

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

260

all of its instances are displayed in a list with bulk

actions (CRUD operations); and the DetailIS, where

the different attributes of the BE are viewed inside a

form element. The configuration of M2M

transformations and the application of this UI design

pattern is done in the UseCases View. A

XisUseCase abstracts the pattern, via its tagged

values that define the CRUD operations that will be

available in the generated interaction spaces.

Interaction spaces have a common infrastructure,

consisting of site logo, site map, followed by the

content of the page and finishing with a footer. If it

is a MasterIS the menu containing the action is

located before the content of the page, in the case of

a DetailIS the actions are located bellow the content.

In the DetailIS, the input fields present in the form,

are directly derived from the attributes present in the

Master entity.

3 XIS-WEB FRAMEWORK

The major advantage of using the XIS-Web

language is the fact that it has a framework that

supports an MDD-based approach to ease the

development process (see Fig. 3). The framework

relies in Sparx Enterprise Architect (EA) as main

environment, and takes advantages of its Model

Driven Generation Technologies in order to validate

and apply M2M transformations. It also uses the

Acceleo (http://www.eclipse.org/acceleo) plugin

present in the Eclipse Modeling Framework to

perform the M2T transformations.

Model-to-Model Transformations (M2M). To

correctly use the XIS-Web stereotypes in each

diagram (in EA), the Visual Editor was implemented

through an MDG Technology plugin. This is fully

compliant with the OMG specification for UML2,

and so it has a very good support for UML profiles.

It allows for the creation of toolboxes, diagrams,

project templates and patterns customized for the

profile being developed. Provided that users can

make mistakes, a model validation was implemented

to make sure that the models are suitable for further

generation. This avoids the burden of having to

correct mistakes further down the development

process chain and improves the overall quality of the

models and the code itself. This validation is done

using the Model Validation API provided by EA,

which allows the definition of custom error

messages, levels of severity to each rule and the

immediate navigation to the element in fault. Once

the model is validated, the User-Interface views can

be generated. The M2M transformation is

implemented using EA’s Automation Interface,

which offers an API for retrieving and managing

data contained in the EA repository.

Model-to-Text Transformations (M2T). The

M2T generator is based on Acceleo. It is a template-

based code generator framework that implements the

MOF MTL (Model to Text Language) and it is

compatible with any kind of EMF model. Typically,

the code templates have a static part (regular text)

and a dynamic part that changes in function of the

model (Acceleo annotations). Currently in XIS-Web,

the code generation of a web application is

structured in three parts: Content,

Hypertext/Application and Presentation. For the

Content layer, WebSQL was the technology of

choice due to its simplicity and seamless integration

with the other technologies. The

Hypertext/Application layer is implemented using

two technologies that complement each other,

HTML5 and JavaScript. Ultimately, for the

Presentation layer, we used CSS3 as the main

technology, namely applying the Boostrap library

which is the most popular framework for developing

responsive web applications.

4 EVALUATION

The evaluation of XIS-Web involves the following

aspects. First, a set of case studies were developed

and evaluated. Second, a pilot-user test session was

conducted and preliminary results were obtained.

4.1 Case Studies

Some apps have been developed with the XIS-Web

technology; we introduce and report some findings

obtained from two of these experiments.

Case Study A: The “TimeSlot Booking App” is

an application that allows the management of

TimeSlots booked by Students. Each TimeSlot shall

have a start date and time, duration and name.

TimeSlots also contain Topics that can be associated

to other TimeSlots. A TimeSlot is also associated to

a Course. A Student shall be able to: manage his

TimeSlots; manage his Courses; and share his

TimeSlots using an external service. Figure 4

illustrates the top-level view of the XIS-Web model

that includes the six view types. Figure 5 shows the

Course management’s interaction space model and

Figure 6 the respective UI form automatically

generated by the XIS-Web framework.

Case Study B: The “xDocs App” lets citizens

store, manage and share their own personal

A Model-Driven Approach for Developing Responsive Web Apps

261

documents, (like ID Card, Driver’s License, Health

Insurance). Every document has a state (expired,

expiring, signed and unsigned), and in this system

documents originate from a document template.

Each document template is created and maintained

by the organization that issues it, namely a user with

access to the platform with a more administrative

role. xDocs shall be able to communicate with an

external service to publish and backup documents in

a third party repository (e.g., Google Docs). Citizens

should have a gallery view of their documents, and a

Dashboard view with useful information regarding

those documents, like: (1) pie chart with document

state, (2) bar chart with number of documents by

issuer and (3) number of documents for the last

years in a bar chart.

These two apps were developed both according

the traditional (manual) approach and the model-

driven XIS-Web approach. Table 1 shows the ratio

between the lines of code (LOC) generated and the

lines of code for the manually implemented

versions.

Figure 4: Top-level XIS-Web model (TimeSlot Booking App).

The results obtained were positives because they met

one of the goals set for this research: automatically

generate more than 70% of an application’s source

code. Regarding the Case Study A, the average ratio

of 80.8% was due to the non-generation of the

“shareTimeSlot” method that is executed by an

external service. In cases of external logic, XIS-Web

generates a simple stub for the method because the

language does not capture the intents and logic that

are executed by a WebService (a XisServer). For

Case Study B (xDocs App) the coverage ratio was

69.4%. This happens because xDocs presents more

complex logic and UI patterns that are not yet

supported in the XIS-Web framework.

Figure 5: “CourseList” IS model (TimeSlot Booking Appp).

Figure 6:“CourseList” form (TimeSlot Booking App).

4.2 User Session Evaluation

The second part of the evaluation involved a pilot-

user test session with the goal to evaluate the

usability of XIS-Web approach. This test session

focused on three aspects: (i) the Language, namely if

it is a good fit for the domain of web applications

and its learning curve; (ii) the Framework, namely

the Visual Editor, the Model Validator, Model

Generator and Code Generator; and (iii) the General

Approach.

The participants were people not directly

involved in the research and their main goal was the

detection of potential bugs and UI limitations. The

group had 12 subjects with ages ranging from 23 to

30, with at least a Bachelor in Computer Science or

Software Engineering degree. Half of the

participants had experience with web application

development and 4 participants had professional

«Architectural View»

Architectural Model

+ TimeSlot-Booking App

+ TimeSlotSharingService

+ TimeSlotSharingServiceIface

«BusinessEntities View»

Business Entities Model

+ CourseBE

+ TimeSlotBE

«Domain View»

Domain Model

+ Course

+ TimeSlot

+ Topic

«UseCases View»

UseCases Model

+ Student

+ Manage Classes

+ Manage Courses

+ Manage TimeSlot

+ Share TimeSlots

«NavigationSpace View»

NavigationSpace Model

«InteractionSpace View»

InteractionSpace Model

+ CourseEditorIS

+ CourseListContextMenu

+ CourseListIS

+ Home

+ TimeSlotEditorIS

+ TimeSlotListContextMenu

+ TimeSlotListIS

+ TopicEditorIS

+ TopicListContextMenu

«XisBusinessE...

Business Entities

Model::CourseBE

«XisMenu»

CourseListContextMenu

«XisInteractionSpace»

CourseListIS

«XisMenuItem»

CourseListContextMenu::EditCourseItem

«XisAction»

+ editCourse()

«XisMenuItem»

CourseListContextMenu::ViewCourseItem

«XisAction»

+ viewCourse()

«XisMenu»

CourseListIS::CourseListISMenu

«XisList»

CourseListIS::CourseList

«XisSiteMap»

CourseListIS::CourseListISSiteMap

«XisImage»

CourseListIS::CourseListISImage

«XisMenuItem»

CourseListIS::CourseListISMenu::BackToHomeItem

«XisAction»

+ backToHome()

«XisMenuItem»

CourseListIS::CourseListISMenu::DeleteAllCourseItem

«XisAction»

+ deleteAllCourses()

«XisMenuItem»

CourseListIS::CourseListISMenu::CreateCourseItem

«XisAction»

+ createCourse()

«XisListItem»

CourseListIS::CourseList::CourseListItem

«XisAction»

+ editCourse()

«XisIS-BEAssociation»

«XisIS-MenuAssociation»

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

262

experience. The participants received a 15-minute

presentation explaining the fundamental concepts of

the XIS-Web language and its framework. They

were asked to follow a script that described the

“TimeSlot Booking App” and were asked to design

this application using XIS-Web. The average time

for the 12 participants was of 40 minutes. In the end,

the participants were asked to fill a questionnaire to

rate the XIS-Web language, framework and the

general approach.

Table 2 shows the results obtained from this

session, which are very encouraging because all the

reviewed aspects got very positive scores. From the

Language dimension (4.1 in 5) we concluded that

the language was not that easy to learn, and it is

something we intend to change in future work, by

refactoring and reducing the number of concepts

available. From the Framework dimension (4.53 in

5) participants considered that the Model Editor is

the strongest point of the framework. Overall

participants considered that XIS-Web approach

(4.33 in 5) brings significant productivity gains

when comparing to the other frameworks, but the

associated constraints regarding the development

environment (i.e., the dependency from the EA tool)

may lead them not to use it in their projects.

Table 1: Ratio between generated code and manually

implemented code, per language and total.

Table 2: General evaluation (values in a scale of 1-5).

XIS-Web
Language Framework

General

Approach

4.1 4.53 4.33

In spite of the number of participants involved in

this experiment (12), it is sufficient to take

meaningful conclusions, namely considering that

experts in usability claim that a small group of 5-

testers is enough to reveal over 80% of the usability

problems (Nielsen and Landauer, 1993). Moreover,

given that our questionnaire focuses on usability

aspects, 12 is a reasonable number for an

exploratory assessment to identify the major

limitations and challenges.

5 CONCLUSION

This paper presents XIS-Web as a model-driven

approach that allows the development of responsive

web apps. The XIS-Web language is defined as a

UML profile specifically built to create responsive

web applications in a platform-independent way.

This language has a multi-view organization that

enforces the “separation of concerns” principle and

makes use of domain and UI specific concepts like

entities and business entities, but also widgets or

providers. The views make the language are:

Domain, BusinessEntities, Architectural, UseCases,

InteractionSpace and NavigationSpace views. In

addition, XIS-Web is supporting two design

approaches as defined originally in XIS: the dummy

approach and the smart approach.

The XIS-Web includes a framework that allows

to define and generate responsive web apps. This

framework is based on Sparx Systems EA tool,

namely making use of its MDG Technologies and

Eclipse Modeling Framework, namely through the

use of the Acceleo plugins. The framework takes the

specification created by the developer, using the

XIS-Web language and through the application of

M2M and then M2T transformations, generates the

source code for the application. This framework

comprehends four components: (i) the Visual Editor

that allows the definition of the views; (ii) the Model

Validator that performs validations on the

specification created using pre-defined rules; (iii) the

Model Generator that allows the generation of the

UI Views; and (iv)the Code Generator that generates

the application’s source code.

XIS-Web was evaluated to assess its usefulness

and usability to the purpose of modelling responsive

web applications. The evaluation process was

conducted in two complementary aspects: case study

comparison (manual implementation vs. automatic

generation), and a pilot-user test session assessment.

First, the results from the comparison between

the manual implementation and the automatic

generation of the case studies showed that for Case

Study A (TimeSlot Booking App) XIS-Web

managed to generate up to 80% of the application’s

source code, while for Case Study B (xDocs App),

the ratio of generation was of 70%. These results

were considering very positive particularly as a

proof of concept.

Second, the pilot-user test session focused on the

assessment of XIS-Web by participants that were not

directly involved in this research work. Participants

were asked to follow a script that taught them how

to design and develop an application using the XIS-

Languages
TimeSlot Booking App xDocs App

Man. Gen. Ratio Man. Gen. Ratio

JavaScript 259 226 87.3% 367 319 86.9%

HTML 416 320 76.9% 979 464 58.2%

Total 675 546 80.8% 1127 783 69.4%

Legend: Man(ual); Gen(erated)

A Model-Driven Approach for Developing Responsive Web Apps

263

Web framework, and in the end they filled a

questionnaire. The questions in the questionnaire

focused on three XIS-Web aspects: the language, the

framework and the general approach. The results

obtained from this experiment were also very

positive. These results showed preliminary

evidences of XIS-Web’s usefulness, and usability to

modelling responsive web applications.

For future work we identify some aspects to

improve. First, the case studies presented in this

research can only exercise and evaluate certain parts

of the framework; thus, to better evaluate the

proposed approach, one needs to conduct other case

studies, varying in complexity and subject. Second,

currently XIS-Web is applying the Master-Detail UI

pattern; to diversify the type of applications that can

be generated by XIS-Web it would be important to

add the generation of other UI patterns like

Breadcrumbs, Galleries or Dashboards (Crumlish

and Malone, 2009; Scott and Neil, 2009). Third,

considering that IFML is the OMG standard for UI

modelling, we would consider integrate its

constructs in XIS-Web, particularly those related

with the Interaction and Navigation views.

ACKNOWLEDGEMENTS

This work was partially supported by national funds

under FCT projects UID/CEC/50021/2019 and

02/SAICT/2017/29360.

REFERENCES

Atkinson, C., Khüne, T., 2003. Model-driven

development: a metamodeling foundation, In IEEE

Software, IEEE, 20(5), 36-41.

Ceri, S. et al., 2002. Designing Data-Intensive Web

Applications. Morgan Kaufmann Publishers.

Charland, A., Leroux, B., 2011. Mobile application

development: web vs. Native. Iin Communications of

the ACM, 54(5), pp. 49-53,.

Crumlish, C., Malone, E., 2009. Designing social

interfaces: Principles, patterns, and practices for

improving the user experience. O’Reilly Media, Inc.

Frasincar, F., Houben, G-J., Barna, P., 2006. HPG: the

Hera presentation generator. In Journal of web

Engineering, 5(2), pp. 175-200.

Garrigos, I., Gomez, J., Cachero, C., 2003. Modelling

adaptive web applications. Proc. of the IADIS

International Conference WWW/Internet, pp. 813-6.

Isakowitz, T., Stohr, E. A., Balasubramanian, P., 1995.

RMM: a methodology for structured hypermedia

design. In Communications of the ACM, 38(8), 34-44.

Heitktter, H., Hanschke, S., Majchrzak, T. A., 2012.

Evaluating cross-platform development approaches for

mobile applications. Web information systems and

technologies, pp. 120-138, Springer.

Kappel, G., Prll, B., Reich, S., Retschitzegger, W.,

2006.Web engineering. John Wiley & Sons.

Koch, N., Kraus, A., 2002. The expressive power of uml-

based web engineering. In Proc. of the 2nd

International Workshop on Web-oriented Software

Technology (IWWOST 2002), pp. 21-32.

Liddle, S. W., 2011. Model-driven software development.

In Handbook of Conceptual Modeling, pp. 17-54.

Springer.

Nielsen, J., Landauer, T.K., 1993. A mathematical model

of the finding of usability problems. In Proceedings of

the INTERACT’93 and CHI’93 conference on Human

factors in computing systems, pp.206-213, ACM.

OMG, 2015. Interaction Flow Modeling Language,

version 1.0, http://www.omg.org/spec/IFML/.

Pastor, O., Fons, J., Pelechano, V., & Abrahão, S., 2006.

Conceptual modelling of web applications: the OOWS

approach. In Web Engineering (pp.277-302). Springer.

Ribeiro, A., Silva, A. R., 2014. Evaluation of XIS-Mobile,

a Domain Specific Language for Mobile Application

Development. Journal of Software Engineering and

Applications, 7(11), Scientific Research Publishing.

Ribeiro, A., Silva, A.R.,2014. XIS-Mobile: A DSL for

Mobile Applications”,in Proceeding of ACM SAC, ACM.

Saraiva, J., Silva, A.R., 2008. Evaluation of MDE Tools

from a Metamodeling Perspective. Journal of Database

Management, 19(4): 50-75.

Saraiva, J., Silva, A.R., 2010. A Reference Model for the

Analysis and Comparison of MDE Approaches for

Web-Application Development, Journal of Software

Engineering and Applications, 3(5): 419-425.

Rossi, G., Urbieta, M., Distante, D., Rivero, J. M., &

Firmenich, S. (2016). 25 Years of Model-Driven Web

Engineering. What we achieved, What is missing.

CLEI Electronic Journal, 19(3), 5-57.

Schwinger, W., et al., 2008. A survey on web modeling

approaches for ubiquitous web applications. IJWIS,

4(3):234-305.

Schwinger, W., Retschitzegger, W., Schauerhuber, A.,

Kappel, G., Wimmer, M., Pröll, B., & Garrigos, I.,

2008. A survey on web modeling approaches for

ubiquitous web applications. International Journal of

Web Information Systems, 4(3), 234-305.

Scott, B., Neil, T., 2009. Designing web interfaces:

Principles and patterns for rich interactions. O'Reilly

Media, Inc.

Silva, A. R., Saraiva, J., Silva, R., Martins, C., 2007. XIS-

UML Profile for eXtreme Modeling Interactive

Systems. In MOMPES, IEEE.

Silva, A.R., 2015. Model-Driven Engineering: a Survey

Supported by a Unified Conceptual Model. Computer

Languages, Systems & Structures, Elsevier, 43(C),139–

155.

Wakil, K., & Jawawi, D. N., 2017. Comparison between

Web Engineering Methods to Develop Multi Web

Applications. Journal of Software, 12(10), 783-794.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

264

