
Towards a Roadmap for the Migration of Legacy Software Systems to a
Microservice based Architecture

Hugo H. O. S. da Silva1, Glauco de F. Carneiro1 and Miguel P. Monteiro2

1Programa de Pós-Graduação em Sistemas e Computação (PPGCOMP), Universidade Salvador (UNIFACS),
Salvador 41770-235, Brazil

2NOVA LINCS, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa (FCT/UNL),

Keywords: Monolithic Legacy Systems, Exploratory Study, Microservices.

Abstract: The migration of legacy software systems to a microservice based architecture is not a trivial task due to chal-
lenges and difficulties as reported in the literature. The concept of microservices mainly consists in software
organized as a suite of small, modular, and independently deployed services that run on their own processes
and communicate through well-defined, lightweight mechanisms to serve a business goal. However, the litera-
ture is still incipient in relation to step-by-step guidelines supporting practitioners to accomplish the migration
from an existing, monolithic structure to a microservice based architecture. Goal: Discuss lessons learned
from the migration of legacy software systems to microservices-based architecture. Method: We conducted
two studies (a pilot and a case study) aiming at characterizing the relevants steps of such guidelines. Results:
We report the steps and challenges observed during the migration reported in this study. Conclusion: We
identify at least three main phases that drive the migration process.

1 INTRODUCTION

Microservices is an architectural style based on the
service-oriented computing approach (Dragoni et al.,
2017). Their main goal is to efficiently build and
manage complex software systems (Singleton, 2016).
Among the main promises for the adoption of a
microservices-based architecture, we can list the fol-
lowing: to yield cost reduction, quality improvement,
agility, and decreased time to market. Microservices
can be compared to the software equivalent of Lego
bricks: they are proven to work, fit together appropri-
ately, and can be an option to build up complex so-
lutions in less time than with traditional architectural
solutions (Singleton, 2016).

In the past, a representative number of legacy soft-
ware systems moved to the cloud keeping the same ar-
chitecture in the new infrastructure. The practical out-
come of this fact is that most of these legacy software
systems have been originally placed in virtual machi-
nes and deployed in the cloud, assuming the charac-
teristics of resources and services of a traditional data
center (Silva et al., 2019). This approach fails to re-
duce costs, improve performance and maintainability
(Toffetti et al., 2017).

The issue remains, of which steps that should be

followed to migrate a monolithic legacy system to a
microservices-based architecture. To the best of our
knowledge, despite the relevance of this topic, it has
drawn the attention of just researchers (Kalske et al.,
2017) (Leymann et al., 2016) (Taibi et al., 2017). To
fill this gap, we present the lessons learned of our ex-
perience in the migration of two legacy systems. The
lessons learned are the result of a two-phase study
to address the following Research Question (RQ):
Which steps should be performed to support the mi-
gration of legacy software systems to microservices-
based architecture? Availability of lessons learned
can help practitioners from industry and academia
in the migration of legacy systems to microservices.
They can also contribute to encourage practitioners to
embrace this challenge.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the main shortcomings of a mono-
lithic legacy system and maps them to possible soluti-
ons provided by the microservice-based architecture.
Next, section 3 introduces a two-phase study. Section
4 describes the first phase, which is a pilot study ai-
med at identifying key steps of the migration process
as well as improvement opportunities. Section 5 re-
ports on the second phase, which is a case study focu-
sed on applying a reviewed and improved version of

S. da Silva, H., Carneiro, G. and Monteiro, M.
Towards a Roadmap for the Migration of Legacy Software Systems to a Microservice based Architecture.
DOI: 10.5220/0007618400370047
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 37-47
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

37



the steps performed in the first study. Section 6 pro-
poses a migration roadmap based on the insights gai-
ned from the pilot and case studies. Section 7 reports
lessons learned. Section 8 discusses opportunities for
future research and provides concluding remarks.

2 MONOLITHIC VS
MICROSERVICES

The adoption of single executable artefacts or mono-
liths with the corresponding modularization of their
abstractions is based on the sharing of resources of
a specific computer system (memory, databases, fi-
les, among others) (Dragoni et al., 2017). Consi-
dering that components of a monolithic system de-
pend on shared resources, they are not indepen-
dently executable (Dragoni et al., 2017)(Richardson,
2014a)(Richardson, 2014b). In general, monolithic
systems of large size are not easily maintained and
evolved due to their inherent complexity (Dragoni
et al., 2017). In most cases, dealing with software
bugs in these scenarios requires a strong joint ef-
fort and is thus likely to have a negative impact on
team productivity (Dragoni et al., 2017). Add to this
the fact that to add or update libraries are likely to
produce inconsistent systems that either do not com-
pile/run or worse, misbehave (Dragoni et al., 2017).

Carrying out a change on a monolithic system en-
tails the re-building of the whole application. As
the system evolves, it becomes ever more difficult
to maintain it and keep track of its original architec-
ture1. This can result in recurring downtimes, speci-
ally for large-sized projects, hindering development,
testing, and maintenance activities (Dragoni et al.,
2017). Monolithic systems under these conditions are
prone to stop working and become unable to provide
part or all of their functionality. They also suffer from
scalability issues.

In order to deal with the shortcomings of this type
of applications, and to handle an unbounded number
of requests, developers create new instances of them
and split the load among these instances. Unfortuna-
tely, this approach is not effective, since the increased
traffic will be targeted only to a subset of the modules,
causing difficulties for the allocation of new resources
for other components (Dragoni et al., 2017).

Microservices should be small and indepen-
dent enough to allow the rapid development,
(un)pluggability, harmonious coexistence and inde-
pendent evolution. Microservices have been referred

1https://www.thoughtworks.com/insights/blog/
microservices-nutshell

as a solution to most of the shortcomings of mono-
lithic architecture. They use small services to remove
and deploy parts of the system, enable the use of dif-
ferent frameworks and tookits and to increase scala-
bility and improve overall system resilience.

In the context of this paper, the "micro"prefix isn’t
really too important. Rather than being about size, it
relates to keeping the various services separate. This
becomes important when working with hundreds of
services. A microservice architecture can make use
of the flexibility and better pricing model of cloud en-
vironments (Balalaie et al., 2016).

To illustrate the advantages that stand out when
using microservices, we next show a non-exhaustive
list: cohesive and loosely coupled services (Wolff,
2016); independent implementation of each microser-
vice and thus enhanced system adaptability (Millett,
2015); independence of multifunctional, autonomous
and organized teams that provide commercial value
in addition to improved technical characteristics (Mil-
lett, 2015); independence of domain concepts (Wolff,
2016); freedom from potential side effects (SPoF)
across services; encouragement of the DevOps cul-
ture (Balalaie et al., 2016), which basically repre-
sents the idea of decentralizing skills concentration
into multifunctional teams, emphasizing collabora-
tion between developers and teams, ensuring reduced
lead time and greater agility during software develop-
ment.

3 A TWO-PHASE STUDY

Exploratory studies like the two-phase explora-
tory study reported here are intended to lay the
groundwork for further empirical work (Seaman,
1999). In this case, the goal to identify the relevant
and effective steps for the migration of legacy sys-
tems to a microservices-based architecture. This sec-
tion describes its design and settings.

The present study aims to address the following
research question (RQ): What would be the set
of effective steps to migrate legacy systems to a
microservices-based architecture? The specific rese-
arch questions (SRQ’s) derived from the base RQ are
as follows: SRQ1: How to find features in a legacy
application so that they can be subsequently modu-
larized and become a candidate to a microservice-
based architecture? SRQ2: How to migrate the best
candidate features to a microservice-based architec-
ture?

The study protocol followed for this study is as
follows. The first author of this paper carried out
the tasks of the reported study, after discussing the

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

38



strategies, experiences and impressions with the other
two authors. To answer the research questions (pri-
mary and secondaries), all steps registered by the first
author in manuscripts were analyzed.

To select suitable subject systems for the study, it
was decided that candidate applications should match
the following characteristics: (1) be a legacy applica-
tion, (2) have a monolithic architecture that does not
have its functionalities modularized, (3) show symp-
toms of scattering and tangling, and (4) correspond to
the symptoms described by the Big Ball of Mud anti-
pattern (Coplien and Schmidt, 1995).

We also outlined what was expected of the study’s
outcomes. The evolved version was expected to be
more coherent than before the migration, be more lo-
osely coupled and its modular decomposition should
more aligned to the services it provides (Newman,
2015). We also expected to observe an increase in
the autonomy of developing teams within the organi-
zation, as new functionalities can be localized within
specific services (Newman, 2015).

3.1 Key Concepts from Domain Driven
Design

We used key Domain-Driven Design (DDD) concepts
to accomplish the tasks of this study. DDD was used
to translate functionalities into domain and subdo-
main and thereby support the migration.

A Bounded Context is a subsystem in the solu-
tion space with clear boundaries distinguishing each
subsystem (Evans, 2004). Bounded Context aids in
the separation of contexts to understand and address
complexities based on business intentions.

In the broad sense, Domain comprises all relevant
knowledge relating to the problem that is intended to
be solved. It can refer to either the entire Business Do-
main, or just a basic or support area. In a Domain, we
try to turn a technical concept with a model (Domain
Model) into something understandable. The Domain
Model is the organized and structured knowledge of
the problem. It should represent the vocabulary and
main concepts of the problem domain and identify the
relationships between the various entities. It is expec-
ted to serve as a communication tool for all involved,
giving rise to a very important concept in DDD, which
is Ubiquitous Language. The model could be a dia-
gram, code examples or even written documentation
of the problem. The important thing is that the Do-
main Model must be understandable and easy to ap-
proach by all people involved in the project.

A Context Map is a high-level diagram showing a
collection of connected contexts and the relationships
between them (Evans, 2004). The goal of the ag-

Figura 1: Entities and Associated Features Scattered and
Tangled in ePromo (Silva et al., 2019).

gregate root is to select the object that serves as the
"root"of a group of other objects, in a abstract manner
of a Façade (Gamma, 1995) to represent the whole
structure. On the other hand, the value object can
comprise simple or composite values with a business
meaning.

4 THE PILOT STUDY

The subject of the pilot study is ePromo, a system that
comprises a typical example of a corporate/business
coupon web system implemented in the PHP program-
ming language for the management of outreach cam-
paigns. The web server is Nginx, whose features in-
clude the creation of personalized offers and issuance
of tickets made by the customer. All functionalities
are implemented in a large artifact, connected to a sin-
gle relational database (MySQL), whereas Memcached
is used as a memory cache system, including data re-
lated to the sessions - signs of a monolithic applica-
tion. Due to the sudden growth of demand for cou-
pons, the application started to face problems in this
specific component, which led to interruptions in the
system operation.

The specific research question SRQ1 says: find
features to be subsequently modularized and turned
into microservice candidates. To answer it, the par-
ticipant applied a manual identification of candidate
features and their respective relationships, by na-
vigating among the directories and files and iden-
tifying the purposes of each class. Figure 1 illustra-
tes the identified entities, which in the beginning of
the pilot study were: Offer, OfferPoint, Ticket,
Requirement, Timer, User, Company. By analysing
the features associated to these entities, we acquired
an initial perception of how they are tangled and scat-
tered in the code. In fact, the functionalities are the
reference to build the Context Map. It is worth menti-
oning that it was possible to recognize the entities and
the candidates for value object’s and aggregate roots
during elaboration of the Context Map, on the basis
of the information retrieved from the source code. At

Towards a Roadmap for the Migration of Legacy Software Systems to a Microservice based Architecture

39



Figura 2: ePromo System Context Map in the Pilot Study
(Silva et al., 2019).

this time, we had the opportunity to spot code tigh-
tly coupled to the web framework, right at the initial
browsing stage.

The migration process was carried out one feature
at a time, based on the list of features. We started
with the functionality that would have lowest impact
when compared to the others. This process facilita-
tes the validation of boundaries set between features
with the least risk of side effects. Considering that
the business rules were scattered throughout the con-
trollers with significant duplication, additional effort
was necessary to identify the various functionalities
involved. Note that this is a manifestation of tangling.

During analysis, we noticed that artifact
TicketsController had many responsibilities
and its business rules seemed scattered. It needed
extensive refactoring, including extraction of clear
layers for different levels of abstraction. Each layer
would be represented by a folder, which entailed
structural changes at that level, within the repository’s
source root. New directories were created for system:
Application, Domain and Infrastructure. Folder
Application is to be devoid of business logic and
made responsible for connecting the user interface to
the lower layers. In sum, the application layer will be
able to communicate with the domain layer, which
will act as a sort of public API for the application.
It will accept requests from the outside world and
return answers appropriately. Folder Domain is to
harbour all concepts, rules and business logic of
the application, such as the user entity or the user
repository. These files will be stored according
to the context identified in previous steps. Folder
Infrastructure is to host the implementations
concerning technical features, which provide sup-
port to the layers above, namely persistence, and
communication over networks.

The Command pattern (Gamma, 1995) encapsula-
tes a request as an object, thereby parametrizing cli-

Figura 3: ePromo Modularized Version (End of the Pilot
Study) (Silva et al., 2019).

ents with different requests, queue or log requests,
and support undoable operations (Gamma, 1995). We
applied Command to minimize coupling and deal
with the tangled code with scattered business rules
and identified in the controllers of the application. Ba-
sed on TicketController, Command was used to
uncouple the controller from the user interface logic.
When looking at the command objects, we should be
able to spot the goal of the code snippet they enclose.
The controller is intended to pass just the information
needed by the command - CreatingTicket in this
case - to forward to the handler, which is to handle
the acceptance of the command and complete its task.

Using Command brings several advantages. First,
the functionality can run in any part of the application.
Second, the controller will no longer have business
rules, doing just what is proposed above. Third, the
tests are easier to make, as a result of decoupling. The
new version of the modularized system is presented in
Figure 3.

4.1 Lessons Learned from the Pilot
Study

The experience gained in the pilot study enabled us to
answer the specific research question SRQ1. In Sec-
tion 4, we point out the identification of functiona-
lities faced difficulties due to lots of scattered clas-
ses and duplicated business rules. This situation is
typified as the Anemic Model anti-pattern2. There-
fore, identifying business resources requires much ef-
fort than otherwise would be the case.

During identification and mapping of business
contexts, we noticed that despite the sudden growth
of demand for coupons, the number of features can-
didates for microservices is not necessarily indicative
of the use of a microservice architecture. There is not
a positive trade-off between the advantages of micro-
services and the corresponding costs and effort requi-
red to manage it (Singleton, 2016).

2https://martinfowler.com/bliki/AnemicDomainModel.
html

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

40



Although microservice approaches offer substan-
tial benefits, the corresponding architecture requires
extra machinery, which may also impose substantial
costs (Singleton, 2016). This also gives rise to gre-
ater complexity, which is incompatible with the rela-
tive simple scenario now perceived through the map
of contexts. Therefore, a decision to carry out a mi-
gration should consider the extra effort required to
work with issues such as automated deployment, mo-
nitoring, failure, eventual consistency, and other fac-
tors introduced by a microservice architecture. In the
case of ePromo, we decided not to opt for the migra-
tion, keeping it in its new modularized version, for the
above reasons.

The preliminary list of lessons learned reached at
this point comprises two main parts: part 1 is related
to the restructuring of the legacy system to a modu-
larized version and part 2 is related to the migration
of the modularized version, to microservices. Part 1
of the lessons learned are related to the (1a) identifi-
cation of candidate functionalities that can be modu-
larized in legacy applications; (1b) analysis of rela-
tionships and organizational dependencies in the le-
gacy system; (1c) identification of each domain and
sub-domain. Part 2 of the lessons learned relates to
the (2a) selection of the candidates according to their
importance to the domain and the application itself;
(2b) conversion of the candidate functionalities to mi-
croservices.

5 THE CASE STUDY

In this case study, we aim at analyzing an effective
manner to look for candidate features to be modula-
rized in legacy software systems to be later migrated
into microservices. The subject system is eShop, an
online store in which users can browse a product ca-
talog.

Figure 4 illustrates a typical scenario of eShop.
The system provides functionalites such as user
authentication, catalogue of products, special offers,
and payments. The features of the monolithic ap-
plication are implemented in the PHP programming
language in a single "big module", connected to a
(MySQL) relational database. The system runs as a
single artifact on a Nginx web server. The size of
the source code increased dramatically over the ye-
ars, as stakeholders asks for ever more changes and
new functionalities. To deal with such requests, de-
velopers struggled to deliver new releases, which de-
manded ever more effort.

Part I of the process consists of migrating the le-
gacy system to a modularized version. To carry it out,

Figura 4: A Traditional Monolithic Legacy Software Sys-
tem (Case Study) (Silva et al., 2019).

we first "manually"identified the candidate functiona-
lities by navigating among the directories and files to
find out the goal of each artifact likewise the pilot
study. Figure 4 shows the entities Identity, Basket,
Marketing, Catalog, Ordering and Payment rela-
ted to the identified functionalities. This is the out-
come of the first step aimed at identifying the main
functionalities and responsabilities in view of a tenta-
tive establishment of boundaries between them. Next,
we planned to break down the main module into units.
The key to this task was the use of Bounded Con-
texts ans their respective relationships, as represented
in Figure 5. We applied in each Bounded Context the
following DDD key concepts: aggregate root, value
objects and domain services. These concepts support
the challenge to deal with manage domain complexity
and ensures clarity of behavior within the domain mo-
del.

After the acknowledgement of contexts, we orded
them by level of complexity, starting with the low le-
vel ones to validate the context mapping. Moreover,
we positioned the contexts into well-defined layers,
expressing the domain model and business logic, eli-
minating dependencies on infrastructure, user inter-
faces and application logic, which often get mixed
with it. We managed to set all the code related to
domain model in one layer, isolating it from the user
interface, application and infrastructure parts (Evans,
2004). In some situations, we can apply the Strangler
pattern (Taibi et al., 2017) to deal with the complexity
of the module to be refactored. Consiedering that fea-
tures are moved to new modules or a new system, the
legacy system will be totally "strangled"to the point
where it will no longer be useful.

A folder should be created for each of the Boun-
ded Contexts and within each folder, three new fol-
ders should be added, one for each layer: Domain,
Application, Infrastructure. They contain the
source code necessary for this Bounded Context to
work. It is crucial to consider the domain models
and their invariants and to recognize entities, value
objects and also aggregate roots. We should main-
tain the source code in these folders as described

Towards a Roadmap for the Migration of Legacy Software Systems to a Microservice based Architecture

41



Figura 5: A Context Map for the Monolithic Legacy Soft-
ware System (Case Study) (Silva et al., 2019).

Figura 6: An Evolved Monolithic Legacy System (Case
Study) (Silva et al., 2019).

in the sequence. Folder Application contains all
application services, command and command han-
dlers. Folder Domain contains the classes with exis-
ting tactical patterns in the DDD, such as: Entities,
Value Objects, Domain Events, Repositories,
Factories. Folder Infrastructure provides tech-
nical capabilities to other parts of the application, iso-
lating all domain logic from the details of the infras-
tructure layer. The latter contains, in more detail, the
code for sending emails, post messages, store infor-
mation in the database, process HTTP requests, make
requests to other servers. Any structure and library re-
lated to "the outside world", such as network and file
systems, should be used or called by the infrastructure
layer.

Part II of the process consists of migrating the mo-
dularized version to a microservices-based version.
At this point, the focus is on the analysis of the previ-
ously developed Context Map and the assessment of
the feasibility of decomposing each identified context
into microservice candidates. In this case, during the
analysis of the Context Map, it is required to unders-
tand and identify the organizational relationships and
dependencies. This is analogous to domain modeling,
which can start relatively superficially and gradually
increase levels of detail.

At this point, we wanted to decompose an appli-
cation into smaller parts. The most common way to
do this is based on layered segmentation based on

user interface, business logic and database responsi-
bilities. However, this is prone to give rise to coupling
between modules, causing the replication of business
logic in the application layers (Dragoni et al., 2017)
- coupling defines the degree of dependency between
components or modules of an application. The micro-
service proposal to circumvent this problem entails
segmenting the system into smaller parts with fewer
responsibilities. In addition, it also considers domain,
focus and application contexts, yielding a set of auto-
nomous services, with reduced coupling.

To provide answers to the specific research ques-
tion SRQ2, the Bounded Contexts from DDD are used
to organize and identify microservices (Nadareishvili
et al., 2016). Many proponents of the microservice
architecture use Eric Evans’s DDD approach, as it of-
fers a set of concepts and techniques that support the
modularization in software systems. Among these to-
ols, Bounded Context is used to identify and organize
the microservices. Evans made the case for Boun-
ded Contexts as facilitating the creation of smaller,
more coherent and more cohesive components (mo-
dels), which should not be shared across contexts. In
the Context Map shown in Figure 5, the arrow is used
to facilitate identification of upstream/downstream re-
lationships between contexts. When a limited context
has influence over another (due to factors of a less te-
chnical nature), provision of some service or informa-
tion this relationship is considered upstream. Howe-
ver, the limited contexts that consume it comprise a
downstream relationship (Evans, 2004).

An effective way of defining microservice boun-
daries entails correctly identifying the Bounded Con-
texts, using DDD and breaking a large system across
them. Newman points out that Bounded Contexts re-
present autonomous business domains (i.e., distinct
business capabilities) and therefore are the appropri-
ate starting point for identifying boundaries for micro-
services. Using DDD and Bounded Contexts lowers
the chances of two microservices needing to share a
model and corresponding data space, risking a tight
coupling.

Avoiding data sharing facilitates treating each mi-
croservice as an independent deployment unit. Inde-
pendent deployment increases speed while still main-
taining security within the overall system. DDD and
Bounded Contexts seems to make a good process for
designing components (Newman, 2015). Note howe-
ver, that it is still possible to use DDD and still end
up with quite large components, which go against the
principles of the microservice architecture. In sum,
smaller is better.

The number of responsibilities is an important ser-
vice feature. This is reinforced by the Single Respon-

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

42



Figura 7: A New Based Microservices Software System
(Case Study) (Silva et al., 2019).

sibility Principle (SRP) (Martin, 2002). Each service
must have a well-defined boundary between the mo-
dules, which should be independently created and pu-
blished, through an automated deployment process. A
team can work on one or several Bounded Contexts,
with each serving as a foundation for one or several
microservices. Changes and new features are suppo-
sed to related to just one Bounded Context and thus
just one team (Wolff, 2016).

The strategy is to move resources vertically by de-
coupling the primary feature along its data and redi-
rect all front-end applications to the new APIs. Ke-
eping all data on a single basis is contrary to the de-
centralized data management feature of microservi-
ces. Having multiple applications using the data from
a centralized database is the primary step to decouple
the data along with the service.

During the migration of the eShop database, we
decided to execute it in incrementar steps due to its
inherent complexity. Migrating data from a legacy
software system requires careful planning, depending
on each case. In the case of the aforementioned da-
tabase, we identified the tables corresponding to each
service and created a new database schema (MySQL)
for each of the corresponding services. We then mi-
grated one service at a time. The database did not
seem to be particularly large and this approach was
applied without side effects. However, this may not
be the best approach, depending on the size of the da-
tabase to be migrated. Each specific scenario must be
analyzed addressing their own specificities and com-
plexities scenarios. To perform the migration, we
adopted the Doctrine Migrations3 tool. Figure 7 con-
veys the architecture of the new microservices based
architecture system.

3https://www.doctrine-project.org/projects/migrations
.html

6 PROPOSED MIGRATION
ROADMAP

The purpose of the roadmap is to migrate a system
with monolithic legacy architecture to a microservice
architecture. A level of discipline and some skills are
necessary in the operational part, as described in the
next sections.

Traditional monolithic legacy software systems
usually show signs of deficient modularity, resulting
in significant levels of tangling and scattering. Most
of the time, a complete system rewrite from scratch is
infeasible. It is therefore recommended to migrate the
legacy system gradually, replacing specific parts of it
with new modules. This type of approach is already
discussed in the Strangler pattern (Taibi et al., 2017).

Upon completing the migrating process, the older
version of the legacy system is discarded. Therefore,
it is important to note that this approach helps mini-
mize risk during migration and distributes develop-
ment effort over time.

6.1 Roadmap Premises

A first assumption or requirement to use the proposed
roadmap, is that the target system has a monolithic
architecture. At least three layers should be identified
on it: presentation layer, business layer and data layer.
It is also important that the developer or development
team have a minimum knowledge of the system’s bu-
siness rules, which will be critical during execution of
phases 1 and 2, which focus on the extraction of kno-
wledge from the domain and on establishing limits
consistent with the system’s business rules.

Fast Deployment. How the microservice archi-
tecture promotes the creation of independent services;
it is necessary to automate the deployment of these
services to save time for developing teams in different
environments, e.g., development, testing and produc-
tion environments.

Provisioning Environments. Given the need to
automate the deployment process, we also feel the
need of a fast provisioning environment, which fits
nicely with Cloud Computing.

The structure of the roadmap is as follows. Phase
1 analyzes and identifies of key functionalities and
their respective responsibilities. Phase 2 details the
pre-existing characteristics of the monolithic system,
using some of the key concepts of Domain-Drive De-
sign (DDD), such as: Delimited Context, Context
Map, Domains, Subdomains, Aggregator, Value Ob-
jects, and Services Domain. These concepts help to
build artifacts that support migration decisions to be
made, including granularity and cohesion of services

Towards a Roadmap for the Migration of Legacy Software Systems to a Microservice based Architecture

43



Figura 8: Roadmap Premises Workflow.

to be implemented. Phase 3 promotes the migration to
a microservice architecture of the Bounded Contexts
identified and mapped in the previous phase.

6.2 Phase 1: Monolithic Software

Step 1: Analyze Source Code and Database
Input Data: Source Code and Database
Output Data: Source Code and Database
Description of Step 1: The first phase is initia-

ted by the process of identifying the artifacts in the
system. This step analyzes the source code and the
database legacy system. To perform this analysis it is
necessary to navigate between the files and directories
of the system, to obtain a clearer view of the domain
under analysis.
Step 2: Identify Main Functionalities

Input Data: Source Code and Database
Output Data: List of Identified Funcionalities
Description of Step 2: This step identifies the

purposes, responsibilities and main functionalities of
the artifacts. It is important to emphasize that this
is an iterative and incremental process. At this first
stage, it is essential to document it, even if it means
simply using a list to record what was identified while
browsing the system artifacts. The next step is to es-
tablish a temporary boundary between the various fe-
atures, where the goal is to ensure more clarity and
understanding of the system’s business rules.

Figura 9: Simple Draft Diagram with Subdomains Identi-
fied.

6.3 Phase 2: Pre-existing
Characteristics of Monolithic
Software

Step 3: Identify Domains and Subdomains of Mapped
Functionalities

Input Data: List of Identified Funcionalities
Output Data: Diagram with Identified Subdo-

mains
Description of Step 3: In this step, the goal is

to distill the domain to provide an ever deeper kno-
wledge. Therefore, it is important to create a domain
model, which is a high-level artifact that reveals and
organizes domain knowledge data with the intent of
providing clear language for developers and domain
experts. This effort can be collaborative, involving
the development team and domain specialists and sta-
keholders. It is important for this task to comprise the
outlining of a simple diagram, without formalities, as
its goal is to be clear and increase knowledge of the
business domain functions.

Often, the source code is coupled to the Web ap-
plication structure. Therefore the task of identifying
the functionalities needs to be reviewed a few times,
so that boundaries of domains and subdomains re-
ceive a proper validation.

The diagram of the domain model from Figure
9 includes real-world objects such as: Product
Return, Product, Address, Payment among others.
These objects can have different behaviors, so some
functionalities of the product and payment may
vary. For instance, upon payment of a product the
only important information for the operation to be
performed is identification of the product. Therefore,
it may be more interesting to create distinct models

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

44



Figura 10: Example of a Split Domain into Four Bounded
Contexts.

that represent the same object in the real world. This
way, each model can meet the specific needs of its
context.

Step 4: Identify Bounded Contexts
Input Data: Diagram with Identified Subdomains
Output Data Identified Bounded Contexts
Description of Step 4: As illustrated in Figure 10

with the concept of Bounded Context, it is possible to
set limits to a specific domain according to business
intentions (Marketing, Sales, Purchase and Stock).

As domains and subdomains are identified and
filled in the diagram, it is important to classify the
essential functionalities from business and their
existing relationships. At this stage, no concern
should relate to implementation details. The focus is
still on the domain knowledge.

Step 5: Build a Context Map
Input Data: Identified Bounded Contexts
Output Data: Context Map
Description of Step 5: Once the Bounded Con-

texts Mapping is done, the next step is to build a Con-
text Map. The goals of this map is to make explicit the
understanding of contexts and relationships between
them. As well as the mapping of the Bounded Con-
texts, the Context Map also needs to have a continuous
process of improvement, so that the information of the
Bounded Contexts and consequently the Context Map
is improved.

In this stage of the migration it is possible to iden-
tify, based on the tactical modeling of DDD, possi-
ble candidates for entities, objects of value, services,
among others.

The main focus of the first and second phases is
the extraction of knowledge from the domain, iden-
tifying the main functionalities and responsibilities in
view of establishing coherent and validated limits ba-

sed on the system’s business rules.

6.4 Phase 3: Target Software
Architecture

The focus of this phase is on the decision and imple-
mentation of the architecture. The first step of this
phase is to decide whether the system architecture
will be migrated to a microservice architecture. This
is a decision that is up to the development team, who
from the defined Context Map, can assess the comple-
xity of the system, and whether there really is a need
to migrate to a microservice-based architecture.

As described in the pilot study, it was noticed
during Context Map analysis that the system had
only three contexts: Identity Context, OfferContext
and TicketContext. Because it is a simple system
with a reduced number of contexts, it was decided to
maintain the monolithic architecture, in view of the
progress achieved in the modularization through the
application of DDD concepts. One of the reasons for
choosing not to migrate to a microservice architecture
was to avoid increasing the system’s complexity,
which would be a consequence of implementing to
this architecture. Therefore, the number of contexts is
a factor to be taken into account during this decision
making. However, we do not go as far as to set a
threshold value for a minimum number of contexts.

Step 6: Migrate for Microservices Architecture
Input Data: System with Evolved Monolithic Ar-

chitecture
Output Data: System with Microservices Archi-

tecture
Description: deciding to migrate to a microser-

vice architecture entails initiating a series of actions.
First, note that in a scenario of a large application in a
complex domain, it is very common to observe many
contexts. Deciding on which context to start carrying
out the migration is not a trivial task. An effective
strategy is to select contexts that have no or few re-
lationships. The number of bugs associated with a
particular context may also be a factor.

For each Bounded Context a directory must be cre-
ated, within each of the directories, three new direc-
tories must be added, one for each layer: Domain,
Application, Infrastructure. They must contain
the necessary source code for the Bounded Context to
work. It is essential to consider the domain models
and their invariants and recognize Entities, Value Ob-
ject’s and also Aggregates. The source code must be
maintained in these directories as described in the se-
quence. The Application directory should contain
all application services and command handlers.

Towards a Roadmap for the Migration of Legacy Software Systems to a Microservice based Architecture

45



The Domain directory contains classes with exis-
ting tactical patterns in DDD as: Entity, Value
Object, Domain Event, Repository and Factory.
The Infrastructure directory should provide the
technical resources for other parts of the application,
isolating all domain logic from the details of the in-
frastructure layer.

The infrastructure layer should contain in detail
the code for sending emails, sending messages, sto-
ring information in the database, processing HTTP re-
quests, and make requests to other servers. Any struc-
ture and library related to the external world, such as
network and file systems, must be used or called at
the infrastructure layer.

The directory structure of a Bounded Context
should be organized as follows:

+--src
| +-- LegacySystem
| +-- Context
| +-- Application
| +-- Domain
| +-- Infrastructure
+-- tests

In the scenario where the migration of architecture
to microservices must take place, the Bounded Con-
texts will play a key role in identifying and organizing
the microservices.

It is essential that each service has its own
structure allowing separate maintenance external
repositories. This facilitates the development and
implementation of adjustments that can be made
separately, avoiding possible side effects (SPOF)
other services. It is prudent to organize the contexts
in well-defined layers, because this way allows us
to express the domain model and business logic,
eliminating dependencies on infrastructure, user
interface and application logic, concepts that often
are mixed. Everything that is related to the domain
model must be concentrated on a layer, isolating it
from the top layers, such as the user interface layer,
application layer, and infrastructure (Evans, 2004).

Step 7: Run Unit and Integration Tests
Input Data: Migrated Bounded Context
Output Data: Migrated Bounded Context with

Executed Tests
Description: As the Bounded Contexts are being

migrated, it is recommended that automated testing be
performed, initially unit testing. The intent is ensure
that the implemented parts are working as expected.

These three phases make up the core minimum set
to perform a migration. There is the possibility of in-
cluding new steps in one or more of the three phases,

depending on the specific characteristics of the soft-
ware system in question.

7 LESSONS LEARNED

As a result of the experience of the two-phase study
previously reported, we highlight four key challenges
faced during the migration. The first challenge is the
identification of functionalities. It is not a trivial task,
especially when considering large modules with scat-
tered and tangled functionalities. The literature has
already discussed this relevant issue in the migration
process (Ossher and Tarr, 2002). The second chal-
lenge comes from the need to define optimal bounda-
ries among candidate features for microservices. The
third challenge comes from the need to decide which
will befeatures should be converted to microservices.
The fourth challenge is related to the need to carefully
analyze these potential candidate microservices with
respect to their respective granularity and respective
cohesion.

Previous published work already addressed the
decomposition problem for identifying modules, pac-
kages, components, and "traditional"services, mainly
by means of clustering techniques upon design arti-
facts or source code. However, boundaries between
modules defined using these approaches were flexible
enough to allow the software to evolve into instan-
ces of Big Ball of Mud (Coplien and Schmidt, 1995).
Although the discussion in the literature regarding the
value of cohesive services and the power of Bounded
Contexts, it seems to a void in the guidance on how
to identify these in practice (McLarty, ). The main
issue is that those people trying to determine service
boundaries are technologists looking for a technolo-
gical solution. On the other hand, defining cohesive,
capability-aligned service boundaries instead requires
domain expertise. To overcome this difficulty, a mo-
delling exercise should be carried out independently
of the specific technology used (Silva et al., 2019).

We managed to derive multiple autonomous mi-
croservices, each with its own database, by applying
the strategies reported above. For communication
between the microservices, we used HTTP communi-
cation mechanisms as API Restful and also asynchro-
nous communication with an EventBus implementa-
tion, running RabbitMQ4. As shown in figure 7, each
of the microservices now work with an independent
relational database, except the Marketing service be-
cause it is an auxiliary service. For this one, we chose
to use an in-memory database (Silva et al., 2019).

4https://www.rabbitmq.com

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

46



8 CONCLUSIONS

It should be noted that migrating a legacy application
rarely can be performed without significant effort. It
is often entails hard and complex work. To the best
of our knowledge, there are frameworks that can be
used to support practitioners during the development
(forward engineering) of microservice-based systems,
such as Spring Cloud5 and Hystrix6, just to name a
few. However, none of them provides full support to
the three migration phases. To contribute to filling this
gap, this paper presents the lessons learned to support
this kind of migration. We believe that the availabi-
lity these lessons learned can support and encourage
practitioners from the industry and academia to per-
form them.

The lessons learned were based on our experience
on the two-phase study reported in this paper. We also
plan to conduct a survey with practitioners from the
industry. Among other things, we wish to collect opi-
nions their perceptions regarding the challenges that
are faced during this type of migration, learn about
the requirements and characteristics for suitable pro-
cesses.

REFERENCES

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016). Mi-
croservices architecture enables devops: migration to
a cloud-native architecture. IEEE Software, 33(3):42–
52.

Coplien, J. O. and Schmidt, D. C. (1995). Pattern langua-
ges of program design. ACM Press/Addison-Wesley
Publishing Co.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., and Safina, L. (2017). Mi-
croservices: yesterday, today, and tomorrow. In Pre-
sent and Ulterior Software Engineering, pages 195–
216. Springer.

Evans, E. (2004). Domain-driven design: tackling comple-
xity in the heart of software. Addison-Wesley Profes-
sional.

Gamma, E. (1995). Design patterns: elements of reusable
object-oriented software. Pearson Education India.

Kalske, M., Mäkitalo, N., and Mikkonen, T. (2017). Chal-
lenges when moving from monolith to microservice
architecture. In Current Trends in Web Engineering,
pages 32–47. Springer, Cham.

Leymann, F., Breitenbücher, U., Wagner, S., and Wettinger,
J. (2016). Native cloud applications: Why monolithic
virtualization is not their foundation. In Cloud Com-
puting and Services Science, pages 16–40. Springer,
Cham.

5http://projects.spring.io/spring-cloud/
6https://github.com/Netflix/Hystrix

Martin, R. C. (2002). The single responsibility principle.
The principles, patterns, and practices of Agile Soft-
ware Development, 149:154.

McLarty, M. Designing a microservice system.
Millett, S. (2015). Patterns, Principles and Practices of

Domain-Driven Design. John Wiley & Sons.
Nadareishvili, I., Mitra, R., McLarty, M., and Amundsen,

M. (2016). Microservice Architecture: Aligning Prin-
ciples, Practices, and Culture. "O’Reilly Media, Inc.".

Newman, S. (2015). Building microservices: designing
fine-grained systems. "O’Reilly Media, Inc.".

Ossher, H. and Tarr, P. (2002). Multi-dimensional separa-
tion of concerns and the hyperspace approach. In Soft-
ware Architectures and Component Technology, pages
293–323. Springer.

Richardson, C. (2014a). Microservices: Decomposing ap-
plications for deployability and scalability.

Richardson, C. (2014b). Pattern: Monolithic architecture.
Posjećeno, 15:2016.

Seaman, C. B. (1999). Qualitative methods in empirical
studies of software engineering. IEEE Transactions
on software engineering, 25(4):557–572.

Silva, H., Carneiro, G., and Monteiro, M. (2019). An expe-
rience report from the migration of legacy software
systems to microservice based architecture. In In-
formation Technology-New Generations (ITNG 2019),
pages 159–165. Springer.

Singleton, A. (2016). The economics of microservices.
IEEE Cloud Computing, 3(5):16–20.

Taibi, D., Lenarduzzi, V., and Pahl, C. (2017). Processes,
motivations, and issues for migrating to microservices
architectures: An empirical investigation. IEEE Cloud
Computing, 4(5):22–32.

Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., and
Bohnert, T. M. (2017). Self-managing cloud-native
applications: Design, implementation, and experi-
ence. Future Generation Computer Systems, 72:165–
179.

Wolff, E. (2016). Microservices: Flexible Software Archi-
tecture. Addison-Wesley Professional.

Towards a Roadmap for the Migration of Legacy Software Systems to a Microservice based Architecture

47


