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Abstract: Fast-moving celestial objects, like near-Earth objects (NEOs), orbiting space debris, or meteors, appear as st-

reaks superimposed over the star background in images taken by an optical telescope at long exposures. As the

apparent magnitude of the object increases (the object becomes fainter), its detection becomes progressively

harder. We discuss a statistical procedure that makes a binary decision on the presence/absence of a streak in

the image which is called streak certification. The certification is based purely on a single input image and a

public star catalog, using a minimalistic statistical model. Certification accuracy greater than 90% for streaks

of arbitrary orientation, longer than 500 pixels, and the signal-to-background log-ratio is better than −10dB is

achieved on the same dataset as in an earlier similar method, whose performance is thus exceeded, especially

for close-to-horizontal streaks. We also show that the certification decision indicates detection failure well.

1 INTRODUCTION

With the rise of spatial traffic around Earth, Space Si-

tuational Awareness (SSA) gradually became an es-

tablished field (Bobrinsky and Del Monte, 2010). It

brought the need for object detection, most impor-

tantly space debris, which are unwanted man-made

passive objects of various sizes orbiting Earth. Their

orbital parameters may be difficult to predict, due to

random influences, like solar wind, etc. Better de-

tection methods lead to safety increase in the Earth

orbit by improving collision prevention. Detection of

other near-Earth objects is also of interest (Yanagi-

sawa et al., 2005). Besides radar observations, optical

observations are widely considered a suitable moda-

lity for detection. Any automatic cataloging process

of a large number of such objects requires a statistical

assessment of detection significance.

We consider optical observations of such objects.

In a typical setup, long-exposure images are taken in

a sequential manner. Objects of interest appear as st-

reaks in these images, an example is shown in Fig. 1.

A streak is a line segment parameterized by position,

length, angular orientation, amplitude (or brightness),

and cross-sectional profile (width). The streak, orien-

ted approximately in a lower-left to upper-right di-

rection in Fig. 1 is not very difficult to detect although

it may not be visible to inexperienced reader at first

sight.

a https://orcid.org/0000-0002-2032-5764

Figure 1: Input image, the green arrow points to the streak
(−38◦, SBR = −5.26 dB). Best viewed close-up, in PDF.

It is common that few images in an observation

sequence contain a streak. These images are hard

to select manually. We therefore consider the fol-

lowing task: Given a single optical image like the

one in Fig. 1, we wish to decide if the image con-

tains a streak or not and determine the parameters of

the streak if it does. We discuss a formal framework

for the statistical decision part of the task that has

been called certification in (Sara and Cvrcek, 2017).
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Figure 2: Filter response (φ = −38◦) to the image from
Fig. 1, stars are not suppressed (Sara and Cvrcek, 2017).

Figure 3: Filter response (φ = −38◦) to the image from
Fig. 1 with star suppression.

In that view, the parameter inference (detection) is a

secondary task. The certification (or detection) be-

comes progressively more difficult with decreasing

signal-to-background ratio (SBR) and decreasing st-

reak length. In addition, in case of a passive telescope

(without sidereal tracking, as is the case in Fig. 1) the

certification and detection problems are not equally

difficult for all orientation angles because stars appear

as short streaks as well.

1.1 Related Work

The streak detection problem and its variations has

been studied for more than two decades (Leu, 1992).

Known methods can be divided to two broad cate-

gories: Single-frame methods that work with a sin-

gle image (Ciurte and Danescu, 2014; Virtanen et al.,

2016; Tagawa et al., 2016) and multiframe methods

that track the object (Yanagisawa et al., 2008; Sun

et al., 2015; Uetsuhara and Ikoma, 2014; Yanagisawa

and Kurosaki, 2012; Šára et al., 2013) and/or use

streak-free images for background subtraction (Leu,

1992; Gural et al., 2005).

A long streak appears if the observed object moves

fast and appears in just a single frame. Some authors

also consider slowly moving objects that are obser-

ved repeatedly over the course of several frames (Leu,

1992; Uetsuhara and Ikoma, 2014). The ‘streaks’ in a

single frame are then very short. To achieve reliable

detection, it must be coupled with tracking. We do

not consider such approaches in this paper and focus

on long streaks (at least 50 pixels, say).

Simple detection methods use matched filters (Gu-

ral et al., 2005). Each parameter vector defines a

convolutional filter that is applied to the image. Pa-

rameters include streak shape and pose. Detection

is done by non-maximum suppression with threshol-

ding. The threshold can be learned (Schildknecht

et al., 2015). The matched-filter approaches perform

an exhaustive search, possibly with some speedup

heuristics (Schildknecht et al., 2015). In these met-

hods there is a tradeoff between parameter space dis-

cretization step and detection accuracy.

A well-known method in the class of single-frame

long-streak detection is based on image column me-

dians (Yanagisawa and Nakajima, 2005): Even a faint

vertical streak of sufficient length can be detected by

computing columnwise image medians and threshol-

ding the result. This gives the column position. The

streak is then localized within that column. Stre-

aks in other orientations are detected with the help

of image rotation. This method requires a very fine

quantization of angular space (around 360 discrete

angles in (Yanagisawa and Nakajima, 2005) for re-

gion 700× 700 pixels, bigger images require even fi-

ner quantization). On the other hand, the algorithm

is easily parallelizable which makes the method use-

ful. The method is robust: Bright stars and noise have

low impact on the median. A less robust but compu-

tationally efficient methods are based on Radon trans-

form (Zimmer et al., 2013). These methods share the

limitation due to angular discretization.

Recent single-frame methods employ a bottom-up

procedure of salient pixel detection, followed by per-
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ceptual grouping (Virtanen et al., 2016). The method

does not distinguish short/long streaks. It achieves

state of the art performance on a proprietary dataset.

Some recent approaches try avoiding early deci-

sions, acknowledge the statistical nature of the pro-

blem and employ a formal classification/hypothesis

testing. An interesting method in this class is (Ko-

lessa, 2013). The method first considers local image

structure and categorizes it to several classes (back-

ground/star/streak tracklet). Streaks are then detected

by concatenating streak tracklets. Another statisti-

cally sound method is presented in (Dawson et al.,

2016). The methods maximizes image likelihood by

streak parameter space search.

A recent statistical method distinguishes two pha-

ses of the problem: Detection and certification (Sara

and Cvrcek, 2017). Detection infers streak parame-

ters in the Maximum a Posteriori (MAP) sense, assu-

ming there is a streak in the image. Certification is

a decision if the image contains a streak. These two

tasks are coupled in what the paper calls Multi-Level

Bayesian Inference (MLBI). The certification is done

by Bayesian model selection. Two statistical models

are considered: (1) M1: image contains a streak, and

(2) M0: image does not contain a streak. Model se-

lection is based on computing posterior marginals for

the two models and comparing their value. The nice

property of the method is that the marginals can be

computed exactly with a low-order polynomial algo-

rithm (Sara and Cvrcek, 2017). The method achie-

ved state-of-the art performance in a restricted streak

angle range: The presence of axis-aligned CCD chip

artefacts (vertical, horizontal) and star streaks (hori-

zontal) resulted in false-positive certification for these

angles, hence the algorithm worked with these angles

excluded.

The present paper aims to develop the method

from (Sara and Cvrcek, 2017) further. The under-

lying principles are the same. We removed the angu-

lar limitation of the previous method by background

simulation and subtraction in feature space, as de-

tailed in Sec. 2.1. This led to significant performance

improvement and pushed the performance boundary

towards very faint streak certification, as shown in

Sec. 4. The main focus of this paper is on certifi-

cation. We nevertheless describe the detection proce-

dure and verify consistency of the proposed certifica-

tion and ground-truth based detection rejection using

a threshold on location error of the detection.

Figure 4: Example of an oriented streak template. The tem-
plate’s orientation is φ =−45◦.

2 METHOD

Each pixel xi, j (we might drop the indices i, j in sub-

sequent text) in the image X is represented by a fe-

ature vector f(i, j), of dimension d (d = 5). The fe-

ature vector f(i, j) represents a local region w.r.t. to

a certain family of templates (Marchant and Jackway,

2012a). A streak segment template in Fig. 4 is repre-

sented by a vector t of size d that can be rotated in

O(d). Similarity between region represented by f and

t rotated by φ is then computed in O(d) time. This

is faster than rotating the original streak template in

Fig. 4 and convolving with the input image for each

angle. Details how to construct f and t are provided

in (Marchant and Jackway, 2012a). Additional details

for computing similarity in an identical setting can be

found in (Sara and Cvrcek, 2017).

Some image objects resemble streaks (stars in a

passive telescope, CCD imager segment boundaries),

thus inducing high response (although they belong to

the background). This often leads to false positives.

The paper (Sara and Cvrcek, 2017) deals with this

problem by prohibiting problematic angles. Thus, the

angular degree interval [−90,−73.5]∪ [−5.5,5.5]∪
[73.5,90] was excluded in (Sara and Cvrcek, 2017).

But then a streak with an orientation in that interval

leads to a false negative. In this paper, we wish to

extend the solution to every orientation of a streak.

To do this (1) we construct simulated background in

Sec. 2.1, and (2) we will show how to modify the fe-

ature vectors to compensate background artefacts in

Sec. 2.1.

2.1 Normalized Image Representation

Our objects of interest are celestial objects that pro-

duce streaks in long-exposure images. If the ob-

ject was not present, we would observe what we

call the background image. As discussed above,

the background image contains structures (stars and
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image artefacts) that lead to false positive certificati-

ons/detections. In this paper, we will show how to

suppress these artefacts by modifying the feature re-

presentation of the image.

One can either obtain stars by detection, directly

in the input image (Schildknecht et al., 2015), or from

registering the image against a star catalog (Zimmer

et al., 2013). With the first approach, we risk de-

tecting a streak as a star, or ignoring a star altoget-

her. Rather than a truth we see the star catalog as

an independent but imperfect source of information.

We should note that automatically constructed cata-

logs are incomplete in objects of large apparent mag-

nitudes but up to the limiting magnitude of a typical

telescope it can be considered complete.

With a catalog or without, the usual approach is

to mask the stars out (Schildknecht et al., 2015), thus

loosing some data. We will avoid such early decisi-

ons by using the star catalog and some characteristics

of the input image to simulate the background of the

input image in the space of aforementioned features.

Assuming our background simulation was perfect,

then due to additivity, we could get the pure streak

image by simply subtracting the background image

from the input image. Unfortunately, simulating the

background in sufficient quality is very difficult since

the image is influenced by many physical phenomena

(consider e.g. image saturation or blooming, or thin

clouds in the upper atmosphere partly dimming the

stars and reflecting stray light from the Earth). We

found that if the subtraction is done in the space of

normalized image features, the idea works with even

a very coarse simulation. Moreover, the simulation

tends to work very well for bright stars that tend to

attract the detector/skew certification. These kinds of

objects are causing most of typical false positives in

previous methods (Zimmer et al., 2013).

Background simulation is done as follows. Each

star in the catalog has an apparent magnitude M.

Magnitude is not directly measurable in the image.

We therefore recover the star magnitude-to-image

flux mapping. The images are first registered to the

catalog by the method used in (Šára et al., 2013).

For each catalogued star and the given image expo-

sure time, an elongated star image region S is defi-

ned. Flux Fm of the star in the image is computed by

integrating image values over S. This way we col-

lect (flux, magnitude) samples. Apparent magnitu-

des M from the star catalog are matched to flux Fm

by robustly fitting a piece-wise linear function to this

data. Catalogued stars are simulated by rendering a

line segment of length l proportional to exposure time

and amplitude proportional Fm/l. The resulting simu-

lated image is then convolved with a Gaussian point

spread function. Its σ parameter was learned from star

samples.

Finally, random Gaussian noise with zero mean

was added. The standard deviation of the noise was

learned as the sample standard deviation of the input

image, with image regions containing stars masked

out (solely) for this purpose.

Let fim(i, j) be steerable feature vector computed

at an input image pixel (i, j) and fsim(i, j) be feature

vector computed at the corresponding pixel of the si-

mulated image. The features are spherical quadrature

filter responses (Marchant and Jackway, 2012b) with

the zero-order filter excluded, see (Sara and Cvrcek,

2017) and references therein for details. The exclu-

sion helps suppress additive artefacts. We then nor-

malize the vectors to suppress scaling artefacts and

then subtract them:

fres(i, j) =
fim(i, j)

‖fim(i, j)‖
−

fsim(i, j)

‖fsim(i, j)‖
, (1)

where ‖ · ‖ is the Euclidean norm.

The effect of this simulated background sub-

traction in feature space can be seen in Fig. 2 and 3.

We found that this feature modification dramatically

contributes to the overall success of the certifica-

tion/detection method as the experimental results in

Sec. 3 show.

2.2 Model

We study two events. In the first event, there is no sta-

tistically significant streak with an orientation φ in an

image X . We denote the Bayesian model for the no-

streak event as p0(X ,φ). The second event is a pre-

sence of a single statistically significant streak with

an orientation φ and parameters θ (eg. starting and en-

ding position) in the image X . We denote the Baye-

sian model for the single-streak event as p1(X ,φ,θ).
We lift the image 2D grid to 3D grid by assuming

a discrete set of angles Φ. The lifted image element

value xφ,i, j is then the similarity value between the st-

reak segment template of the orientation φ and image

at the pixel position (i, j). We denote similarities for a

particular orientation Xφ = {xφ,i, j | (i, j) ∈ X }, where

X is the image domain. The complete 3D stack is

XΦ = {Xφ | φ ∈Φ}.
The quantization Φ stems from the fact that stre-

aks are not infinitely thin. The orientation φ is then

a discrete random variable. The motivation for lifting

data to 3D is that we need to express the fact that a

possible streak can appear in just a single orientation.

This is a substantial modification of the original mo-

del (Sara and Cvrcek, 2017). In summary, we assume

that p0(X ,φ+∆φ) ≈ p̂0(Xφ) and p1(X ,φ+∆φ,θ) ≈
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p̂1(Xφ,φ,θ), when φ is fixed and |∆φ| is sufficiently

small.

First, we develop the two models p̂0(Xφ) and

p̂1(Xφ,φ,θ). Then, we use the models to (1) find the

best streak in the image (detection), and (2) decide

about the statistical significance of the founded streak

(certification).

2.2.1 No-streak Model Distribution

We first construct distribution pb(xφ,i, j; ζb(φ)) with

hyper-parameters ζb(φ) that a single-pixel similarity

originates from a background. Given a fixed orien-

tation φ ∈ Φ and the input image, we learn the dis-

tribution pb as a normalized histogram with hyper-

parameters ζb(φ). The histogram is constructed from

all steered similarity responses xφ,i, j collected over the

image domain for a given angle φ. The effect of a pos-

sible streak in the image is negligible in the histogram

due to its small support in the image. An example of

the background pixel-wise distribution pb is the blue

distribution in Fig. 5.

We assume pixel-wise independence and we con-

struct following joint image model distribution for

particular orientation φ

p̂0(Xφ) = ∏
i, j∈X

pb(xφ,i, j; ζb(φ)) . (2)

where Xφ is the similarity map.

The distribution that the image is a background

p0(X)≈ p̂0(XΦ) is the joint distribution that every 3D

pixel is part of the background

p̂0(XΦ) = p̂0(Xφ1
, ..,Xφk

) =

∏
φ∈Φ

p̂0(Xφ) = ∏
φ∈Φ

∏
i, j∈Xφ

pb(xφ,i, j ; ζb(φ)) . (3)

The background model is hence parameterless.

2.2.2 Streak Model Distribution

We first construct distribution that a single-pixel simi-

larity originates from a streak p1(xφ,i, j ;ζ1(φ)), which

is an analogue to pb(xφ,i, j; ζb(φ)) in (3). This is done

in a way similar to (Sara and Cvrcek, 2017). It is assu-

med that a streak adds an unknown additive quantity

to similarity xφ,i, j. This is approximately true even

after normalization in (1) for small streak amplitu-

des. Since the amplitude of the streak is unknown,

we assume a random variable of uniform distribution

pu(x;a,b), where x is a similarity shift and (a,b) is a

sufficiently wide shifts interval. The p1(xφ,i, j;ζ1(φ))
is then given by

p1 = pb ∗ pu. (4)

Figure 5: Pixelwise distributions pb(xφ,i, j;ζb(φ)) and
p1(xφ,i, j;ζ1(φ)) for φ =−38◦.
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Figure 6: Angular profile of the input image in Fig. 1, with a
prominent peak corresponding to the streak orientation an-
gle.

Where ∗ represents convolution and ζ1(φ) are hyper-

parameters of a normalized histogram. A typical re-

sult is the red distribution in Fig. 5.

Suppose we work at a given angle φ. We shear2

the domain XΦ to angle φ so that a streak is given by

its column position j and two end-points i1,2 in that

column (Sara and Cvrcek, 2017).3 Then the streak

parameters are θ+ = (φ, j, i1,2) which defines its (she-

ared) domain Y (φ, j, i1,2). For the sake of brevity, we

assume that enumerating (φ, j, i) ∈ Y (θ+) is equiva-

lent to enumerating (φ, j, i1,2) ∈ Y (φ, j, i1,2).

We define the distribution that a particular stack in

2The shear mapping is two times faster than a rotation.
3After shearing the input image to angle φ a streak of

orientation φ becomes vertical, hence simpler to detect by
just searching image columns (Tagawa et al., 2016).
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the XΦ contains a single streak with parameters θ+

p̂1(Xφ | θ+) = p̂0(Xφ) ∏
(φ,i, j)∈Y (θ+)

p1(xφ,i, j; ζ1(φ))
pb(xφ,i, j; ζb(φ)

,

(5)

that is analogous to (2). We define the distribution that

the image contains a single streak given parameters

θ+ as

p̂1(XΦ | θ+) = p̂0(XΦ\φ)p̂1(Xφ | θ+) (6)

that is analogous to (3).

Then, we construct the joint distribution, given φ

p̂1(Xφ, j, i1,2 | φ) =
p̂1(Xφ | φ, j, i1,2) p̂1(i1,2 | φ, j) p̂1( j | φ) . (7)

We use uniformly distributed priors p̂1(i1,2 | φ, j) and

p̂1( j | φ).

2.3 Certification

We compute the single streak evidence (given orienta-

tion) from the model by marginalizing the streak pa-

rameters

p̂1(Xφ | φ) =
nφ

∑
j=1

mφ

∑
i1=1

mφ

∑
i2=i1

p̂1(Xφ, j, i1,2 | φ) . (8)

Where nφ is number of columns in the sheared image

and mφ is the number of rows.

The inner two sums in (8) are easily computed

with the help of integral sums, using parametriza-

tion (φ, j, i1,2) in the sheared domain and following

the Belmann principle of dynamic programming, as

in (Sara and Cvrcek, 2017).

We obtain the distribution for complete 3D stack

p̂1(XΦ | φ) = p̂0(XΦ\φ)p̂1(Xφ | φ) . (9)

Then the full Bayesian evidence required for cer-

tification is

p̂1(XΦ) = ∑
φ∈Φ

p̂1(XΦ | φ) p̂1(φ) . (10)

Where p̂1(φ) is a uniform distribution.

We can effectively precompute the partial ele-

ments in (9) up to some constant background distri-

bution per individual level in 3D stack.

We have chosen the background distribution to

be parameterless and already have the required form

p̂0(XΦ).
Certifying streak detection requires statistical de-

cision about the presence of a single streak in the

image. We implement the decision as the Bayesian

model selection based on the evidences (10) and (3).

The Bayes model selection tells us that an image

contains a streak if and only if p̂1(XΦ) > p̂0(XΦ). In

practice, we study their ratio

C(X) =
p̂1(XΦ)

p̂0(XΦ)
= ∑

φ∈Φ

p̂1(Xφ | φ)p̂1(φ)
p̂0(Xφ | φ)

, (11)

which we call certification value and we say that

image contains a streak when

C(X)> T , (12)

where the T is a given threshold. The (12) is then cer-

tification decision. This is equivalent to the decision

rule used in (Sara and Cvrcek, 2017). The need for

the threshold T arises from an imperfect power of the

statistical model to capture reality. The T then serves

as a way to balance the false positive/false negative

tradeoff.

The complete certification and detection algo-

rithm is summarized in Alg. 1.

2.4 Detection

Detection is a maximization

(θ+)∗ = argmax
(φ,i, j)∈Y (θ+)

p̂1(XΦ | θ+) , (13)

it can therefore be easily computed simultaneously

with certification. We simply replace summations

in (8) and (10) by maximizations.

For clarity in subsequent text, we introduce the

following function

( j∗, i∗1,2) = L(φ) = argmax
j,i1,2

p̂1(XΦ | φ, j, i1,2) , (14)

which selects the best streak segment, given an angle

φ.

3 EXPERIMENTS

3.1 Certification

Certification is a decision task whose ROC curve is

generated by threshold T in (12). We therefore re-

port ROC curves and also AUC statistics. We used the

same experimental procedure as in (Sara and Cvrcek,

2017), which we call the MLBI method here. Note

that results in (Sara and Cvrcek, 2017) show ROC

curves and AUC with a subset of streak orientation

angles ignored, as discussed in Sec. 2. Unlike MLBI,

here we are testing on the full angular range. This is

the reason the MLBI results reported here are worse

than those reported in (Sara and Cvrcek, 2017).

The proposed method produces certification val-

ues C(X), so does the MLBI method. False positive
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Algorithm 1: Streak certification and detection.

Given: Input image X .

Output: Certificate value C(X), streak parameters
(φ∗, j∗, i∗1,2).

1. Get a feature representation fres of the input image
using (1).

2. Initiate Φ to (−90,−85, ...,85,90)[◦]:

3. For each angle φ ∈Φ:

(a) Find response Xφ to the template in Fig. 4 rotated by
φ.

(b) Shear response Xφ by φ (streaks become vertical).

(c) Learn ζb(φ).
(d) Compute ζ1(φ) using (4) and p̂0(Xφ | φ) from (2).

(e) Compute p̂1(Xφ | φ) from (8).

(f) Find the best segment L(φ) in angle φ using (14).

(g) Update Φ by using the branch and bound method.

4. Compute p̂0(XΦ) from (3) and p̂1(XΦ) from (10).

5. Find the maximum φ∗ of L(φ) over φ ∈ Φ by fetching
results from Step 3f.

6. Given φ∗ use (14) to get ( j∗, i∗1,2).

7. C(X)← p̂1(XΦ)/ p̂0(XΦ).

occurs when C(X) exceeds the certification decision

threshold T . False negative occurs in a streak image

with the C(X) lower than T .

To the best of our knowledge, there is no publicly

available benchmarking dataset. As a result, different

methods are evaluated on different datasets, which

are not publicly available. Even the largest publis-

hed study on the topic (Virtanen et al., 2016) does

not publish the dataset. Direct comparison with most

of other methods is therefore impossible. In order to

compare our results with the closest work, we used

a dataset very similar to that one that has been used

in (Sara and Cvrcek, 2017).

It is difficult to obtain streak images with verified

ground-truth. Manual ground-truth verification is not

feasible in very faint streaks, since there are many ob-

jects of high apparent magnitude that the human eye

cannot see. The difficulty may be acknowledged in

Fig. 1, which shows an example of a well detectable

streak but an untrained human eye can easily miss it.

Obtaining a ground-truth dataset would be a major ef-

fort in itself.

Therefore, a ground-truth dataset must be simu-

lated. In order to make the simulation realistic,

the (Sara and Cvrcek, 2017) used real images as a

background and simulated streaks of varying length,

position, orientation, and amplitude in them. We use

the same method: One hundred real images are se-

lected from the same large dataset, which either do not

contain a streak or contain streak(s) which can not be

manually confirmed. The images were taken in Lulin

observatory in Taiwan (the same data as in (Yanagi-

sawa et al., 2012; Sara and Cvrcek, 2017)). The 50 cm

telescope had FOV 1.3◦× 1.3◦, effective size of ima-

ges is 2049(V)×2047(H), 16 bit monochromatic and

5.9 s exposure time. Approximately 10 000 random

synthetic streaks were additively superimposed onto

the background images. Their amplitudes a are rela-

ted to signal-to-background ratio (SBR) by

SBR = 20log10

a

σ
, [dB] (15)

where σ is the standard deviation of the background

values (upper half-percentile is clipped). This is equi-

valent to SBR defined in (Sara and Cvrcek, 2017).

The lower the SBR value the fainter the streak. The

streaks were generated so that the distribution of

their end points was uniform over the image dom-

ain and their SBRs have uniform distribution (SBR∼
U(−30,0)[dB]) in the dataset.

We prototyped Algorithm 1 in MATLAB. The

processing time was measured on a middle-range

laptop with Intel processor i5-6200U CPU @

2.30GHz ×4. The processing time of an input image

is determined by the SBR of a streak in the input

image. The method takes up to several (3-7) minutes

for streak-less images. If the image contains a streak

with higher SBR the processing times decreases to a

few (2-4) minutes.

3.2 Certification and Detection

Consistency

Detection is done over identical data as certification.

We need to evaluate the accuracy of detection, given

the ground truth data. The metric determining dis-

tance between a detected streak and ground truth is

problem dependent. From a practical point of view,

the most important parameter of a detection is its

orientation angle φ. A somewhat less important pa-

rameter is the orthogonal distance of detected streak

from its correct position (corresponding approxima-

tely to j). The least important parameters are the st-

reak endpoints (corresponding to i1,2).

For the purpose of this experiment, we chose

to measure the angular error between detected and

ground truth streak as

d(Ldet,Lgt) = |φdet−φgt| , (16)

where φdet and φgt is the orientation of the detected

streak and the ground truth streak, respectively.

We want to show that certification is consistent

with detection accuracy. For each simulated image I,

we perform certification followed by streak detection.

We retain details about the simulation: The streak
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length, orientation and signal to background ratio. In

the results section, we study the relation between cer-

tification value C(X) and detection. We would like to

see that the certification value C(X) is related to streak

length and to SBR and that there exist a narrow in-

terval for the certification threshold T which predicts

streak detection failure, as measured by the accuracy

metric.

4 RESULTS AND DISCUSSION

4.1 Certification

Similarly as in (Sara and Cvrcek, 2017) we split the

dataset to several sub-groups based on the streak’s

SBR and length. As discussed above, short streaks

and/or streaks of low SBR are more difficult to certify

(and detect).

The results of ROC analysis (Fawcett, 2006) are

shown in Figs. 7, 8, 9 and 10. Figs. 8 and 10 show

ROC curves of the proposed method. Figs. 7 and 9

show ROC analysis of the MLBI method presented

in (Sara and Cvrcek, 2017), this time with no orien-

tation restriction. Each point in Figs. 9 and 10 shows

AUC for the given subset. Since we do not restrict the

angular space as in (Sara and Cvrcek, 2017), the met-

hod in Figs. 7 and 9 show degraded results compared

to those reported in (Sara and Cvrcek, 2017).

As can be expected, long, sufficiently bright stre-

aks are easy to certify. In Fig. 10 we see that in the

interval of −10dB to −5dB, with the shortest stre-

aks, the AUC is 0.925. This means the error rate (Fa-

wcett, 2006) is 7.5%. That is a 6-fold improvement

over the MLBI. For the long (∆ > 1200), ultra-faint

(SBR < −25dB) streaks in Fig. 10 the error rate is

still less than 32 %. In this range the MLBI method

gives results not better than a chance (AUC ≈ 0.5).

We conclude the proposed method significantly ex-

ceeds the MLBI method in performance when applied

to the full streak orientation domain.

4.2 Certification and Detection

Consistency

Certification works well when it is consistent with de-

tection: Only correctly detected streaks should be cer-

tified positively.

Box plots in Fig. 11 show dependency of angular

error on the SBR for all detections. We see in Fig. 12

that the error is significantly smaller in certified st-

reaks. Even very faint streaks in the (−30,−20) dB

range achieve low median detection error.
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Figure 7: ROC curves for the MLBI method (Sara and Cvr-
cek, 2017) on the full angular domain. Colors represent
dataset subgroups (see the main text for a description) from
a Cartesian product listed in the plot legends.

Table 1: Confusion matrix for real streaks, the certification
threshold is log(C(X))> 200.

Ground truth

Streak Background

C
er

ti
fi

ca
ti

o
n

S
tr

ea
k

24 (TP) 4 (FP)

B
ac

k
g

r.

0 (FN) 18 (TN)

To probe further, the scatter plot in Fig. 13 shows

the dependency between the angular error and certi-

ficate value C(X). We can see that almost all failed

detections occur under logC(X) < 200. The red line

shows medians of data groups with a similar certifi-

cation value. The sharp drop in that curve confirms a

stable decision threshold T ≈ 200 on logC(X).

4.3 Real Data Experiments

We manually selected 24 observations that contain a

streak and 22 observation that do not contain a streak.

An example of faint detected streak is in Fig. 14. We

run the detection and certification for these observati-

ons. The resulting confusion matrix is in Tab. 1.

False negative occurs when the streak is too

faint/short. Streaks visible to human are almost al-

ways detectable, hence the false negative count is
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Figure 8: ROC curves for the proposed method, on the full
angular domain. Note the marked improvement over Fig. 7
on same-color curves.
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Figure 9: AUC for the MLBI method (Sara and Cvrcek,
2017) on the full angular domain. Colors correspond to
streak length intervals, the SBR coordinate represents the
middle of a SBR interval.

zero. False positive occurs, when the data are oversa-

turated (Fig. 15) or the catalog fails (Figs. 16 and 17).

Catalog fails, when the star in the catalog is either

significantly brighter (Fig. 16) or significantly fainter

(Fig. 17). Both instances produce a contrast that leads

to a false positive.
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Figure 10: AUC for the proposed method, on the full angu-
lar domain. Note the improvement over Fig. 9.
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Figure 11: Angular error vs. SBR for all detections. Blue
boxes show data from 25th to 75th percentile, red lines are
medians.

4.4 Comparison with other Methods

Comparison with other independent methods can only

be done indirectly. The (Dawson et al., 2016) de-

monstrate their method on what they call ultra-faint

streaks. Their streak has amplitude lower than SBR

(a < RMS noise) and length ∆≈ 250px. This means

authors are capable of detecting a streak with SBR

lower than 0dB. The lowest SBR we found in litera-

ture is SBR ≈ −4.4dB (amplitude ≈ 0.6σ (Zimmer

et al., 2013; Schildknecht et al., 2015)). The method
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Figure 12: Angular error vs. SBR for detections certified
with the threshold of log(C(X)) > 200. Blue boxes show
data from 25th to 75th percentile, red lines are medians.
Note the scale change on the y axis.
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Figure 13: Angular error d as a function of certification va-
lue logC(X). One blue point corresponds to one image.

(Virtanen et al., 2016) is capable of detecting multi-

ple streaks in about 13 s in 2k-by-2k images. The true

positives are about 90% for SBR > 0dB for streaks

longer than 100 px. And when the SBR is lower than

−6dB, the true positives are around 50%.

5 CONCLUSION

We have discussed a certification method, which sta-

tistically decides about the presence of a streak in

the image. We have also shown that background si-

Figure 14: Detection of a real faint streak, the certification
value is −325.

mulation (stars, some sensor artefacts) leads to su-

perior certification results, as demonstrated on semi-

synthetic data. We have shown that the certification

value predicts detection failure in the sense of a de-

tection error metric.

We conducted experiments showing that on the

SBR interval of −5dB to 0dB, with streaks length

from 10px to 500px, we achieve AUC≈ 0.97. This is

comparable to results presented in (Sara and Cvrcek,

2017). However, unlike in (Sara and Cvrcek, 2017)

we can certify a streak regardless of its orientation.

The proposed method outperforms (Sara and Cvrcek,

2017) in lower SBRs. Fig. 10 shows that even for the

SBR values from −30dB to −25dB the error rate of

the proposed method is still better than random gues-

sing (AUC > 0.5). Of the known methods this is the

best performance.

We also tested the method on a small set of real

data in Sec. 4.3. We have shown that the method is ca-

pable to detect faint streaks in real datasets. We have

also shown that the method often fails when the back-

ground compensation fails. This observation hints to-

ward further improvements.

The streak detection domain provides an example

of a problem, where the objects of interest are arbi-

trarily difficult to confirm. We have shown that it is

possible to construct a general mechanism that can

certify a detection while adapting to the input data in-

stance via constructing the pb distribution. The ge-

nerality of the approach follows from the generality

of Bayesian inference. The nice property of the st-
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Figure 15: Detection fails because of the large saturated
star.

Figure 16: Detection fails because the star in the catalog
is too bright. The star is therefore overcompensated and
resulting contrast is detected as a streak. Best viewed close-
up, in PDF.

reak detection problem is that the marginals needed

for the inference can be computed exactly. It is there-

fore possible to study the utility of the Bayesian mo-

del selection principle in computer vision problems.

Our results confirmed our (good) expectations.

Generalization to multiple streak certification

is possible within the model selection framework.

Instead of considering just two models M0 and M1,

Figure 17: Detection fails because the star in the catalog is
too faint. The undercompensated star residual response is
similar to a streak.

for no-streak and single-streak data interpretation, re-

spectively, one could consider a set Mi for i= 0, . . . ,n.

As a result, one would get the a posteriori most pro-

bable number of streaks in data. This is a topic for

further research.
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