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Abstract: Temporal coupled mode theory (CMT) has so far been applied phenomenologically in the analysis of optical 

cavity-waveguide structures, and relies on a priori knowledge of the to-be-excited resonator mode. Thus a 

rigorous derivation from Maxwell’s equations, and without any prior knowledge of the resonator type is 

needed. In this paper we derive temporal CMT of optical cavities coupled to waveguides. Starting from 

Maxwell’s equations and considering a proper expansion of the modes of the waveguide and resonator, and 

using mode orthogonality, the temporal CMT for this structure is obtained. We show that this formulation is 

general and can be applied to both traveling wave and standing wave type resonators.  The results are validated 

against full-wave simulations.

1 INTRODUCTION 

Optical cavities are crucial components in integrated 

optical circuits, impacting a variety of different 

applications, including optical filters in multiplexers, 

optical sensors, enhancing light-matter interactions, 

increasing nonlinear effects, to just name a few. 

Waveguides are typically used to couple light in and 

out of the cavity resonator. Thus an optical cavity 

coupled to a waveguide structures is a very frequent 

scenario that occurs in integrated optical circuits. 

Therefore, it is always of particular interest to develop 

analytical methods to analyze these structures, as full-

wave numerical solutions to these problems require 

time and computational power, which is increasing as 

these structures are becoming more complex or are 

repeated in a circuit multiple times.  

An analytical method often used to describe light 

propagation in optical cavities coupled to waveguide 

structures is a variation of the Coupled Mode Theory 

(CMT) known as temporal CMT (TCMT). TCMT 

turns Maxwell’s equations into a set of ordinary 

differential equations. This simplification in addition 

to providing an intuitive framework makes it suitable 

for the study and design of the resonance based 

components in integrated optical circuits.  

The original CMT in spatial domain may be traced 

back to the early 1950's (Pierce, 1954) with 

application in microwaves and it was first developed 

for analyzing optical waveguides by Marcuse, Snyder 

and Yariv (Yariv, 1973) in 1970’s. The method of 

temporal CMT was later developed by Haus (Haus, 

1984; Haus and Huang, 1991; Little et al., 1997) 

mainly for the analysis of coupled resonators and 

resonator coupled to waveguides. Thereafter, several 

research has focused on utilizing this method for 

scenarios involving resonators coupled to waveguide 

structures (Fan, Suh and Joannopoulos, 2003; 

Wonjoo Suh, Zheng Wang and Shanhui Fan, 2004; 

Manolatou et al., 1999). In these works, by virtue of 

time-reversal symmetry and power conservation 

laws, relations of the coupling coefficient between the 

resonator and guide are derived. Despite the 

universality and fame of this approach, to the best of 

our knowledge, for optical cavity coupled to 

waveguide, temporal CMT methods still rely on 

phenomenological ways to find the coupling 

coefficients. That is, they are normally fitted to a 

response obtained from full-wave solutions, and not 

rigorously derived from Maxwell’s equations, or the 

fields interacting, nor to the underlying structure. In 

addition, temporal CMT varies for traveling wave and 

standing wave resonators (Li et al., 2010) and one has 

to know which equation to use beforehand, which 

needs prior knowledge about the problem. The 

deficiency in the conventional temporal CMT 
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approach which is phenomenological and requires a 

prior knowledge about the type of the resonator, 

necessitates a rigorous derivation from Maxwell’s 

equations that without any prior knowledge works for 

both standing wave and traveling wave resonators. 

Recently some attempts have been made to derive the 

temporal CMT of optical cavity coupled to 

waveguide. One hybrid analytical-numerical 

approach to temporal CMT has been proposed 

(Agrawal et al., 2017) by expanding the 

electromagnetic field in terms of its modes and 

applying numerical methods to calculate the 

unknown coefficients. Another very recently 

proposed derivation based on implementing field 

equivalence principle to couple incoming 

electromagnetic fields of waveguide to that of the 

resonator has been shown (Kristensen et al., 2017).  

In this paper we present a rigorous derivation of 

temporal CMT which works for both the standing 

wave and traveling wave resonator without prior 

knowledge of the type of resonator. We start with 

Maxwell’s equations and by expanding 

electromagnetic fields in terms of the modes of the 

resonator and waveguide, and assuming 

orthogonality between them, Temporal CMT is 

derived. This paper is organized as follows: In section 

2 we derive temporal CMT equations, we first 

consider resonator as perturbation and by substituting 

a proper expansion of modes in the Maxwell’s 

equation and assuming mode orthogonality, we reach 

at a differential equation for the complex mode 

amplitude in waveguide, then by considering 

waveguide as perturbation and the same procedure, a 

differential equation for the complex mode amplitude 

of the resonator is derived. Next by solving these set 

of differential equations, we derive temporal CMT 

and provide closed form expressions for the coupling 

coefficients. At the end adding intrinsic loss of the 

resonator due to radiation is discussed. This approach 

is applied to the resonator with one and two modes. 

In section 3 examples of standing wave and traveling 

wave resonator are provided to assess the validity of 

the temporal CMT, results are compared to full wave 

FDTD simulations. Last we present conclusions in 

section 4. 

2 DERIVATION 

In this section, we derive temporal CMT for a 

resonator with one or two modes. For this purpose, 

electromagnetic fields in the optical cavity-

waveguide structure is approximated with a 

superposition of the modes of its components, i.e. 

modes of the resonator and that of the waveguide. By 

implementing a perturbation approach and 

considering waveguide (resonator) as the unperturbed 

structure and evaluating the effect of adding resonator 

(waveguide) as perturbation, differential equations 

for the complex mode amplitude of the waveguide 

and resonator is derived. By solving these set of 

differential equation, temporal CMT is obtained.   

2.1 One-Mode Resonator 

2.1.1 Perturbation of Waveguide Modes 

Consider a one-mode resonator side coupled to 

waveguide as shown in figure 1. Electromagnetic 

fields in the unperturbed waveguide are: 

 

Figure 1: Refractive index distribution of unperturbed 

waveguide (right) and perturbed structure (left). 

𝐄𝟎 = 𝐞+(𝑥, 𝑦)𝑒−𝑗𝛽𝑧 𝑒𝑗𝜔1𝑡 + 𝑐. 𝑐. 

 

(1) 

𝐇𝟎 = 𝐡+(𝑥, 𝑦)𝑒−𝑗𝛽𝑧 𝑒𝑗𝜔1𝑡 + 𝑐. 𝑐. 

 

(2) 
  

Where 𝐞+(𝑥, 𝑦) and 𝐡+(𝑥, 𝑦) are transverse mode 

profile of the waveguide and 𝜔1 is the operating 

angular frequency, and c.c. stands for complex 

conjugate of the same term, used for brevity. 

Electromagnetic fields in the coupled cavity-

waveguide is approximated as: 

𝐄 = 𝑎 𝐞𝐫(𝑥, 𝑦, 𝑧) + [𝑏+(𝑧)𝐞+(𝑥, 𝑦)

+ 𝑏−(𝑧)𝐞−(𝑥, 𝑦)] 𝑒𝑗𝜔1𝑡 + 𝑐. 𝑐. (3) 

𝐇 = 𝑎 𝐡𝐫(𝑥, 𝑦, 𝑧) + [𝑏+(𝑧)𝐡+(𝑥, 𝑦)

+ 𝑏−(𝑧)𝐡−(𝑥, 𝑦)] 𝑒𝑗𝜔1𝑡 + 𝑐. 𝑐. (4) 

Where 𝐞𝐫(𝑥, 𝑦, 𝑧) and 𝐡𝐫(𝑥, 𝑦, 𝑧) are resonator’s 

mode profile and 𝑎 and 𝑏+ (𝑏−) are the complex 

mode amplitude of the resonator and forward 

(backward) mode of the waveguide. Electromagnetic 

fields of equations (1) and (2) satisfy Maxwell’s 

equation of the unperturbed waveguide, i.e. ∇ × 𝐄𝟎 =

−𝜇0
𝜕𝐇𝟎

𝜕𝑡
  and  

∇ × 𝐇𝟎 = 𝜀
𝜕𝐄𝟎

𝜕𝑡
. Where 𝜀 denotes the permittivity 

distribution of the unperturbed structure according to 

Figure 1. Similarly, taking the resonator as 
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perturbation, a proper expansion of the modes as 

given by equation (3) and (4), are the solution of the 

equations ∇ × 𝐄 = −𝜇0
𝜕𝐇

𝜕𝑡
 and ∇ × 𝐇 = (𝜀 + ∆𝜀)

𝜕𝐄 

𝜕𝑡
. 

Where ∆𝜀 is 𝜀0(𝑛𝑟
2 − 𝑛2) in the resonator, and zero 

elsewhere. Therefore, it’s straightforward to obtain 

the following equation: 

∇. (𝐇 × 𝐄𝟎 + 𝐇𝟎 × 𝐄) = (𝜀 + ∆𝜀)
𝜕𝐄 

𝜕𝑡
. 𝐄𝟎 + 

𝜇0

𝜕𝐇𝟎

𝜕𝑡
. 𝐇 + 𝜀

𝜕𝐄𝟎

𝜕𝑡
. 𝐄 + 𝜇0

𝜕 𝐇

𝜕𝑡
. 𝐇𝟎 

(5) 

By integrating the above equation on the entire x-

y plane and applying time average, high frequency 

components become negligible and we can write the 

left-hand side of the above equation as: 

∬ ∇. ( 𝐇 × 𝐄𝟎 + 𝐇𝟎 × 𝐄)𝑑𝑥 𝑑𝑦 = ∬ ∇𝑡 . (  𝐇 ×

+∞

−∞

+∞

−∞

 

𝐄𝟎 + 𝐇𝟎 × 𝐄)𝑡  𝑑𝑥 𝑑𝑦 + ∬
𝜕

𝜕𝑧
 [𝑎 𝐡𝐫 × 𝐞+

∗𝑒𝑗𝛽𝑧  

+∞

−∞

 

𝑒−𝑗𝜔1𝑡 + 𝑏+(𝑧)𝐡+ × 𝐞+
∗𝑒𝑗𝛽𝑧 + 𝑏−(𝑧)𝐡− × 𝐞+

∗𝑒𝑗𝛽𝑧  

+𝑎 𝐡+
∗ × 𝐞𝐫 𝑒𝑗𝛽𝑧 𝑒−𝑗𝜔1𝑡 + 𝑏+(𝑧)𝐡+

∗ × 𝐞+𝑒𝑗𝛽𝑧 + 

𝑏−(𝑧)𝐡+
∗ × 𝐞−𝑒𝑗𝛽𝑧+c.c. ] 𝑑𝑥 𝑑𝑦 

 (6) 

Where ∇𝑡  represents del operator in transverse 

coordinate. According to the two dimensional 

divergence theorem one has: 

∬ ∇𝑡 .

+∞

−∞

( 𝐇 × 𝐄𝟎 + 𝐇𝟎 × 𝐄)𝑡  𝑑𝑥 𝑑𝑦 

= ∮  (𝐇 × 𝐄𝟎 + 𝐇𝟎 × 𝐄). 𝒅𝒏 = 0 

(7) 

here the integral is taken on the boundaries of an 

infinite circle and 𝒅𝒏 represents the vector normal to 

the boundaries. As electromagnetic fields decay by 

increasing distance from the structure, the above 

integral vanishes by integrating in the entire x-y plane. 

By assuming orthogonality between mode of the 

resonator and waveguide, and assuming that due to 

linearity, no frequency conversion occurs, therefore 

complex amplitude of the resonator mode is also 

single-frequency and in the same frequency with the 

waveguide mode. Therefore, equation 5 becomes as 

follows: 

𝑑

𝑑𝑧
𝑏+(𝑧)=−𝑗𝛽𝑏+(𝑧) −

𝑗𝜔1𝜀0

4
𝑎 ̃ ∬(𝑛𝑟

2−𝑛2)𝐞𝐫. 

𝐞+
∗𝑑𝑥 𝑑𝑦 −

𝑗𝜔1𝜀0

4
𝑏+(𝑧) ∬(𝑛𝑟

2 − 𝑛2)𝐞+. 𝐞+
∗𝑑𝑥 

𝑑𝑦−
𝑗𝜔1𝜀0

4
𝑏−(𝑧) ∬(𝑛𝑟

2 − 𝑛2) 𝐞−. 𝐞+
∗  𝑑𝑥 𝑑𝑦 

(8) 

 Where 𝑎 = 𝑎 ̃𝑒𝑗𝜔1𝑡 and electromagnetic fields are 

normalized to unit power, i.e. 
1

4
∬ 𝐞+ × 𝐡+

∗ +
+∞

−∞

𝐞+
∗ × 𝐡+ 𝑑𝑥 𝑑𝑦 = 1. The integrals are limited to 

resonator boundaries where ∆𝜀 is non-zero. In the 

above equation, integrals represent coupling of the 

forward waveguide mode to the resonator, itself and 

backward mode, due to the perturbation. Since the 

integrals are limited to resonator boundaries, the first 

integral is dominant and we have: 

𝑑

𝑑𝑧
𝑏+(𝑧) = −𝑗𝛽𝑏+(𝑧) + 𝜅+(𝑧)𝑎 ̃ 

 

(9) 

Which is the spatial coupled mode equation for 

the “forward mode” in the waveguide and 𝜅+(𝑧) is 

the corresponding coupling coefficient which can be 

calculated by the following equation: 

𝜅+(𝑧) = 

− 
𝑗𝜔1𝜀0

4
∬(𝑛𝑟

2 − 𝑛2)𝐞𝐫. 𝐞+
∗  𝑑𝑥 𝑑𝑦 

(10) 

Next the backword mode is considered as the 

electromagnetic fields in the unperturbed structure: 

𝐄𝟎 = 𝐞−(𝑥, 𝑦)𝑒𝑗𝛽𝑧 𝑒𝑗𝜔1𝑡 + 𝑐. 𝑐. (11) 

𝐇𝟎 = 𝐡−(𝑥, 𝑦)𝑒𝑗𝛽𝑧 𝑒𝑗𝜔1𝑡 + 𝑐. 𝑐.  

( 

(12) 

By applying a same procedure, one can obtain the 

spatial coupled mode equation for the backward mode 

in the waveguide as follows: 

𝑑

𝑑𝑧
𝑏−(𝑧) = 𝑗𝛽𝑏−(𝑧) + 𝜅−(𝑧)𝑎 ̃ 

 

(13) 

Where the spatial coupling coefficient of the 

backward mode to the resonator mode is: 

𝜅−(𝑧) =  
𝑗𝜔1𝜀0

4
∬(𝑛𝑟

2 − 𝑛2)𝐞𝐫. 𝐞−
∗  𝑑𝑥 𝑑𝑦  

 

(14) 

The mode amplitude in the input ports of the 

waveguide is assumed as 𝑏+(𝑧1) = 𝑆+1 and  
𝑏−(𝑧2) = 𝑆+2. Therefore, solving these two equations 

with the mentioned boundary conditions, results in: 

𝑏+(𝑧) = 𝑆+1𝑒−𝑗𝛽(𝑧−𝑧1) + ∫ 𝜅+(𝑧) 𝑒𝑗𝛽𝑧𝑑𝑧 𝑎 ̃𝑒−𝑗𝛽𝑧 
𝑧

𝑧1

 (15) 
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𝑏−(𝑧) = 𝑆+2𝑒𝑗𝛽(𝑧−𝑧2) + ∫ 𝜅−(𝑧) 𝑒−𝑗𝛽𝑧𝑑𝑧 𝑎 ̃𝑒𝑗𝛽𝑧 
𝑧2

𝑧

 (16) 

To obtain transmission and reflection coefficient, 

differential equations of the complex mode of the 

resonator is needed that is derived in the next section. 

2.1.2 Perturbation of Resonator Mode 

In this section the resonator is considered as the 

unperturbed structure (figure 2) and effect of adding 

a waveguide is studied to derive the differential 

equation of the complex mode of the resonator. 

 

Figure 2: Refractive index distribution of unperturbed 

resonator (right) and perturbed structure (left). 

Therefore, electromagnetic fields in the unperturbed 

resonator are: 

𝐄𝟎 = 𝐞𝐫(𝑥, 𝑦, 𝑧) 𝑒𝑗𝜔0𝑡 + 𝑐. 𝑐. 

 

(17) 

𝐇𝟎 = 𝐡𝐫(𝑥, 𝑦, 𝑧) 𝑒𝑗𝜔0𝑡 + 𝑐. 𝑐. 

 

(18) 

Which due to radiation loss in the optical 

resonators, they have limited intrinsic Q-factors. as a 

result, modes have complex frequencies. We assume 

that resonator is high-Q enough to neglect this effect 

for now. In the next section effect of the intrinsic loss 

will be considered. By integrating equation (5) on the 

entire x-y plane and also from 𝑧1 to 𝑧2, and using 

divergence theorem, we have: 

∫ ∇. ( 𝐇 × 𝐄𝟎 + 𝐇𝟎 × 𝐄)𝑑𝑟3 

= ∮( 𝐇 × 𝐄𝟎 + 𝐇𝟎 × 𝐄)𝑑𝑟2 = 0 

(19) 

Since resonator modes decay to zero at infinity, 

the last integral which shows integration on the 

transverse surfaces in infinity vanishes, and on the 

two surfaces in 𝑧1 and 𝑧2 is negligible (by choosing 

them far enough from the resonator). 

Therefore by substituting electromagnetic fields 

of (17),(18) and (3),(4) in equation (5) and applying 

time average to omit high frequency components, one 

can obtain: 

 

 

j𝜔1�̃� =  𝑗(𝜔0 −
𝜔1

4
∫ ∆𝜀 |𝐞𝐫|2 𝑑𝑟3)�̃� −

𝑗(𝜔1 − 𝜔0)

4
 

[∫ 𝜀 𝑏+(𝑧)𝐞+ . 𝐞𝐫
∗ + 𝜇0𝑏+(𝑧)𝐡+. 𝐡𝐫

∗𝑑𝑟3] 

−
𝑗(𝜔1 − 𝜔0)

4
[∫ 𝜀 𝑏−(𝑧)𝐞−. 𝐞𝐫

∗

+ 𝜇0𝑏−(𝑧)𝐡−. 𝐡𝐫
∗]𝑑𝑟3]

−
𝑗𝜔1

4
∫ ∆𝜀 𝑏+(𝑧)𝐞+. 𝐞𝐫

∗𝑑𝑟3 

−
𝑗𝜔1

4
∫ ∆𝜀 𝑏−(𝑧)𝐞−. 𝐞𝐫

∗𝑑𝑟3 

(20) 

In the above equation the electromagnetic fields 

of the resonator are normalized to have unit energy 

i.e. 1/4 ∫ 𝜀 |𝐞𝐫|2 + 𝜇0|𝐡𝐫|2𝑑𝑟3 = 1. According to 

figure 2, here ∆𝜀 = 𝜀0(𝑛𝑤
2 − 𝑛2) in the waveguide 

and is zero elsewhere, 𝜀 is the electric permittivity 

distribution of the unperturbed resonator. Hence the 

spatial coupled mode equation for forward and 

backward modes of the waveguide and a frequency 

domain equation for the complex mode amplitude of 

the resonator is derived. In the next section, temporal 

CMT of the optical coupled cavity-waveguide 

structure is obtained with the aid of these equations. 

2.1.3 Temporal CMT of Coupled        
Cavity-Waveguide 

By substituting 𝑏+(𝑧) and 𝑏−(𝑧) from (15) and (16) 

in (20), temporal CMT for coupled cavity-waveguide 

in frequency domain is obtained as follows: 

j𝜔1�̃� =  𝑗(𝜔0 − ∆𝜔𝑟 − ∆𝜔𝑤)�̃� + 𝜅1𝑆+1 + 𝜅2𝑆+2 − 

1

𝜏𝑒

�̃� 

(21) 

Where ∆𝜔𝑟 and ∆𝜔𝑤 are respectively the self-

induced resonance frequency shift, and the resonance 

frequency shift due to coupling to the waveguide. 𝜅1 

and 𝜅2 are coupling coefficients of incoming wave of 

the ports of the waveguide to the complex mode 

amplitude of the resonator and 1 𝜏𝑒⁄   is the external 

decay rate of field amplitude in the resonator. By 

applying inverse fourier transform, one can obtain the 

time domain equation. The parameters in the above 

equation are given as follows: 
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𝜅1 = −
𝑗𝜔1𝜀0

4
∫ ∬(𝑛𝑤

2 − 𝑛2)𝐞+. 𝐞𝐫
∗𝑑𝑥 𝑑𝑦 

𝑧2

𝑧1

 

𝑒−𝑗𝛽(𝑧−𝑧1)𝑑𝑧 −
𝑗(𝜔1 − 𝜔0)

4
∫ ∬ 𝜀

𝑧2

𝑧1

𝐞+. 𝐞𝐫
∗ 

+𝜇0𝐡+. 𝐡𝐫
∗𝑑𝑥 𝑑𝑦 𝑒−𝑗𝛽(𝑧−𝑧1)𝑑𝑧 

(22) 

∆𝜔𝑟 =
𝜔1𝜀0

4
∫(𝑛𝑤

2 − 𝑛2) |𝐞𝐫|2 𝑑3𝑟 

 

(23) 

1

𝜏𝑒

= 𝑅𝑒𝑎𝑙 {𝑓} (24) 

∆𝜔𝑤 = 𝐼𝑚𝑎𝑔{𝑓} 

 

(25) 

Where 𝑓 is given by: 

𝑓 = ∫ { 
𝑗𝜔1𝜀0

4
(∬(𝑛𝑤

2 − 𝑛2)𝐞+. 𝐞𝐫
∗𝑑𝑥 𝑑𝑦)

𝑧2

𝑧1

 

+
𝑗(𝜔1 − 𝜔0)

4
(∬ 𝜀 𝐞+. 𝐞𝐫

∗ + 𝜇0𝐡+. 𝐡𝐫
∗𝑑𝑥 𝑑𝑦)} 

∫ 𝜅+(𝑧)𝑒𝑗𝛽𝑧𝑑𝑧 )𝑒−𝑗𝛽𝑧 𝑑𝑧
𝑧

𝑧1

 

+ ∫ { 
𝑗𝜔1𝜀0

4
(∬(𝑛𝑤

2 − 𝑛2)𝐞−. 𝐞𝐫
∗𝑑𝑥 𝑑𝑦)

𝑧2

𝑧1

 

+
𝑗(𝜔1 − 𝜔0)

4
∫ (∬ 𝜀

𝑧2

𝑧1

𝐞−. 𝐞𝐫
∗ + 𝜇0𝐡−. 𝐡𝐫

∗𝑑𝑥 𝑑𝑦)} 

∫ 𝜅−(𝑧)𝑒−𝑗𝛽𝑧𝑑𝑧 )𝑒𝑗𝛽𝑧 𝑑𝑧 
𝑧2

𝑧

 

 

(26) 

Transmission and Reflection coefficients are 

obtained according to 23 and 24, as follows: 

𝑇 =
𝑏+(𝑧2)

𝑏+(𝑧1)
= 𝑒−𝑗𝛽(𝑧2−𝑧1) + ∫ 𝜅+(𝑧)𝑒𝑗𝛽𝑧𝑑𝑧

𝑧2

𝑧1

 

𝑒−𝑗𝛽𝑧2
𝜅1

𝑗(𝜔1 − 𝜔0 + ∆𝜔𝑟 + ∆𝜔𝑤) +
1
𝜏𝑒

 

 

(27) 

𝑅 =
𝑏−(𝑧1)

𝑏+(𝑧1)
= ∫ 𝜅−(𝑧)𝑒−𝑗𝛽𝑧𝑑𝑧 𝑒𝑗𝛽𝑧1

𝑧2

𝑧1

 

𝜅1

𝑗(𝜔1 − 𝜔0 + ∆𝜔𝑟 + ∆𝜔𝑤) +
1
𝜏𝑒

 

(28) 

2.2 Dual-mode Resonator 

In this section the proposed temporal CMT is 

generalized to the resonator with two degenerate 

modes. A traveling-wave resonator with clockwise 

(cw) and counter-clockwise (ccw) modes are 

considered for this purpose. This approach is general 

and can be applied to any other kind of dual-mode 

resonators. The electromagnetic fields in this 

structure are expanded as follows: 

𝐄 = �̃�𝑐  𝐞𝐫,𝐜(𝑥, 𝑦, 𝑧)𝑒𝑗𝜔1𝑡 + �̃�𝑐𝑐   𝐞𝐫,𝐜𝐜(𝑥, 𝑦, 𝑧)𝑒𝑗𝜔1𝑡 

+[𝑏+(𝑧)𝐞+(𝑥, 𝑦) + 𝑏−(𝑧)𝐞−(𝑥, 𝑦)] 𝑒𝑗𝜔1𝑡 + 𝑐. 𝑐. 

(29) 

𝐇 = �̃�𝒄  𝐡𝐫,𝐜(𝒙, 𝒚, 𝒛)𝒆𝒋𝝎𝟏𝒕 + �̃�𝒄𝒄  𝐡𝐫,𝐜𝐜(𝒙, 𝒚, 𝒛)𝒆𝒋𝝎𝟏𝒕 

+[𝒃+(𝒛)𝐡+(𝒙, 𝒚) + 𝒃−(𝒛)𝐡−(𝒙, 𝒚)] 𝒆𝒋𝝎𝟏𝒕 + 𝒄. 𝒄. 

(30) 

By substituting these fields and the 

electromagnetic fields of equation (1) in (2), and 

applying the same procedure, one can obtain the 

following spatial CMT for the forward mode of the 

waveguide: 

𝑑

𝑑𝑧
𝑏+(𝑧) = −𝑗𝛽𝑏+(𝑧) + 𝜅𝑐

+(𝑧)�̃�𝑐 + 𝜅𝑐.𝑐
+ (𝑧)�̃�𝑐.𝑐 (31) 

By considering electromagnetic fields of the 

backward mode in the unperturbed waveguide, spatial 

CMT for the backward mode of the waveguide is 

obtained as follows: 

𝑑

𝑑𝑧
𝑏−(𝑧) = 𝑗𝛽𝑏−(𝑧) + 𝜅𝑐.𝑐

− (𝑧)�̃�𝑐.𝑐 + 𝜅𝑐
−(𝑧)�̃�𝑐 (32) 

Where 𝜅𝑐
+ (𝜅𝑐

−) and 𝜅𝑐.𝑐
+  (𝜅𝑐.𝑐

− ) represent coupling 

of the cw to the forward (backward) mode and that of 

the ccw to the forward (backward) mode, which are 

given as follows: 

𝜅𝑐

+
−(𝑧) = −

𝑗𝜔1𝜀0

4
∬(𝑛𝑟

2 − 𝑛2)𝐞𝐫,𝐜. 𝐞+
−

∗  𝑑𝑥 𝑑𝑦 

(33) 

𝜅𝑐.𝑐

+
− (𝑧) = −

𝑗𝜔1𝜀0

4
∬(𝑛𝑟

2 − 𝑛2)𝐞𝐫,𝐜𝐜. 𝐞+
−

∗  𝑑𝑥 𝑑𝑦 

(34) 

Solving these two equations, results in: 

𝑏+(𝑧) = 𝑆+1𝑒−𝑗𝛽(𝑧−𝑧1) + ∫ 𝜅𝑐
+(𝑧) 𝑒𝑗𝛽𝑧𝑑𝑧 �̃�𝑐  𝑒−𝑗𝛽𝑧

𝑧

𝑧1

 

+ ∫ 𝜅𝑐.𝑐
+ (𝑧) 𝑒𝑗𝛽𝑧𝑑𝑧 �̃�𝑐.𝑐 𝑒−𝑗𝛽𝑧

𝑧

𝑧1

 

(35) 
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𝑏−(𝑧) = 𝑆+2𝑒𝑗𝛽(𝑧−𝑧2) + ∫ 𝜅𝑐.𝑐
− (𝑧) 𝑒−𝑗𝛽𝑧𝑑𝑧 �̃�𝑐.𝑐  𝑒𝑗𝛽𝑧

𝑧

𝑧2

 

+ ∫ 𝜅𝑐
−(𝑧) 𝑒−𝑗𝛽𝑧𝑑𝑧 �̃�𝑐  𝑒𝑗𝛽𝑧

𝑧

𝑧2

 

(36) 

 Due to momentum matching, coupling between 

forward (backward) and ccw (cw) mode is negligible, 

therefore the above equations are simplified as: 

𝑏+(𝑧) = 𝑆+1𝑒−𝑗𝛽(𝑧−𝑧1) 

+ ∫ 𝜅𝑐
+(𝑧) 𝑒𝑗𝛽𝑧𝑑𝑧 �̃�𝑐  𝑒−𝑗𝛽𝑧

𝑧

𝑧1

 
(37) 

𝑏−(𝑧) = 𝑆+2𝑒𝑗𝛽(𝑧−𝑧2) 

+ ∫ 𝜅𝑐.𝑐
− (𝑧) 𝑒−𝑗𝛽𝑧𝑑𝑧 �̃�𝑐.𝑐  𝑒𝑗𝛽𝑧

𝑧

𝑧2

 
(38) 

For obtaining the frequency domain equation for 

the complex mode amplitude of the resonator, the 

same approach as section 2.1.2 is applied and 

resulting equations for the cw and ccw modes are as 

follows: 

j𝜔1�̃�𝑐 =  𝑗(𝜔0 − ∆𝜔𝑟 − ∆𝜔𝑤)�̃�𝑐 + 𝜅1𝑆+1 −
1

𝜏𝑒

�̃�𝑐

+ 𝛾�̃�𝑐.𝑐 

(39) 

 j𝜔1�̃�𝑐.𝑐 =  𝑗(𝜔0 − ∆𝜔𝑟 − ∆𝜔𝑤
′)�̃�𝑐.𝑐 −

1

𝜏𝑒
′

�̃�𝑐.𝑐

− 𝛾∗�̃�𝑐 

(40) 

 Parameters in the above equation are the same as 

those in section 2.1.3, except for substituting 𝐞𝐫(𝐡𝐫) 

with 𝐞𝐫,𝐜 (𝐡𝐫,𝐜) and 𝐞𝐫,𝐜𝐜 (𝐡𝐫,𝐜𝐜) and also 𝜅+ with 𝜅𝑐
+ 

and 𝜅𝑐.𝑐
−  for parameters in equation (39) and (40) 

respectively. A new parameter that shows coupling 

between cw and ccw mode is given as follows: 

 

 

 

 

𝛾 = −
𝑗(𝜔1 − 𝜔0)

4
∫ (∬ 𝜀

𝑧2

𝑧1

𝐞𝐫,𝐜𝐜. 𝐞𝐫,𝐜
∗

+ 𝜇0𝐡𝐫,𝐜𝐜. 𝐡𝐫,𝐜
∗𝑑𝑥 𝑑𝑦)  𝑑𝑧 

−
𝑗(𝜔1 − 𝜔0)

4
∫ (∬ 𝜀0(𝑛𝑤

2
𝑧2

𝑧1

− 𝑛2)𝐞𝐫,𝐜𝐜. 𝐞𝐫,𝐜
∗𝑑𝑥 𝑑𝑦)  𝑑𝑧 

(41) 

 
2.3 Intrinsic Loss 

Due to coupling to radiation modes, modes of the 

optical resonator undergo intrinsic loss. Thus these 

modes are eigenmodes of Maxwell’s equation with 

complex frequencies. We enter this effect by 

assuming that imaginary part of the complex 

frequency represents the internal decay rate of the 

field amplitude in the resonator. Therefore, 

Electromagnetic fields in the unperturbed resonator 

are: 

𝐄𝟎 = 𝐞𝐫,𝐜(𝑥, 𝑦, 𝑧) 𝑒
𝑗(𝜔0+

𝑗
𝜏0

)𝑡
+ 𝑐. 𝑐 

 

(42) 

𝐇𝟎 = 𝐡𝐫,𝐜(𝑥, 𝑦, 𝑧) 𝑒
𝑗(𝜔0+

𝑗
𝜏0

)𝑡
+ 𝑐. 𝑐 

 

(43) 

Then by assuming that the resonator is high-Q 

enough for the mode orthogonality to be 

approximately valid, the resulting temporal CMT in 

the frequency domain becomes: 

j𝜔1�̃� =  𝑗(𝜔0 − ∆𝜔𝑟 − ∆𝜔𝑤)�̃� + 𝜅1𝑆+1 + 𝜅2𝑆+2

− (
1

𝜏𝑒

+
1

𝜏0

)�̃� 

(44) 

3 RESULTS 

In this section, the derived temporal CMT is used to 

analyze a square resonator side-coupled to a two port 

waveguide, as well as a ring resonator based add drop 

filter (four-port structure). FDTD simulations using 

Lumerical are used to verify and validate the theory. 

3.1 Two-port Structure with Square 
Resonator 

Consider a square resonator with a standing wave 

pattern side coupled to a slab waveguide in the TE 

mode as shown in figure 3. The side length of the 

resonator, width of the waveguide and edge distance 

between resonator and waveguide are = 1.54𝜇𝑚 , 
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0.2𝜇𝑚 and 0.29 𝜇𝑚 respectively. Refractive index of 

the guided regions and background are 3.2 and 1 

respectively.  

 

Figure 3: Electric field distribution of the TE mode of the 

square resonator near resonance simulated in Lumerical. 

Transmission and reflection coefficients of this 

structure are calculated with equations derived in 

section 2.1.3 and are plotted in figures 4 and 5. The 

resonator and waveguide mode in (22) is calculated 

via numerical simulations. There is acceptable 

agreement between the proposed temporal CMT and 

FDTD simulations except for a slight shift between 

the resonance frequencies. This error is due to the 

approximation of mode orthogonality, or in the other 

words, since the resonator has limited intrinsic quality 

factor (𝑄0 = 4250), its modes are not orthogonal 

anymore. We expect to have better results when 

applying the formula to a resonator with higher 

quality factor. The amplitude and phase of the 

complex mode of the resonator are calculated and 

plotted in figure 6. 

 

Figure 4: Power transmission coefficient calculated by the 

proposed temporal CMT (solid blue) and FDTD simulation 

(dashed red). 

 

Figure 5: Power reflection coefficient calculated by the 

proposed temporal CMT (solid blue) and FDTD simulation 

(dashed red). 

 

Figure 6: Amplitude (left) and phase (right) of the complex 

mode of the resonator. 

 

 

Figure 7: Electric field distribution of the TE mode of the 

ring resonator near resonance (upper) and transmission of 

the through (blue) and drop (green) ports simulated in 

Lumerical (bottom). 
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3.2 Add-drop Filter with Ring 
Resonator 

An add-drop filter and its TE mode electric field 

distribution (calculated with Lumerical) are shown in 

figure 7. Radius of the ring, width of the ring and 

waveguide, and edge to edge distance between ring 

and each waveguide are 1.7𝜇𝑚 , 0.2𝜇𝑚 and 0.2𝜇𝑚 

respectively. Refractive index of the guided regions 

and background are 3 and 1 respectively. 

 

Figure 8: Power transmission coefficient calculated by the 

proposed temporal CMT (solid blue) and FDTD simulation 

(dashed red). 

Since this is a traveling wave resonator that has 

two degenerate cw and ccw modes, result of section 

2.2 is implemented to calculate transmission and 

reflection coefficients and results are plotted in figure 

8. In this case, there is better agreement between the 

proposed temporal CMT and FDTD simulation, 

compared to the previous example. Here the quality 

factor of the ring is much higher than the extrinsic 

quality factor and effect of intrinsic loss can be 

neglected. In the following, amplitude of the complex 

cw and ccw modes of the resonator are calculated by 

the proposed temporal CMT as shown in figure 9. 

Due to the traveling wave nature of the mode, cw 

mode is excited mainly and ccw mode amplitude is 

negligible.  

4 CONCLUSION 

In this paper we rigorously derived temporal CMT for 

optical cavity-waveguide structures and obtained 

closed-form expressions for the coupling coefficients. 

Our formulation is general and can be applied to any 

kind of resonator, without any prior knowledge. We 

demonstrated its validity for structures with standing 

wave and traveling wave resonators, and results were 

verified against FDTD simulations. 

 

Figure 9: Amplitude of the complex cw (solid blue) and ccw 

(line-circle black) mode of the resonator, calculated by the 

proposed temporal CMT. 
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