
Predicting CyberSecurity Incidents using Machine Learning Algorithms:
A Case Study of Korean SMEs

Alaa Mohasseb1, Benjamin Aziz1, Jeyong Jung2 and Julak Lee3

1School of Computing, University of Portsmouth, U.K.
2Institute of Criminal Justice Studies, University of Portsmouth, U.K.

3Department of Security Management, Kyonggi University, Suwon, South Korea

Keywords: Text Mining, Cybersecurity, Malware, Malicious Code, Machine Learning.

Abstract: The increasing amount and complexity of cyber security attacks in recent years have made text analysis and
data-mining based techniques an important factor in detecting security threats. However, despite the popularity
of text and other data mining techniques, the cyber security community has remained somehow reluctant in
adopting an open approach to security-related data. In this paper, we analyze a dataset that has been collected
from five Small and Medium companies in South Korea, this dataset represents cyber security incidents and
response actions. We investigate how the data representing different incidents collected from multiple compa-
nies can help improve the classification accuracy and help the classifiers in distinguishing between different
types of incidents. A model has been developed using text mining methods, such as n-gram, bag-of-words
and machine learning algorithms for the classification of incidents and their response actions. Experimental
results have demonstrated good performance of the classifiers for the prediction of different types of response
and malware.

1 INTRODUCTION

The use of text analysis and data mining in detecting
vulnerabilities and Cyber security threats is an acti-
vity that has been going on for a number of years
now. The increasing amount and complexity of Cyber
security attacks in recent years have brought data mi-
ning techniques into the attention of researchers and
experts as an important technique in detecting such at-
tacks through the analysis of data and the side-effects
left by malware and spyware programs and the inci-
dents of network and host intrusions.

Text analysis and mining is widely used in many
Cyber security areas, such as malware detection and
classification (Suh-Lee et al., 2016; Kakavand et al.,
2015; Norouzi et al., 2016; Fan et al., 2015; Hellal
and Romdhane, 2016; Lu et al., 2010; Fan et al., 2016;
Rieck et al., 2011; Ding et al., 2013) and malicious
code detection (Bahraminikoo et al., 2012; Schultz
et al., 2001; Shabtai et al., 2012).

In addition, the popularity of social media has
opened up the doors for text mining and analysis as
important techniques for increasing the knowledge
about users’ context, e.g. their location and time, and
combining that knowledge with other attributes rela-

ted to important events, topics, emotions and interests
(Inkpen, 2016). Other applications for such techni-
ques have included predicting links (Bartal et al.,
2009) and detecting leaks of confidential data (Ojo-
awo et al., 2014), for example, private health infor-
mation that users may inadvertently share on social
media (Ghazinour et al., 2013). Moreover, text clus-
tering and analysis has also been used extensively in
digital forensics, e.g. as in (Decherchi et al., 2009)
where text clustering was applied to the Enron cor-
pus (Klimt and Yang, 2004), or in (Xylogiannopou-
los et al., 2017), where text mining algorithms were
applied to unclean, noisy or scrambled datasets that
can be obtained from electronic communications such
as SMS communications, or in (Hicks et al., 2016)
where text mining was used for performing Web text
analysis and forensics.

The Cyber security community has remained so-
mehow reluctant in adopting an open approach to
security-related data despite all the popularity of text
and other data mining techniques, due to many fac-
tors such as political factors, for example, the fear
of many organizations to share their data since these
data could reveal sensitive information. Others factors
are more technical, such as the metrics that should be
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used to quantify the security data themselves (Hoo,
2000) and he consistency, quality and the lack of con-
sensus on the nature of variables that should be mo-
nitored. Furthermore, There is also the factor that
related to whether past data are relevant to future
events (Parker, 1998). However, with the availability
of large and open security datasets and data-sharing
platforms backed by the reliability and reputation of
well-established organisations in the area of Cyber se-
curity, e.g. VCDB (VERIZON, ), CERT’s Knowledge
base at Carnegie Mellon University (CERT Coordi-
nation Center, ), SecRepo (Mike Sconzo, ), CAIDA
(Center for Applied Internet Data Analysis, ) and ot-
hers, we are starting to witness an increasing trend in
the usage of such datasets in gaining insight into how
incidents occur.

In this paper, we analyse a dataset that has been
collected from five Small and Medium Enterprises
(SMEs), which represents textual data describing Cy-
ber security incidents that occurred in those compa-
nies and the response actions that were applied. In ad-
dition, we investigate how the data representing diffe-
rent incidents collected from multiple companies can
help improve the classification accuracy and help the
classifiers in distinguishing between different types
of incidents. This is achieved by focusing on two
sets of questions: the first includes forward-looking
predictive questions, such as the prediction of future
responses from the type of malware or the name of
the malicious code encountered in previous incidents,
and the second includes backward-looking questions
that reverse-engineer the type of the malware or the
name of the malicious code from past responses to
incidents. The main objective of our analysis is to
demonstrate how a centralised hub may collect expe-
rience from multiple organisations in order to train a
single classifier that can predict features of future Cy-
ber security incidents.

The rest of the paper is structured as follows.
Section 2, highlights other works in the literature re-
lated to the work presented in this paper. Section
3, outlines the research problem and our approach in
solving it. The experimental setup and results in ap-
plying the classification problem to the Cyber security
incidents dataset are presented in section 4. Finally,
Section 5, concludes the paper and outlines some di-
rections for future research.

2 RELATED WORK

In this section we review related works for detecting
and classifying malware and malicious code using
text analysis and data mining methods. Data mining

techniques have many applications related to mal-
ware detection. In (Suh-Lee et al., 2016) authors de-
tect security threats using data mining, text classifi-
cation, natural language processing, and machine le-
arning by extracting relevant information from vari-
ous unstructured log messages. Authors in (Kakavand
et al., 2015) proposed an anomaly detector model cal-
led Text Mining-Based Anomaly Detection (TMAD)
model to detect HTTP attacks in network traffic. The
proposed model uses n-gram text categorization and
(Term Frequency, Inverse Document Frequency) TF-
IDF methods.

Different classification methods have been pro-
posed by (Norouzi et al., 2016) in order to detect
malware programs based on the feature and beha-
vior of each malware program. In addition, authors
in (Fan et al., 2015), utilised hooking techniques to
trace the dynamic signatures that malware programs
try to hide, for the classification process, machine le-
arning algorithms were used such as Naı̈ve Bayesian,
J48 (Decision Tree), and Support Vector Machine.

In (Hellal and Romdhane, 2016) authors propo-
sed an approach that combines static analysis and
graph-mining techniques. In addition, a novel algo-
rithm was proposed, called Minimal Contrast Fre-
quent Subgraph Miner (MCFSM) algorithm, which
is used for extracting minimal discriminative and wi-
dely employed malicious behavioral patterns. Furt-
hermore, authors in (Lu et al., 2010) proposed a
new ensemble learning model, SVM-AR. The pro-
posed model combined features extracted from both
content-based and behavior-based analysis to repre-
sent instances. While in (Rieck et al., 2011) a frame-
work was proposed for the automatic analysis of mal-
ware behavior using machine learning. The frame-
work allows for automatically identifying novel clas-
ses of malware with similar behavior (clustering) and
assigning unknown malware to these discovered clas-
ses (classification).

In (Ding et al., 2013), an Application Program-
ming Interface (API)-based association mining met-
hod was proposed for detecting malware. A classi-
fication method based on multiple association rules
was adopted. Furthermore, data mining-based malici-
ous code detectors have been proven to be successful
in detecting clearly malicious code, e.g. like viruses
and worms. In (Bahraminikoo et al., 2012) a met-
hod was proposed for spyware detection using data
mining techniques. The framework focused on DM-
based malicious code detectors using Breadth-First
Search (BFS) approach, which are known to work
well for detecting viruses and similar software.

In (Schultz et al., 2001) authors proposed a
data-mining framework that detects new, previously
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unseen malicious executable accurately and automa-
tically. The data-mining framework automatically
found patterns in the data set and used these patterns
to detect a set of new malicious binaries. A Machine
learning algorithms were used such as RIPPER, Naı̈ve
Bayes and Multi-Naı̈ve Bayes. The authors in (Fan
et al., 2016) proposed a sequence mining algorithm
to discover malicious sequential patterns, based on
the instruction sequences extracted from the file sam-
ple set, and then a Nearest-Neighbor (ANN) classifier
was constructed for malware detection based on the
discovered patterns. The developed data mining fra-
mework composed of the proposed sequential pattern
mining method and ANN classifier.

Furthermore, authors in (Wang et al., 2006) pro-
posed an integrated architecture to defend against sur-
veillance spyware and used features extracted from
both static and dynamic analysis. These features were
ranked according to their information gains. In ad-
dition, a machine learning algorithm was used. In
(Abou-Assaleh et al., 2004), the authors presented a
method based on byte n-gram analysis to detect mali-
cious code using Common N-Gram analysis (CNG),
which relies on profiles for class representation. The
authors in (Shabtai et al., 2012) presented the in-
spected files using OpCode n-gram patterns, which
are extracted from the files after disassembly for de-
tecting unknown malicious code. The OpCode n-
gram patterns are used as features for the classifica-
tion process.

Other works used machine learning techniques for
the detection classification of malicious code. In (Hou
et al., 2010) authors proposed a malicious web page
detection using of machine learning techniques by
analyzing the characteristic of a malicious Web page.
In addition, authors in (Zhang et al., 2007) proposed
a method to automatically detecting malicious code
using the n-gram analysis. The proposed method used
selected features based on information gain. Finally,
in (Elovici et al., 2007) authors proposed an approach
for detecting malicious code using machine learning
techniques. Three machine learning algorithms were
used which are Decision trees, Neural Networks and
Bayesian Networks in order to determine whether a
suspicious executable file actually inhabits malicious
code.

3 THE PROPOSED APPROACH

The main scenario motivating our work is one in
which a centralized hub, shown in Figure 1, collects
data generated by multiple companies (organisations)
and therefore maintains a centralized dataset repre-

senting the collective experience of those companies.
The datasets collected from these companies are used
to train one centralized classifier, which would then
have better performance than any individual instance
belonging to a single company.

Figure 1: Experience collection from n number of compa-
nies.

3.1 Description of the Dataset

The dataset represents Cyber security intrusion events
in five Small and Medium Enterprises (SMEs) over
a period of ten months, which were collected by
the KAITS Industrial Technology Security Hub 1 in
South Korea. The Hub is a public-private partners-
hip supported by governmental agencies in order to
support the sharing of knowledge, experience and ex-
pertise across SMEs.

The data for each SME are stored in a separate file.
There are 4643 entries overall. Each entry, expressed
as a row, has the following metadata:
• Date and Time of Occurrence: this is a value

representing the date and time of the incident’s
occurrence.

• End Device: this is a value representing the name
of the end device affected in the incident.

• Malicious Code: this is a value representing the
name of the malicious code detected in the inci-
dent.

• Response: this is a value representing the re-
sponse action that was applied to the malicious
code.

• Type of Malware: this is a value representing
the type of the malware (malicious code) detected
in the incident.

1http://www.kaits.or.kr/index.do
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• Detail: this is a free text value to describe any
other detail about the incident.

An example entry from this dataset is shown be-
low:
(14/02/2017 11:58, rc0208-pc,
Gen:Variant.Mikey.57034, deleted, virus,
C:\Users\RC0208\AppData\Local\Temp\is-ANFS3.
tmp\SetupG.exe)

3.2 Research Problems

Our research in this paper is aimed at investigating
two kinds of problems, which we take a classification
approach to solving them:

• The first problem is forward-looking to attempt to
predict future aspects of Cyber security incidents.
More specifically, how an organization can gain
the ability to predict response actions to future
Cyber security incidents involving malware. We
consider two questions here: a) how to predict a
response action from the name of malicious code,
and b) how to predict a response action from the
type of malware involved in the incident.

• The second problem is backward-looking to in-
vestigate, for example, as part of a digital foren-
sics process, properties of current incidents. More
specifically, how an organization can utilize its
knowledge of the response actions in guiding di-
gital forensics analysis to determine the type of
malware or the name of the malicious code to in-
vestigate. We consider here two questions: c) how
to identify the type of the malware based on the
name of malicious code, and d) how to identify the
type of the malware based on the response action.

3.3 Data Anaylsis and Classification
Model

In this section, we describe the processes that have
been taken for the analysis and classification of the
dataset. A model has been developed using knime
software 2, which makes use of the most used features
in text mining such as n-gram, Bag-of-Words, Snow-
ball Stemmer and stop words remover. This model
consists of three main parts (1) Data analysis and Pre-
processing, (2) Features Extraction and (3) Classifica-
tion. The phases of the model are described below:
Phase 1: Data Analysis and Pre-processing: The
main objective of pre-processing is to clean the data
from noise in which this will help to improve the
accuracy of the results by reducing the errors in the

2https://www.knime.com/

data. This is done by removing special characters and
stop words such as ”a” and ”the”, punctuation marks
such as question and exclamation marks, and num-
bers. In addition, all terms are converted to lowercase.
The resulting terms are used to generate the n-gram
features.
Phase 2: Features Extraction: Feature extraction
help in the analysis and classification and also in im-
proving accuracy. The most commonly used features
in text mining are n-gram and bag-of-words. The mo-
del makes use of ”bigram” which is an n-gram for
n = 2, every two adjacent words create a bigram e.g.
”malware detection”. In this phase, a bag-of-words is
created containing all words (bigram). This bag-of-
words is filtered based on the minimum frequency in
which terms that occur in less than the minimum fre-
quency are filtered out and not used as features using
term frequency (TF) method.
Phase 3: Classification: The classification phase
is executed using machine learning algorithms such
as Naı̈ve Bayes (NB) and Support Vector Machine
(SVM). In this phase, the n-gram features predictive
models are built, tested and compared. The dataset
is split into training and test set. The training dataset
is used for building the model, and the test dataset is
used to evaluate the performance of the model.

4 EXPERIMENTAL STUDY AND
RESULTS

The objective of the experimental study is to explore
the ability of machine learning classifiers to distin-
guish between (1) the different types of response ba-
sed on the given malicious code, (2) the different ty-
pes of response based on the given malware, (3) the
different types of malware according to the malicious
code and (4) the different types of malware based on
the different responses. Two machine learning algo-
rithms were used for the classification process, which
are Naı̈ve Bayes (NB) and Support Vector Machine
(SVM).

We have used the dataset that was selected from
five different companies provided by the KAITS In-
dustrial Technology Security Hub in South Korea.
The distribution of the data is given in Table 1. As
mentioned in Section 3, all the incidents of the five
companies were collected by a centralised hub and
the concatenated data were used for the experiment
with the objective of evaluating the performance of
the classifiers in distinguishing between different ty-
pes of incidents and investigating how different data
collected from multiple companies can help in impro-
ving the classification accuracy.
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Table 1: Data distribution.

Company Name Total Number of Incidents
Company 1(DF) 932
Company 2(MT) 633
Company 3(SE) 923
Company 4(EP) 448
Company 5(MS) 1707
Total 4643

4.1 Performance Evaluation Metrics

To assess the performance of the machine learning
classifiers performance indicators, such as accuracy,
precision, recall, and F-measure (Chinchor, 1992), are
calculated as shown in the following formulæ.

Accuracy =
# of correct predictions (TP+TN)

# of predictions (TP+TN+FP+FN)

Precision =
T P

T P+FP

Recall =
T P

T P+FN

F = 2× Precision×Recall
Precision+Recall

• True Positive (TP): An instance that is positive
and is classified correctly as positive.

• True Negative (TN): An instance that is negative
and is classified correctly as negative.

• False Positive (FP): An instance that is negative
but is classified wrongly as positive.

• False Negative (FN): An instance that is positive
but is classified wrongly as negative.

4.2 Results

In this section, we present and analyse the results of
the machine learning algorithms for the four different
problems that were proposed.

4.2.1 Problem 1: Identifying the Different Types
of Response based on the Given Malicious
Code

Table 2 presents the classification performance details
of the SVM and Naı̈ve Bayes classifiers in identifying
the different types of response based on the given ma-
licious code. SVM has achieved an accuracy of 81%
while NB achieved an accuracy of 73%. Compa-
ring the performance of both classifiers, Both SVM

and NB had a zero precision, recall and f-measure
for response types ”Recovered” and ”Name Chan-
ged”. While both classifiers had a 100% precision,
recall, and f-measure for response type ”Blocked”.
For the rest of the types of response, NB could iden-
tify response type ”None” and achieved a recall of
50% while SVM had a zero precision, recall, and f-
measure for this type. In addition, for the response
type ”Segregated” and ”Deleted” SVM has the hig-
hest recall and f-measure while NB has the highest
precision. Furthermore, for the response type ”Not
defined” SVM has the highest precision while NB has
the highest recall and f-measure.

Table 2: Performance of the classifiers in identifying the
different types of response based on the malicious code.

SV M NB
Accuracy: 81% 73%
Class: P R F P R F
None 0.00 0.00 0.00 0.11 0.50 0.18
Recovered 0.00 0.00 0.00 0.00 0.00 0.00
Segregated 0.90 0.72 0.80 0.91 0.55 0.68
Deleted 0.61 0.92 0.73 0.64 0.80 0.71
Not defined 1.00 0.84 0.91 0.79 0.89 0.84
Blocked 1.00 1.00 1.00 1.00 1.00 1.00
Name Changed 0.00 0.00 0.00 0.00 0.00 0.00

4.2.2 Problem 2: Identifying the Different Types
of Response based on the Given Malware

Table 3 presents the classification performance details
of the SVM and Naı̈ve Bayes classifiers in identifying
the different types of response based on the given mal-
ware. SVM and NB achieved an accuracy of 73% and
72.8% respectively. Comparing the performance of
both classifiers, both classifiers failed to identify the
response type ”None, ”Recovered” and ”Name Chan-
ged”. In addition, both classifiers had similar preci-
sion, recall, and f-measure for response type ”Segre-
gated and ”Blocked” and nearly similar precision, re-
call and f-measure for response types ”Not defined”
and Deleted”.

Table 3: Performance of the classifiers in identifying the
different types of response based on malware.

SV M NB
Accuracy: 73% 72.8%
Class: P R F P R F
None 0.00 0.00 0.00 0.00 0.00 0.00
Recovered 0.00 0.00 0.00 0.00 0.00 0.00
Segregated 0.83 0.13 0.23 0.83 0.13 0.23
Deleted 0.97 0.88 0.92 0.97 0.87 0.92
Not defined 1.00 1.00 1.00 1.00 0.99 0.99
Blocked 0.43 1.00 0.60 0.43 1.00 0.60
Name Changed 0.00 0.00 0.00 0.00 0.00 0.00
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4.2.3 Problem 3: Identifying the Different Types
of Malware According to the Malicious
Code

Table 4 presents the classification performance details
of the SVM and Naı̈ve Bayes classifiers in identifying
the different types of malware according to the mali-
cious code. SVM achieved an accuracy of 77% while
NB achieved an accuracy of 70%. Both classifiers
could not identify malware type ”Web contents” and
NB achieved very low precision, recall, and f-measure
for malware type ”Downloaded file”, while SVM fai-
led to identify this type. In addition, SVM has the
highest recall of 100% for malware type ”Email at-
tachment”, while NB has the highest precision and
f-measure. Furthermore, SVM achieved the highest
precision and f-measure for malware type ”Spyware”,
while NB has the highest recall. For the malware type
”Virus”, SVM has the highest recall and f-measure
while NB has the highest precision.

Table 4: Performance of the classifiers in identifying the
different types of malware according to the malicious code.

SV M NB
Accuracy: 77% 70%
Class: P R F P R F
Email attachment 0.53 1.00 0.69 0.57 0.89 0.70
Spyware 1.00 0.86 0.92 0.79 0.89 0.84
Virus 0.90 0.75 0.82 0.98 0.54 0.69
Downloaded file 0.00 0.00 0.00 0.25 0.39 0.30
Web Contents 0.00 0.00 0.00 0.00 0.00 0.00

4.2.4 Problem 4: Identifying the Different Types
of Malware based on the Different
Responses

Table 5 presents the classification performance de-
tails of the SVM and Naı̈ve Bayes classifiers in iden-
tifying the different types of malware based on the
different responses. SVM and NB achieved similar
accuracy of 92%. In addition, SVM and NB failed to
identify malware types ”Downloaded file” and ”Web
contents”, while both classifiers had similar precision,
recall, and f-measure for malware types ”Email atta-
chment, ”Spyware” and ”Virus”.

Table 5: Performance of the classifiers in identifying the
different types of malware based on the different responses.

SV M NB
Accuracy: 92% 92%
Class: P R F P R F
Email attachment 0.99 0.88 0.93 0.99 0.88 0.93
Spyware 1.00 1.00 1.00 1.00 1.00 1.00
Virus 0.93 0.89 0.91 0.93 0.89 0.91
Downloaded file 0.00 0.00 0.00 0.00 0.00 0.00
Web Contents 0.00 0.00 0.00 0.00 0.00 0.00

4.3 Discussion

In this research, many factors have affected the iden-
tification and classification process using machine le-
arning. We will discuss the overall results below.

The overall results for the identification of the dif-
ferent types of responses based on the given malicious
code indicated that SVM was the best classifier, but
NB performed better due to the fact that it could iden-
tify five different type of the responses while SVM
only identify four types. While, the overall results for
the identification of the different types of response ba-
sed on the given malware showed that SVM and NB
had nearly similar accuracy and precision, recall, and
f-measure for most response types in which SVM and
NB could identify four different types of the response.
The poor performance from the classifiers was due to
the fact that some types of malware were assigned by
the companies to multiple response types (e.g segre-
gated and name changed are assigned to malware type
virus) and the high and low frequency of some types
affected the classification this because of the imba-
lance of the categories.

Furthermore, the overall results for the identifica-
tion of the different types of malware according to the
malicious code indicated that SVM was the best clas-
sifier but NB performed better due to the fact that it
could identify five different type of the malware while
SVM only identify three types. While, the overall
results or the identification of the different types of
malware based on the different responses showed that
SVM and NB performed well and had similar preci-
sion, recall, and f-measure for most response types
in which SVM and NB could identify three different
type of malware only.

Following from the discussion above, we observe
the following about the overall results:

(1) The classification accuracy was affected by the
imbalance of the (dataset) categories and the
inconsistency of the categories that were used
across the five companies (e.g type of responses
and malware types) as shown in Tables 6 and 7.
This problem could not be handled due to the fact
that we are trying to solve real case problems and
applying an algorithm to handle class imbalance
will result in altering the given information.

(2) The classifiers performance was affected by the
multi-labeling of some of the categories.

(3) Malware types could actually be used for the iden-
tification of malicious code even-though from a
security point of view there is no explicit research
showing that this is possible.

(4) Problem 2 was the most difficult problem to pre-
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Table 6: Type of responses distribution for five companies shows the imbalance of the data which affect the classification
performance of the classifiers.

Type of Responses Co1 (DF) Co2 (MT) Co3 (SE) Co4 (EP) Co5 (MS) Total
Blocked 166 89 411 231 5 902
Deleted 39 98 172 91 1153 1553
Name Changed 2 2 10 4 2 20
None 65 3 43 9 4 124
Segregated 153 288 206 61 201 909
Not defined 0 153 81 28 326 588
Recovered 42 0 0 24 10 76

Table 7: Type of malware distribution for five companies shows the imbalance of the data which affect the classification
performance of the classifiers

Type of Malware Co1 (DF) Co2 (MT) Co3 (SE) Co4 (EP) Co5 (MS) Total
Email attachment 372 0 117 99 1140 1728
Spyware 93 153 81 27 326 680
Virus 467 480 725 322 87 2081
Downloaded file 0 0 0 0 149 149
Web Contents 0 0 0 0 5 5

dict in which the classifiers’ performance was the
lowest in this case.

(5) SVM is more suitable for the detection of types of
response using the malicious code, the detection
of types of response using malware. In addition
to the detection of malware based on the malici-
ous code. While SVM and NB could be used for
the detection of the types of malware using the
different types of response as their performance
results are similar.

5 CONCLUSION AND FUTURE
WORK

In this paper, a dataset collected from five SMEs
in South Korea was analysed to demonstrate how a
centralised hub may collect experience from multi-
ple organisations in order to train a single classifier
that can predict features of future Cyber security in-
cidents. Moreover, a model has been developed using
text mining methods. Using machine learning algo-
rithms for the classification of these incidents and
their response actions, experimental results showed
good performance of the classifiers in predicting dif-
ferent types of response and malware.

As future work, we are planning to test other Cy-
ber security datasets and evaluate the performance of
different machine learning algorithms. In addition,
we aim to investigate how handling class imbalance
can help to improve the classification accuracy.
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