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Abstract: In real life, multiobjective evolutionary algorithms have many areas of applications, such as intelligence 
transportations systems, management problems, data mining, data-analysis and so on. Due to the importance 
of these problems, researchers have investigated several approaches to deal with them. Decomposition is 
one of the basic strategies used in multiobjective evolutionary optimization. In this paper, a modified 
iMOEA/D evolutionary algorithm based decomposition is suggested. This proposition allows dealing with 
Many-objective optimization problems with complicated Pareto fronts. The performance of this algorithm is 
demonstrated using a set of benchmark problems in comparison with other recently proposed algorithms. 

1 INTRODUCTION 

 
In the majority of real life problems, many 
objectives (often conflicting) need to be optimized 
simultaneously. In that case, the output is not a 
single optimal solution but rather a set of possible 
solutions called the optimal Pareto set. 

Aggregating the multiple objectives into one 
objective function is the simplest method to deal 
with an optimization problem of a multiobjective 
nature. The most widely used method is the 
weighted sum method. However, the drawback of 
this approach is that it is not always possible to find 
the appropriate weighted function. 

Multiobjective Optimization deals with such 
simultaneous optimization of multiple, possibly 
conflicting, objective functions, without combining 
them in a weighted sum. The set of solutions of a 
Multiobjective Optimization Problem (MOP) is 
composed of the parameter vectors, which cannot be 
improved in any objective without degrading in at 
least one of the objectives, and this set called the 
Pareto optimal set and its image in the objective 
function space is usually called the Pareto front (PF).  

Multiobjective Evolutionary Algorithms have 
been recognized as the promising techniques for 
solving multiobjective optimization problems. As 
well as the domination based and the performance 
indicator based algorithms, the multiobjective 
evolutionary algorithms based on decomposition 
(MOEA/D) (Zhang et al., 2014) have been widely 
used and investigated recently and they have shown 
its effectiveness. In MOEA/D, a MOP is 
decomposed into single objective optimization sub-
problems and then solved in a single run. The 
objective function in each sub-problem can be a 
linear or nonlinear weighted aggregation function of 
all the objective functions in the concerned MOP. 
The main used approaches for converting MOP into 
scalar sub-problems are: Weighted Sum (WS) 
Approach, Tchebycheff (TCH) Approach and 
Boundary Intersection (PBI) Approach. 

These approaches have been widely detailed in 
literature (Trividi et al., 2016). MOEA based 
decomposition have shown its effectiveness in the 
real-world applications. 

Many-objective optimization (MaOPs) problems 
(four or more number of objectives) are currently a 
subject of great interest for the scientific research 
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community. A great number of algorithms have been 
developed to solve this class of problems. In (Trividi 
et al., 2016), a summary of studies on MOEAs based 
on decomposition for many-objective optimization is 
given. 

In this article, we propose an improved MOEA/D 
which deals with many-objective optimization 
problems with complicated Pareto fronts. The 
developed algorithm is based on recent research 
papers (Hohuu et al., 2018) and (Zhang et al., 2014). 

Our main contributions include the following 
aspects: 

Idea 1: We adopt the PBI approach in the first 
phase for its effectiveness in handling Maops. 

Idea 2: we adopt the inverted PBI scalarizing 
approach to deal with problems with complicated 
Pareto fronts. 

This paper is organized as follows: section 2 
summarizes the basic concepts and defintitions 
related to evolutionary algorithms based 
decomposition framework and introduces related 
works. Section 3 presents our detailed algorithm. 
Analysis and discussion are shown in section 4 
followed by conclusion. 

2 PRELIMNINARIES AND 
RELATED WORKS 

In this section, basic definitions and concepts are 
presented and related works are introduced 

2.1 Basic Definitions 

Definition 1: Many-objective Optimization 
Problem 

A Many-objective Optimization Problem MaoP (1) 
can be formulated as: 

 
minܨሺݔሻ ൌ ሺ ଵ݂ሺݔሻ, … , ݂ሺݔሻሻ் 

 
                                                                      

ሺ1ሻ 
ݔ		ݐ	ݐ݆ܾܿ݁ݑܵ ∈ Ω 

 
Where	ݔ ൌ ሺݔଵ, … ,  ሻ is the decision variablesݔ

vector, Ω is the search space and	݉ is the number of 
objective functions.  

Definition 2: Domination 

We say that a solution	ݔ dominates a solution ݕ if 
and only if	ݔ is better than or equal to ݕ in all 
objectives and better than	ݕ in at least one. 
 
 

predefined by the user. ݀ଵ is used to measure 
convergence and	݀ଶis used to measure diversity. A 
solution with small	݀ଵ and	݀ଶis considered as a 
better solution close to the Pareto front.  

 
Another decomposition approach is introduced. This 
method is used in our proposed algorithm. 
 
- The IPBI-Approach 
 
Traditional decomposition approaches face difficulty 
in approximating widely spread PF in some 
problems like MOKPs (Sato, 2015). To deal with 
this problem and to conceive a decomposition 
method performant for many-objective optimization, 
inverted PBI (IPBI) decomposition method is 
proposed (Sato, 2015). In the conventional 
decomposition methods such as the TCH and the 
PBI, solutions are evolved towards the reference 
point z by minimizing the scalarizing function value. 
However, in the IPBI approach, solutions are 
evolved from the nadir point by maximizing the 

scalarizing function value. The experiments on 
MOKPs and WFG4 problem (Sato, 2015), with 2-8 
objectives, demonstrated that the IPBI approach can 
better approximate widely spread PF in comparison 
to other scalarizing approaches. 

The expression of the Inverted Penalty Boundary 
Intersection is given by: 

 
ሻߣ|ݔሺ݃	݁ݖ݅݉݅ݔܽ݉ ൌ ݀ଵ െ  								ሺ6ሻ																	ଶ݀ߠ
     Where 

݀ଵ ൌ
ቛ൫ݖௗ െ ሻ൯ݔሺܨ

்
ቛߣ

‖ߣ‖
																									ሺ7ሻ 

				 

       ݀ଶ ൌ ቛݖௗ െ ሻݔሺܨ െ ݀ଵ
ఒ

‖ఒ‖
ቛ 

 
 

MOEA/D has been extended to several variants 
using different decomposition approaches. The 
MOEA/D has shown its effectiveness to outperform 
NSGAII (Deb et al., 2002) and other existing 
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algorithms based decomposition (Zhang et al., 
2007). 

In (Jiang et al., 2016), Jiang et Yang have 
proposed MOEA/D-TPN to solve problems with 
complex Pareto fronts. A two-phase strategy is 
adopted. The TP strategy, which conditionally 
divides the whole optimization process into two 
phases and the niche-guided strategy, which helps 
maintain the population diversity. The detail of this 
algorithm is given in (Jiang et al., 2016). 

In MOEA/D-AWA (Qi et al., 2014), Qi et al. 
proceed in two stages strategy. In the first stage, a 
set of weight vectors are used until the algorithm 
converge to a certain extent. Then, to handle MOPs 
with complex Pareto fronts an adaptive weight 
vectors adjustment strategy is adopted. 

The NSGA III algorithm proposed in (Deb et al., 
2014) is an improved version of NSGA II 
framework. This algorithm can deal with many-
objective optimization problems using reference 
points to implicitly decompose the objective space 
and a niche preservation operator to increase 
diversity of solutions close to every reference point. 
The studies prove that NSGA III performs well than 
MOEA/D-PBI and MOEA/D-TCH (Deb et al., 
2014). More detail is presented in (Deb et al., 2014). 

RVEA (Cheng et al., 2016) is another algorithm 
for solving many-objective optimization problems. 
Cheng et al. adopt a reference vectors reconstruction 
strategy and use a new scalarizing approach, namely 
angle-penalized distance (APD). RVEA can deal 
with MOPS with irregular Pareto Fronts and can 
guarantee a uniform distribution of the reference 
vectors. However, RVEA is unable to handle Pareto 

fronts with long tails or sharp peaks (Cheng et al., 
2016). 
 
iMOEA/D Concept 
 
Combining the ideal point	ݖ∗and  nadir point 	ݖௗ 
in Tchebycheff functions was reported as an 
effective way to get a good distribution of optimal 
solutions over a Pareto front. This combination 
allows dealing with multiobjective optimization 
problems characterized by complex fronts (Zhou et 
al., 2017). Based on this, in (Jiang et al., 2016), 
Jiang have designed an evolutionary algorithm 
proceeding in two phases. Where the Tchebycheff 
function with	ݖ∗ is employed in the first phase and 
the Tchebycheff function with 	ݖௗ is used in the 
second phase. The second phase will only be 
executed if a condition on the first phase is satisfied. 
This strategy presents limitations that have been 
overcome by Ho-huu in (Hohuu et al., 2018). These 
limitations concern the difficulty of setting a number 
of evaluations to pass from phase 1 to phase 2 and 
the computational cost of solving a multiobjective 
optimization problems if phase 2 is executed. In 
(Hohuu et al., 2018), Ho-huu proposed an improved 
MOEA/D (iMOEA/D) to deal with MOP with 
complex fronts and to overcome the limitations 
already mentioned. A new two phase strategy is 
proposed. This strategy consists of dividing the 
weights vector into two subsets: odd weight vectors 
and even weight-vectors. In the first phase, the 
population of the first subset is optimized using the 
Tchebycheff function with the ideal point	ݖ∗. The 
Tchebycheff function with the nadir point is applied 
for the second subset. The	ݖௗ is obtained from 
the set solutions found in the first phase. The 
algorithm proposed in (Hohuu et al., 2018) has 
shown its effectiveness and competitiveness than 
MOEA/D, MOEAD/TPN (Jiang et al., 2016) and 
NSGA II, through many test functions with 
complicated Pareto fronts. However, it is limited to 
bi-objective optimization problems and cannot deal 
with problems with more than 2 objective functions. 
The pseudo-code of iMOEA/D (Ho-huu, 2018) is 
given in Algorithm 1. 

The iMOEA/D version includes some recent 
developments related to MOEA/D which are an 
adaptive replacement strategy (Zhang et al., 2009) 
and a stopping criterion introduced in (Baskar et al., 
2016). 

In the following section, we describe our 
proposed algorithm. 

 
 

Algorithm 1: iMOEA/D 

  Input: A MOP, subsets of odd and even weight 
vectors, N subproblems,  
Phase (1) 
Initialization 
Decomposition using the Tchebycheff function with 
ideal point and the subset of the odd-weight vectors. 
Update 
Stopping criteria and output PS1 and PF1 
Phase (2) 
Initialization 
Decomposition using the Tchebycheff function with 
the z nadir and the subset of the even-weight vectors. 
Update 
Stopping criteria and output PS2 and PF2 
PS=ሼܲܵ1, ܲܵ2ሽ Pareto set 
PF=ሼܲ1ܨ,  2ሽ Pareto frontܨܲ
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   3 PROPOSED ALGORITHM 

This paper is a modified version of the iMOEA/D 
algorithm proposed by (Ho-huu et al, 2018). The 
said algorithm handles bio-objective optimization 
problems with complicated Pareto fronts. To extend 
the scope of this algorithm and make it suitable for 
Many-objective optimization problems, we propose 
a modified iMOEA/D which deals with many-
objective optimization problems (MaOP) 
characterized by a complex Pareto front. 

In our algorithm, we use both the PBI and the 
inverted PBI scalarizing approaches.  

We proceed in two phases. In the first phase we 
run our algorithm using the PBI approach with the 
set of the odd-weight vectors and the ideal point	ݖ∗. 

In the second phase, the Inverted PBI approach is 
applied with the set of the even-weight vectors 
and	ݖௗ. The	ݖௗis determined using the 
solutions obtained from the first phase. 

Reasons behind using the PBI and the inverted 
PBI approaches: 

The Penalty Boundary Intersection is widely 
applied in MOEA/D. In most cases, a uniform 
distribution of weight vectors in PBI approach will 
outcome a set of evenly distributed solutions on the 
Pareto-optimal front (POF). The PBI-approach has 
shown its performance for solving many-objective 
optimization problems and to handle problems with 
complex Pareto fronts, we apply the inverted PBI 
approach in the second phase. 

 
 
 

4 EXPERIMENTS AND RESULTS 

In this section, we test our algorithm along with a set 
of well-known algorithms including NSGA III, 
RVEA and MOEA/D-PBI. 

4.1 Test Problems 

We use DTLZ1, DTLZ2, DTLZ3 and DTLZ4 to test 
the ability of our algorithm to deal with more than 2 
objectives. Table 1 describes the test instances, their 
variable domains and instance characteristics used in 
this work. 

4.2 Parameters Setting 

The population size in each algorithm is set to 800 
for all test instances. The maximum number of 

Algorithm 2    Main algorithm 

Input: 
A multiobjective optimization problem MOP, 
N number of sub-problems 
A StoppingCriterion 
ࢊࢊ࢝ ൌ ൫࢝

 , … ࢝,
 ൯

ࢀ
,  ൌ , , … -a set of odd :ࡺ,

weight vectors; 
ࢋ࢜ࢋ࢝ ൌ ൫࢝

 , … ࢝,
 ൯

ࢀ
,  ൌ , , … ࡺ, െ : a set of 

even-weight vectors; 
 ;size of mating neighborhood :ࢀ
 ;maximum size of replacement neighborhood :࢞ࢇ࢘ࢀ
: the probability for selection the mating parents 
from the neighborhood; 
 ;maximum iteration :࢘ࢋ࢚ࡵ࢞ࢇࡹ
Output: Approximation to the PF 
Phase (1) 
Initialization 
Set	ࡼ the initial population, ࢠ∗the ideal point  
and	ࢊࢊ࢝ and 	ࢋ࢜ࢋ࢝		 
Set	ࢀ	ࢊࢇ	࢞ࢇ࢘ࢀ : size of mating neighborhood 
and maximum size of replacement neighborhood 
 
Set	 ൌ ሼ݅ଵ, … ,  ,.ሽ as mentioned in (Zhang et alࢀ
2014). 
Decomposition using PBI scalarizing function  
and	ࢊࢊ࢝ with	ࢠ∗. 
Solution building: a solution is generated using the 
‘DE/rand 1’ operator 
Update solution  
Stopping criterion and output PS1 and PF1 
Phase (2) 
Initialization 
Define	ࢊࢇࢠ with	ࢠ

࢘ࢊࢇ ൌ
࢞ሻห࢞ሺࢌ൛ܠ܉ܕ ∈ ષ,  ൌ ,…  ൟ,
ሻ࢞ሺࢌ																		 ∈   ࡲࡼ
Set the initial population	ࡼ ൌ   ࡿࡼ
Decomposition using inverted PBI scalarizing 
 function and	ࢋ࢜ࢋ࢝ with	ࢊࢇࢠ  
Solution building 
Update 
Termination criterion and output PS2 and PF2 
Output 
PS={PS1,PS2} 
PF={PF1,PF2} 
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generations was set to 400 for all test instances. For 
the MOEA/D-PBI and our proposed algorithm, ߠ is 
set to 5.  

4.3 Results and Discussion 

The inverted Generalized Distance (IGD) Indicator 
is used to indicate both the convergence and the 
diversity of our algorithm. The table 2 shows that 
our proposed algorithm M-iMOEA/D could perform 
well on all of the test instances especially on DTLZ1 
and DTLZ4. 

5 CONCLUSIONS 

In this paper, we develop a modified version of 
iMOEA/D (Hohuu et al., 2018)  named (M-
iMOEA/D) for solving MaOPS with complicated 
Pareto fronts. In M-iMOEA/D, we adopt a two 
phase strategy. In the first strategy, the set of the 
odd-weight vectors is selected to be optimized using 
the PBI approach with the ideal point	ݖ∗. In the 
second phase, the Inverted-PBI approach is applied 
with the set of even-weight vectors and	ݖௗ which 
is determined from the set of the obtained solutions 
of the first stage. Our algorithm shows its 
performance than other algorithms in problems with 
many-objectives and complicated Pareto fronts by 
using a set of benchmark problems. 
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Table 1: Benchmark problems: DTLZ1, DTLZ2, DTLZ3, DTLZ4 
 

Problem Objective function Domain Characteristics 

DTLZ1 
 
 

ଵ݂ሺݔሻ ൌ ଶݔଵݔ0.5 ିଵሺ1ݔ…  ݃ሺݔሻሻ 
ଶ݂ሺݔሻ ൌ ଶݔଵݔ0.5 … ሺ1 െ ିଵሻሺ1ݔ  ݃ሺݔሻሻ 
. 
. 
݂ିଵሺݔሻ ൌ ଵሺ1ݔ0.5 െ ଶሻሺ1ݔ  ݃ሺݔሻሻ 
݂ሺݔሻ ൌ 0.5ሺ1 െ ଵሻሺ1ݔ  ݃ሺݔሻሻ 

ሻݔሺ݃	݁ݎ݄݁ݓ ൌ 100ሾ|ݔ|   ሺሺݔ െ 0.5ሻଶ  cos൫20ߨሺݔ െ 0.5ሻ൯ሻሿ
௫∈௫

 

 

ሾ0,1ሿ Linear, 
multimodal 

DTLZ2 
ଵ݂ሺݔሻ ൌ cos ቀ

ߨଵݔ
2
ቁ… cos ቀ

ߨିଶݔ
2

ቁ cos ቀ
ߨିଵݔ
2

ቁ ൫1  ݃ሺݔሻ൯ 

ଶ݂ሺݔሻ ൌ cos ቀ
ߨଵݔ
2
ቁ… cos ቀ

ߨିଶݔ
2

ቁ sin ቀ
ߨିଵݔ
2

ቁ ൫1  ݃ሺݔሻ൯ 

.	

.	

.	

݂ିଵሺݔሻ ൌ cos ቀ
ߨଵݔ
2
ቁ sin ቀ

ߨଶݔ
2
ቁ ൫1  ݃ሺݔሻ൯ 

݂ሺݔሻ ൌ sin ቀ
ߨଵݔ
2
ቁ ൫1  ݃ሺݔሻ൯ 

ሻݔሺ݃	݁ݎ݄݁ݓ ൌ  ሺݔ െ 0.5ሻଶ

௫∈௫

 

 

ሾ0,1ሿ Concave 

DTLZ3 
ଵ݂ሺݔሻ ൌ cos ቀ

ߨଵݔ
2
ቁ cos ቀ

ߨଶݔ
2
ቁ… cos ቀ

ߨିଶݔ
2

ቁ cos ቀ
ߨିଵݔ
2

ቁ ൫1  ݃ሺݔሻ൯ 

ଶ݂ሺݔሻ ൌ cos ቀ
ߨଵݔ
2
ቁ cos ቀ

ߨଶݔ
2
ቁ… cos ቀ

ߨିଶݔ
2

ቁ sin ቀ
ߨିଵݔ
2

ቁ ൫1  ݃ሺݔሻ൯ 

.	

.	

. 

݂ିଵሺݔሻ ൌ cos ቀ
ߨଵݔ
2
ቁ sin ቀ

ߨଶݔ
2
ቁ ൫1  ݃ሺݔሻ൯ 

݂ሺݔሻ ൌ sin ቀ
ߨଵݔ
2
ቁ ൫1  ݃ሺݔሻ൯ 

ሻݔሺ݃	݁ݎ݄݁ݓ ൌ 100ሾ|ݔ|   ሺሺݔ െ 0.5ሻଶ

௫∈௫

െ cosሺ20ሺݔ െ 0.5ሻሻሻሿ 

ሾ0,1ሿ Concave, 
multimodal 
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DTLZ4 
ଵ݂ሺݔሻ ൌ cos ቆ

ଵݔ
ఈߨ
2
ቇ cos ቆ

ଶݔ
ఈߨ
2
ቇ… cos ቆ

ିଶݔ
ఈ ߨ
2

ቇ cos ቆ
ିଵݔ
ఈ ߨ
2

ቇ ൫1

 ݃ሺݔሻ൯ 

ଶ݂ሺݔሻ ൌ cos ቆ
ଵݔ
ఈߨ
2
ቇ cos ቆ

ଶݔ
ఈߨ
2
ቇ… cos ቆ

ିଶݔ
ఈ ߨ
2

ቇ sin ቆ
ିଵݔ
ఈ ߨ
2

ቇ ൫1

 ݃ሺݔሻ൯ 
.	
.	
. 

݂ିଵሺݔሻ ൌ cos ቆ
ଵݔ
ఈߨ
2
ቇ sin ቆ

ଶݔ
ఈߨ
2
ቇ ൫1  ݃ሺݔሻ൯ 

݂ሺݔሻ ൌ sin ቆ
ଵݔ
ఈߨ
2
ቇ ൫1  ݃ሺݔሻ൯ 

ሻݔሺ݃	݁ݎ݄݁ݓ ൌ  ሺݔ െ 0.5ሻଶ

௫∈௫

. ߙ ൌ 100 

ሾ0,1ሿ Concave, 
biased 

 
 
 

Table 2: the obtained IGD average values obtained for DTLZ1-DTLZ4 test problems 
 

 M M-iMOEA/D NSGA-III RVEA MOEA/D-PBI 
 
DTLZ1 

3 3.0001e-02 3.0938e-01 5.0488e-01 3.4647e-02 
4 5.4290e-02 7.7805e-02 1.2131e-01 5.4289e-02 

5 6.5003e-02 5.6473e-01 3.4217e-01 6.5954e-02 

 
DTLZ2 

3 5.4769e-02 5.4920e-02 5.8780e-02 5.4643e-02 
4 1.4009e-01 1.4090e-01 1.4072e-01 1.1412e-01 

5 2.1905e-02 2.1626e-02 2.1396e-01 2.1318e-01 
 
DTLZ3 

3 1.7896e-01 1.0704e+01 8.8125e-00 1.8099e-01 
4 1.7969e-01 1.6565+01 1.8081e-01 1.8020e-01 

5 1.1060e-01 9.8374e-00 1.0358e-01 1.1361e-01 
 
DTLZ4 

3 5.3936e-02 5.7025e-02 5.255e-02 5.4151e-01 
4 1.4078e-01 1.4227e-01 1.4089e-01 7.5111e-01 
5 2.1101e-01 2.1833e-01 2.1487e-01 6.4572e-01 
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Figure 1: Parallel cordinates of PFs obtained by four algorithms :(1) RVEA, (2) NSGAIII, (3), MOEAD-PBI, (4) M-
iMOEAD 
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