The Performance of Anchor Model in Data Warehousing

Gladly Caren Rorimpandey, Jan Pieter Zwart, Julyeta Paulina Amelia Runtuwene, Ferdinan Ivan Sangkop, Vivi Peggie Rantung, Parabelem Tinno Dolf Rompas, and Cindy Pamela C. Munaiseche Universitas Negeri Manado, North Sulawesi, Indonesia

Keywords: Data Model, Data Warehouse, Anchor Model, Inferential Statistics, Post-Hoc Analysis, SQL Server

Abstract: Data model performance became one of essential to be future-proof criteria in data warehouse. The aim of this research is to proof that the performance of Anchor Model as good as the performance of traditional data models that used in data warehousing. The research method is inferential statistics which takes one scenario to generate the sample of data by using SQL Server as the RDBMS. The performance result is discussed by Post-hoc analysis. The experiment performed evidently shows that the Anchor Model has no significantly different with Optimal Normal Form and Data Vault but it has significantly different with star schema. It means the time execution in the SQL statement with more join tables will be shorter than the SQL statement with less join tables. So, the companies that will design and develop data warehouse can be consider to using Anchor Model as their data model in data warehousing.

1 INTRODUCTION

A data warehouse is a database used for reporting and making analyse. It focuses on the modelling and analysis of data for decision hence data warehouse typically provide a simple and concise view of particular subject issue by excluding data that are not useful in the decision support process (Kujur and Oraon, 2016). Nowadays, many companies are using data warehouse (Bassil, 2012). The reason are: a data warehouse can help to manage large amounts of data in a structured way, needing less time to read and analyse them compared to regular data architecture.

Data model is the starting point for designing and developing of data warehouses environment (Rönnbäck et al.., 2010). Data model made the designing of data warehouse become easier and clearer. Inmon said it is like a roadmap of the data warehouse development (Inmon, 2013). Data model is used to support developers of OLAP, data mining, and reporting system. Besides that, it acts as documentation for the final data warehouse. Therefore, data model performance is very important to support the efficiency of data warehouse.

Anchor Model which the one of data model used in data warehouses is a technique recently advocated by Lars Rönnbäck. It uses 6 Normal Form (6NF) databases which are generately expected to perform

badly. But, in October 2010 Lars Rönnbäck and friends performed the result of their research that Anchor Model performs substantially better than databases constructed using traditional modeling techniques (Rönnbäck et al., 2010). More than that, they claim however that query optimizers (SQL Server) are so powerful that performance issues are no longer important as for as table designs are concerned. Our research that publish in early 2018 also found that lack of redudancy has influence to the performance of data model in data warehouse, in terms of accessing it (Rorimpandey et al., 2018). This reaseach is to extend the research of our group. The aim of this research is to look into deep the performance of Anchor Model in data warehousing and compare with the traditional data model, such as Star Schema, Data Vault and Optimal Normal Form (ONF) by using post-hoc analysis. The scenario and population method of this research will used same as the previous research.

2 METHODS

The method of this research is using inferential method is inferential statistics which takes one scenario to generate the sample of data by using SQL Server as the RDBMS. This research is start by designing queries for Anchor Model and others to

298

Rorimpandey, G., Zwart, J., Runtuwene, J., Sangkop, F., Rantung, V., Rompas, P. and Munaiseche, C.

The Performance of Anchor Model in Data Warehousing. DOI: 10.5220/0009010102980302

In Proceedings of the 7th Engineering International Conference on Education, Concept and Application on Green Technology (EIC 2018), pages 298-302 ISBN: 978-989-758-411-4

Copyright © 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

answer the 13 information needs. Then, the performance will be analyzed with post-hoc analysis because the previous research is done just ANOVA analysis. The post-hoc analysis should be done if there is significant different (Pereira, Afonso and Medeiros, 2015). Therefore in this research, it's needed to be tested because the previous research shown that there is significant difference of lack performance by star schema. The research design is described by Figure 1. The data of time execution will be automatically shown in SQL because the query that designed is also for counting the duration of time execution.

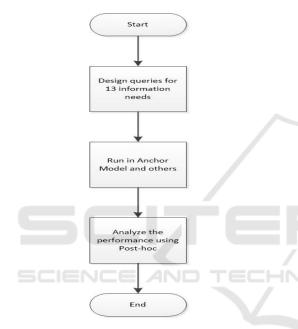


Figure 1: Research design.

3 RESULTS AND DISCUSSION

The scenario used in this research has taken from previous research of performance comparison. The original scenario has taken from Anchor Model Team that used in online modeller. The Anchor Model in this research is created from online tool of Anchor Model. The Anchor Model in this research is created from online tool of Anchor Model. From the FCO-IM point of view, all the nominalized fact types that absorb roles became anchors. The absorbed roles which are played by label type become static attributes. A knot is from a nominalized fact type with one role covered by one UC and has nominalized fact type that absorbed roles. If it is connected to the nominalized fact type that absorbed roles through a non-nominalized fact type with time validity, then it is a historized knot (Simanjuntak et al., 2016). A non-nominalized fact type that connected with two nominalized fact types that absorbed roles become tie. If the nonnominalized fact type has roles with time validity, then it is a historized tie. Furthermore, if other role of the non-nominalized fact type which is played by label type, then make the role as anchor or knot (depend on modeller).

As mention in methods part, the first step of this research is design queries for 13 information needs. The testing is based on 13 information needs (suites) which implemented to the historized tables. So, for each model will be tested on historized 'tables' by thirteen information needs. Each model has different SQL query because of the difference of table structures for each model. The differences can be found in the table below which shown testing query for two information needs between Star Schema model and Anchor Model.

Table 1 : Queries between star schema & anchor model

No	Star Schema	Anchor Model
	SELECT	SELECT
	FROM DATE, SSN,	T8.AC_ETH_C
/	USERNAME,	hangedAt
<u> </u>	BIRTHDATE,	,T2.AC_SSN_Acto
	PROFESSIONAL_LE	r_SocialSecurityNumb
	VEL, GENDER,	er
	ETHNICITY	,T3.AC_USR_Act
_	FROM	or_Username
	STAR_HistorizationSc	,T4.AC_BIR_Acto
	enarioACTOR_DIM	r_Birthdate
		,T5.AC_PLV_Acto
		r_ProfessionalLevel
		,T7.GEN_Gender
		,T9.ETH_Ethnicity
		FROM
		AM_HistorizationScen
		arioAC_Actor T1
		INNER JOIN
		AM_HistorizationScen
		arioAC_SSN_Actor_
		SocialSecurityNumber
		T2
		ON
		$T1.AC_ID =$
		T2.AC_ID
		INNER JOIN
		AM_HistorizationScen
		arioAC_USR_Actor_
		Username T3
		ON TLAC ID -
		$T1.AC_ID = T2.AC_ID$
		T3.AC_ID
		INNER JOIN

EIC 2018 - The 7th Engineering International Conference (EIC), Engineering International Conference on Education, Concept and Application on Green Technology

No	Star Schema	Anchor Model	No	Star Schema	Anchor Model
		AM_HistorizationScen		STAR_HistorizationSc	AM_HistorizationScen
		arioAC_BIR_Actor_		enario2PERFORMA	ario2PE_AUD_Perfor
		Birthdate T4		NCE_DIM	mance_Audience T1
		ON		WHERE	INNER JOIN
		$T1.AC_ID =$		RATING ≤ 5	AM_HistorizationScen
		T4.AC_ID		GROUP BY	ario2PE_Performance
		INNER JOIN		RATING,	T2
		AM_HistorizationScen		PERFORMANCE_CO	ON
		arioAC_PLV_Actor_		DE	$T1.PE_ID = T2.PE_ID$
		ProfessionalLevel T5		HAVING	$II.IE_ID = I2.IE_ID$ INNER JOIN
		ON		COUNT(PERFORMA	AM_HistorizationScen
		$T1.AC_ID =$			
				NCE_CODE) >= ALL	ario2PE_COD_Perfor
		T5.AC_ID		(SELECT	mance_Code T3
		INNER JOIN		COUNT(PERFORMA	ON
		AM_HistorizationScen		NCE_CODE)	$T1.PE_ID = T3.PE_ID$
		arioAC_GEN_Actor_		FROM	INNER JOIN
		Gender T6		STAR_HistorizationSc	AM_HistorizationScen
		ON		enario2PERFORMA	ario2PE_RAT_Perfor
		$T1.AC_ID =$		NCE_DIM	mance_Rating T4
		T6.AC_ID		WHERE	ON
		INNER JOIN		RATING <= 5	$T1.PE_ID = T4.PE_ID$
		AM_HistorizationScen		GROUP BY	INNER JOIN
		arioGEN_Gender T7		RATING,	AM_HistorizationScen
		ON		PERFORMANCE_CO	ario2RAT_Rating T5
		$T6.GEN_ID =$		DE)	ON
		T7.GEN_ID	/		T4.RAT_ID =
		INNER JOIN			T5.RAT_ID
		AM_HistorizationScen			WHERE
		arioAC_ETH_Actor_			T5.RAT_Rating <= 5
		Ethnicity T8			GROUP BY
				ופי פו אין	T5.RAT_Rating,
_		$T1.AC_ID =$	_		T3.PE_COD_Performa
		T8.AC_ID			nce_Code
		INNER JOIN			HAVING
		AM_HistorizationScen			COUNT(T3.PE_COD_
		arioETH_Ethnicity T9			Performance_Code)>=
		ON			ALL
		T8.ETH_ID =			(SELECT
		T9.ETH_ID			COUNT
	SELECT	SELECT			(PE_COD_Performanc
	RATING,	T5.RAT_Rating,			e_Code)
	PERFORMANCE_CO	T3.PE_COD_Performa			FROM
	DE ,	nce_Code			AM_HistorizationScen
	COUNT(PERFORMA	,COUNT(T3.P			ario2PE_RAT_Perfor
	NCE_CODE) AS	E_COD_Performance_			mance_Rating T11
	TOTAL_RATING_PE	Code) AS			INNER
	R_PCODE	TOTAL_RATING_PE			JOIN
	,MAX(FROM	R_PCODE			AM_HistorizationScen
	DATE) AS	,MAX(T4.PE			ario2PE_Performance
	LASTDATE_RATIN	RAT_ChangedAt) AS			T12
	G	LASTDATE_RATING			
	,MIN(FROM_	,MIN(T4.PE_R			ON T11.PE_ID
	DATE) AS	AT_ChangedAt) AS			= T12.PE_ID
	FIRSTDATE_RATIN	FIRSTDATE_RATIN			INNER
	G	G			JOIN
	FROM	FROM			AM_HistorizationScen
	210011		L		

No	Star Schema	Anchor Model
		ario2PE_COD_Perfor
		mance_Code T13
		ON T11.PE_ID
		$=$ T13.PE_ID
		INNER
		JOIN
		AM_HistorizationScen
		ario2RAT_Rating
		T15
		ON
		$T11.RAT_ID =$
		T15.RAT_ID
		WHERE
		T15.RAT_Rating ≤ 5
		GROUP BY
		T15.RAT_Rating,
		T13.PE_COD_Perform
		ance_Code)

From the Table 1, it shows that the differences of writing SQL query between the models are significant different. Anchor Model needs more join tables to get information need than star schema which the information need can be found in one table. Based on the testing queries, the Anchor Model performance is shown by Figure 2.

The result of this performance comparison is based on time execution in milliseconds. Time execution is called duration which took time between start time and end time. Start time is the time when the query starts to execute, while end time is the time when the query finishes the execution. The result of the previous research, The rejected null-hypothesis means it was established that some difference between these four models does indeed exist. No information about what difference that is can be obtained in the way however. For that, the post-hoc analysis is needed in this experiment (Rorimpandey et al.., 2018).

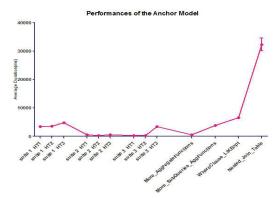


Figure 2: Performance of anchor model.

The post-hoc analysis was done using Sidak's multi comparisons test in GraphPad Prism 6. This is essentially a series of paired tests, taking multi comparison aspects into account somehow. The Figure 3 below has shown the post-hoc analysis.

Figure 3: Post-hoc analysis.

Based on this result of the experiment, the analysis by post-hoc, data models with the lack of redundancy has significant influence to the performance of data model in data warehousing, in terms of accessing it. Furthermore, data models in data warehousing is a part of online transaction processing (OLTP) systems which have many writes, or frequent updates, may not be able to take advantage of indexed views because of the increased maintenance cost associated with updating both the view and underlying base tables. It evidently shows by the result of information need 12. So, the indexes will short the performances of data models in accessing some of the information needs in data models of data warehousing but not all information needs. The performance between the ONF, the Anchor Model, and the Data Vault is not significantly different. So, the Anchor Model performance is good as Data Vault and ONF but can be better than Star Schema.

4 CONCLUSIONS

Based on the results of this research the main question can be answered: "Is anchor model will perform better than the traditional data model in data warehousing?" The analysis testing shown that anchor model has same performance with Data Model and ONF but, Star Schema has bad performance. This also proof that the query execution will be shorter if there are many join tables than less join tables. So, the companies that will design and develop data warehouse can be consider to using Anchor Model as their data model in data warehousing. EIC 2018 - The 7th Engineering International Conference (EIC), Engineering International Conference on Education, Concept and Application on Green Technology

REFERENCES

- Bassil, Y., 2012. A Data Warehouse Design for A typical University Information System. *Journal of Computer Science & Research.*, Vol 6(2), pp 12-17.
- Inmon, W., . *Building the data warehouse*, Wiley Publishing. Canada, 4th edition.
- Kujur, A G P., Oraon, A., 2016, A Data Warehouse Design and Usagel. *International Research Journal of Engineering and Technology*. IRJE, Vol 3(11), pp 335-337
- Pereira, D G., Afonso, A., 2015. *Overview of friedman's Test and Post hoc Analysis*. Communication in statistics-simulation and computation, Vol 44(10), pp 2636-2653
- Ronnback, L., Johannesson, P., Regardt, O., Wohed, P., 2010. Anchor Modeling-Agile Information modelling in Envolving Data Environment. *Journal of Data and Knowledge Engineering*. Research Gate, Vol 69(12), pp 1229-1253
- Rorimpandey, G C., Sangkop, F I., Rantung, V P., Zwart, J P., Liando, O E S., Mewengkang, A., 2018. Data Model Performance in Data Warehousing. *IOP Conf. Series: Materials Sciences and Engineering*. IOP Publishing, Vol 306., pp 1-6