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Abstract: The purpose of this paper is to prove the necessary and sufficient condition for the boundedness of Riesz 

operators on homogeneous generalized Morrey spaces. Further, we will make use the Q-Ahlfors regularity 

condition in the proof instead of usual doubling conditions. 

1 INTRODUCTION 

In this paper, we shall discuss about the 

boundedness of a Riesz potential integral operator. 

The boundedness of operator 𝐼𝛼  on the several 

homogeneous metric measure spaces has been 

proved by some researchers (Eridani and Gunawan, 

2009; Eridani, Kokilashvili and Meshky, 2009; 

Nakai, 2000; Petree, 1969). Such boundedness 

results have been obtained in the several kinds of 

Morrey spaces thanks to the doubling condition 

obeyed by the measure of homogeneous metric 

measure spaces on the Euclid spaces (Adams, 1975; 

Chiarenza et al. 1987; Petree, 1969). The Euclid 

spaces combined with Lebesgue measure is the most 

trivial example of the boundedness result of 𝐼𝛼  on 

homogeneous spaces. The generalized Morrey 

spaces was introduced later by (Nakai, 2000) who 

also proved the boundedness of 𝐼𝛼  in those spaces. 

Following from this progress, Eridani and Gunawan 

obtained proof for the boundedness of the fractional 

integral operator 𝐼𝛼  on the generalized Morrey 

spaces (Eridani & Gunawan, 2009). The further 

results in the same line were obtained by Sobolev, 

Spanne, Adams, Chiarensa dan Frasca, Nakai and 

Gunawan and Eridani related to the boundedness of 

𝐼𝛼  on generalized Morrey spaces on Euclid spaces 

equipped with Euclid norm |⋅| (Adams, 1975; 

Chiarenza et al. 1987; Eridani and Gunawan, 2009; 

Nakai, 2000). Furthermore, the result obtained by 

Utoyo has described the generalized necessary and 

sufficient condition for the boundedness of 𝐼𝛼  on 

classic and generalized Morrey spaces (Utoyo et al. 

2012).     

The boundedness of 𝐼𝛼  in the results was 

obtained using doubling condition obeyed by 

measure on generalized Morrey spaces. This type of 

spaces is called homogeneous spaces, the metric 

measure spaces on which the measure obeys the 

doubling condition. As the generalization of 

homogenous properties of spaces, Ahlfors defined 

the regularity condition 𝐶0𝑟𝑄 ≤ 𝜇(𝐵) ≤ 𝐶1𝑟𝑄where 

𝐶0 and 𝐶1 are some positive constants.  

In this paper, we will prove the necessary and 

sufficient conditions for the boundedness of 𝐼𝛼  on 

the generalizd Morrey spaces similar to the previous 

results using Ahlfors regularity condition. All the 

results in this article can be considered as the 

alternative for the corresponding homogeneous 

results. 

2 LITERATURE REVIEW 

Our result of the boundedness result of 𝐼𝛼  on the 

homogeneous generalized Morrey spaces 

generalizes the following theorem about the 

boundedness property of fractional integral operator 

on the homogeneous classic Morrey space. The 

theorem stated as the following. 

 

Theorem 2.1. Let 𝑋 be a homogeneous metric 

measure space, 𝑣 be a measure on 𝑋, 1 < 𝑝 < 𝑞 <

∞, 1 < 𝛼 < 𝛽 and 𝐶0𝑟𝛽 ≤ 𝜇(𝐵(𝑥, 𝑟)) ≤ 𝐶1𝑟𝛽 . 

Then 𝐼𝛼  is bounded from ℒ 𝑝(𝑋, 𝜇) to ℒ𝑞(𝑋, 𝑣)  if 

and only if there is a constant 𝐶 > 0 such that for 

every ball 𝐵 on 𝑋, 𝑣(𝐵) ≤ 𝐶𝜇(𝐵)
𝑞(

1

𝑃
−

𝛼

𝛽
)
. 
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The modification of the preceding theorem, 

replacing the condition 𝑣(𝐵) ≤ 𝐶𝜇(𝐵)
𝑞(

1

𝑃
−

𝛼

𝛽
)
, is 

stated as the following. 

 

Theorem 2.2. Let 1 < 𝑝 < 𝑞 < ∞ and  0 < 𝛼 <

𝛽 −
𝑄

𝑝′. The operator 𝐼𝛼  is bounded from ℒ 𝑝(𝑋, 𝜇) to 

ℒ𝑞(𝑋, 𝑣) if and only if 𝑣(𝐵) ≤ 𝐶𝑟
𝛽−𝛼−

𝑄

𝑝′ with  𝑝′ =
𝑝

𝑝−1
 and 𝐶0𝑟𝑄 ≤ 𝜇(𝐵) ≤ 𝐶1𝑟𝑄 . 

 

As the generalization of the above theorems, in this 

article, we will prove the necessary and sufficient 

conditions for the boundedness of 𝐼𝛼  on the 

homogeneous generalized Morrey space. The 

generalized Morrey space is denoted by 𝐿𝜙
𝑝

=

𝐿𝜙
𝑝 (ℛ𝑛) defined as the set of functions 𝑓 ∈ 𝐿𝑙𝑜𝑘

𝑝
 such 

that 

‖𝑓: 𝐿𝜙
𝑝

‖ =
𝑠𝑢𝑝

𝐵 = 𝐵(𝛼, 𝑟)

1

𝜙(𝑟)
(

1

|𝐵|
∫ |𝑓(𝑦)|𝑝𝑑𝑦

𝐵

)

1

𝑝

< ∞ 

where 𝜙: (0, ∞) → (0, ∞)  is a function satisfying 

𝜙(𝐵(𝛼, 𝑟)) = 𝜙(𝑟) and 1 ≤ 𝑝 < ∞. The 

generalized Morrey space 𝐿𝜙
𝑝

 is the strong 

generalization of classic Morrey spaces 𝐿𝑝,𝜆. By 

choosing 𝜙(𝑟) = 𝑟
𝜆−𝑛

𝑝  where 0 ≤ 𝜆 < 𝑛, then the 

corresponding generalized Morrey space reduces to 

classic Morrey spaces 𝐿𝑝,𝜆 and hence is so for 

Lebesgue spaces 𝐿𝑝. 

Analysis of boundedness of 𝐼𝛼  on the generalized 

Morrey spaces requires two condition for function 

𝜙, that is 

(1) 𝜙 is said to satisfy doubling condition, denoted 

by 𝜙 ∈ (𝐷𝐶𝐹) if there is a constant 𝐶 > 1 such 

that for every 𝑟 > 0 and 𝑡 > 0, if  
1

2
≤

𝑡

𝑟
≤ 2 

then  
1

𝐶
≤

𝜙(𝑡)

𝜙(𝑟)
≤ 𝐶, 

(2) 𝜙 is said to satisfy integral condition 

(integration condition) and denoted by 𝜙 ∈
(𝐼𝐶𝐹) if there is a constant 𝐶 > 1  such that for 

every 𝑟 > 0, ∫
𝜙(𝑡)

𝑡

∞

𝑟
𝑑𝑡 ≤ 𝐶𝜙(𝑟). 

The boundedness results for fractional integral 

operator 𝐼𝛼  on generalized Morrey spaces has been 

proven by (Nakai, E.) in the following theorem. 

 

Theorem 2.3. (Kokilashvili and Meshky, 2005) If 

1 < 𝑝 < 𝑞 < ∞,
1

𝑞
=

1

𝑝
−

𝛼

𝑛
, 𝜙 ∈ (𝐷𝐶𝐹), 𝑡𝛼𝜙(𝑡) ∈

(𝐼𝐶𝐹), with functions 𝜓: (0, ∞) → (0, ∞) satisfy: 

there is a constant 𝐶 > 0   such that for every 𝑟 >
0, 𝑟𝛼𝜙(𝑟) ≤ 𝐶𝜓(𝑟)  then 𝐼𝛼  is bounded from 𝐿𝜓

𝑝
 to 

𝐿𝜓
𝑞

. 

This result shows that 𝐼𝛼  is bounded from 𝐿𝜙
𝑝

 to 

𝐿𝜙
𝑝

. Furthermore, the statement in the above 

theorems is the implication statement, in sense that it 

only says about the sufficient condition of the 

boundedness of the operator. For that reason, in 

determining of complete theory about the 

boundedness of the fractional integral operator 𝐼𝛼  on 

the generalized Morrey spaces.In this article,we will 

construct the necessary conditions for the 

boundedness of the operator as acompanion to the 

theorem above. Using the theorem from Adams-

Zhiarenza-Frasca, Gunawan and Eridani, which 

states that (Eridani and Gunawan, 2009) shows that 

𝐼𝛼  is bounded from 𝐿𝜙
𝑝

 to 𝐿
𝜙

𝑝
𝑞⁄

𝑝
. Their result is stated 

by the following theorem. 

 

Theorem 2.4. (Eridani and Gunawan, 2009) Let 𝜙 ∈

(𝐷𝐶𝐹), 𝜙𝑝 ∈ (𝐼𝐶𝐹), 1 < 𝑝 <
𝑛

𝛼
 and there is a 

constant 𝐶 > 1    such that for every 𝑡 > 0, 𝜙(𝑡) <

𝐶𝑡𝛽   where −
𝑛

𝑝
< 𝛽 < −𝛼. then 𝐼𝛼  is  bounded 

from 𝐿𝜙
𝑝

 to 𝐿
𝜙

𝑝
𝑞⁄

𝑞
 where 𝑞 =

𝛽𝑝

𝛼+𝛽
. 

As the preceding results, the boundedness theorem 

of 𝐼𝛼  on the generalized Morrey spaces stated above 

is the implication statement. Then, also will be 

developed in this article to be, the boundedness from 

𝐿𝜙
𝑝 (𝑋, 𝜇) to 𝐿𝜓

𝑞 (𝑋, 𝑣)  and 𝐿𝜙
𝑝 (𝑋, 𝜇)  to 𝐿

𝜙
𝑝

𝑞⁄

𝑞 (𝑋, 𝑣)  

with biimplication form on the metric measure 

space. 

3 RESULTS  

The first result in our paper is the boundedness 

property of fractional integral operator similar to that 

of Theorem 2.1, and 2.2. The difference is that the 

measures used in the spaces are made to be different 

cause maximal operator to be unusable to prove the 

boundedness properties of the operator. Also, the 

condition of the boundedness of the fractional 

integral operator 𝐼𝛼  in our result uses Ahlfors 

regularity condition instead of the traditional 

doubling condition. The following is the de_nition 

of generalized Morrey spaces equipped with 
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measures𝜇 and 𝑣 which is alowed to be different in 

the later boundedness results. 

Definition 3.1. Let v be a measure on X, 1 ≤ p < ∞, 

and function ϕ: (0, ∞) → (0, ∞). The generalized 

Morrey space ℒ p,ϕ(X, v, μ) is de_ned as the set of 

functions f ∈ Llok
p

(X, v), such that the following 

equation holds 

‖𝑓: ℒ 𝑝,𝜙(𝑋, 𝑣, 𝜇)‖   =

𝑠𝑢𝑝
𝐵

1

𝜙(𝜇(𝐵))
(

1

𝜇(𝐵)
∫ |𝑓(𝑦)|𝑝𝑑𝑣(𝑦

𝐵
))

1

𝑝
< ∞, 

with the supremum is evaluated over every ball 

𝐵(𝛼, 𝑟) on 𝑋. 

Remark 3.2. If 𝑣 = 𝜇, then ℒ 𝑝,𝜙(𝑋, 𝑣, 𝜇) =
ℒ 𝑝,𝜙(𝑋, 𝜇). 

In the above equation, and later on this article, 𝜙 

is always assumed to satisfy the following both 

conditions:  

1. 𝜙(𝑟)is almost decreasing function, that is, there 

is a constant 𝐶 > 0 such that for every 𝑡 ≤
𝑟, 𝜙(𝑟) ≤ 𝐶𝜙(𝑡) 

2. 𝑟𝛽𝜙(𝑟)𝑝is almost increasing function, that is, 

there is a constant 𝐶 > 0 such that for every 𝑡 ≤
𝑟, 𝑡𝛽𝜙(𝑡)𝑝 ≤ 𝐶𝑟𝛽𝜙(𝑟)𝑝. 

The above conditions ensure that the functions 𝜙 

and 𝜓, appearing in the boundedness property, does 

not too rapidly blow up to infinity nor rapidly decay 

to zero respectively. The following theorem states 

about the condition that must be satisfied by the 

functions 𝜙 and 𝜓, and also measure 𝜇 appearing in 

the spaces, in order to ensure the boundedness 

property of 𝐼𝛼   form the spaces ℒ 𝑝,𝜙(𝑋, 𝜇) to 

ℒ 𝑝,𝜙(𝑋, 𝑣, 𝜇). 

 

Theorem 3.3. Let (𝑋, 𝛿, 𝜇) be a homogeneous 

metric space, 1 < 𝑝 < 𝑞 < ∞ and 𝑎 ∈ (0,
𝛽

𝑝
). If 𝜙 ∈

(𝐴𝐷𝐹), 𝜙(𝑡) ∈ (𝐴𝐼𝐹), and 𝜇(𝐵)
1

𝑝
−

1

𝑞𝜙(𝜇(𝐵)) ≤

(𝜓(𝜇(𝐵)),,, that is 𝜇  satisfies the Q-Ahlfors 

regularity condition, and 

∫ 𝜇(𝐵(𝑎, 𝑡))
𝛼−𝛽

𝑄 𝜇(𝐵(𝑎, 𝑡))
𝜙(𝑎, 𝑡)

𝑡
𝑑𝑡

∞

𝑟

≤ 𝐶𝜇(𝐵(𝑎, 𝑡))
𝛼−𝛽

𝑄 𝜇(𝐵(𝑎, 𝑡))(𝑎, 𝑟) 

then, 𝐼𝛼  is bounded from ℒ 𝑝,𝜙(𝑋, 𝜇) to ℒ 𝑝,𝜓(𝑋, 𝑣). 

Proof. Necessity. Suppose that𝐼𝛼  is bounded from 

ℒ 𝑝,𝜙(𝑋, 𝜇) to ℒ 𝑝,𝜓(𝑋, 𝑣) such that 

‖𝐼𝛼𝑓: ℒ 𝑝,𝜓(𝑋, 𝑣) ‖ =≤ 𝐶‖𝑓: ℒ 𝑝,𝜙(𝑋, 𝜇)‖. 

Then, 

1

𝜓(𝜇(𝐵))
(

1

𝜇(𝐵)
∫ |𝐼𝛼𝑓|𝑞𝑑𝑣

𝑋
)

1

𝑞
≤

𝐶
1

𝜙(𝜇(𝐵))
(

1

𝜇(𝐵)
∫ |𝑓(𝑥)|𝑝𝑑𝜇

𝑋
)

1

𝑝
. 

𝑓 ≔ 𝒳𝐵  were 𝑎 ∈ 𝑋 and 𝑟 > 0 thus, 

 

1

𝜓(𝜇(𝐵))
(

1

𝜇(𝐵)
∫ |𝐼𝛼𝒳𝐵|𝑞𝑑𝑣

𝑋

)

1

𝑞

≤ 𝐶
1

𝜙(𝜇(𝐵))
(

1

𝜇(𝐵)
∫ |𝒳𝐵(𝑥)|𝑝𝑑𝜇

𝑋

)

1

𝑝

 

1

𝜓(𝜇(𝐵))
(

1

𝜇(𝐵)
∫ (∫

𝒳𝐵

𝛿(𝑥, 𝑦)𝛽−𝛼
𝑑𝜇(𝑦)

𝐵

)

𝑞

𝑑𝑣
𝐵

)

1

𝑞

≤ 𝐶𝜙(𝜇(𝐵))
−1

𝜇(𝐵)
−

1

𝑝𝜇(𝐵)
1

𝑝 

𝜓(𝜇(𝐵))
−1

𝜇(𝐵)
1

𝑞𝑟𝛼−𝛽𝜇(𝐵)𝑣(𝐵)
1

𝑞 ≤ 𝐶𝜙(𝜇(𝐵))
−1

 

𝑣(𝐵)
1

𝑞 ≤ 𝐶𝜓(𝜇(𝐵))𝜇(𝐵)
1

𝑞𝑟𝛽−𝛼𝜇(𝐵)−1𝜙(𝜇(𝐵))
−1

 

 

Since 𝑝′ =
𝑝

𝑝−1
, 𝜇(𝐵)

1

𝑝
−

1

𝑞𝜙(𝜇(𝐵)) ≤ (𝜓𝜇(𝐵)) and 

𝐶0𝑟𝑄 ≤ 𝜇(𝐵) ≤ 𝐶1𝑟𝑄 , 

𝑣(𝐵)
1

𝑞 ≤ 𝐶𝜇(𝐵)
−

1

𝑝′𝑟𝛼−𝛽, 

𝑣(𝐵)
1

𝑞 ≤ 𝐶𝑟
𝑄

𝑝′𝑟𝛽−𝛼, 

𝑣((𝐵) ≤ 𝐶𝑟
(𝛽−𝛼−

𝑄

𝑝′)𝑞
. 

 

 

 

Sufficiency. Let ball B be an arbitrary ball on 𝑋 that 

is 𝐵: 𝐵(𝑎, 𝑟) ∈ 𝑋. Assume that𝐵: (𝑎, 𝑟).  and 𝑓 ∈
ℒ 𝑝,𝜙(𝜇). then we write  

𝑓 = 𝑓1 + 𝑓2 ≔ 𝑓𝑋�̅�
+ 𝑓𝑋

�̅�𝐶
, 

‖𝑓1: 𝐿𝑝(𝜇)‖ = (∫ |𝑓(𝑥)|𝑝𝑑𝜇(𝑥)
𝐵

)

1

𝑝
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= 𝜇(𝐵)
1

𝑝𝜙(𝜇(𝐵)
1

𝜙(𝜇(𝐵))
(

1

𝜇(𝐵)
∫ |𝑓(𝑥)|𝑝𝑑𝜇(𝑥)

𝐵

)

1

𝑝

 

≤ 𝜇(𝐵)
1

𝑝𝜙(𝜇(𝐵))‖𝑓: ℒ 𝑝,𝜙(𝑋, 𝜇)‖. 

If 𝑓1 ∈ 𝐿𝑝(𝑋, 𝜇) then, according to Hardy-

Littlewood-Sobolev inequality, we obtain 

1

𝜓(𝜇(𝐵))
(

1

𝜇(𝐵)
∫ |𝐼𝛼𝑓1|𝑞𝑑𝑣(𝑥)

𝐵

)

1

𝑞

≤
𝜇(𝐵)

−
1

𝑞

𝜓(𝜇(𝐵))
‖𝐼𝛼𝑓1: ℒ𝑞(𝑣)‖

≤ 𝐶𝜓(𝜇(𝐵))
−1 1

𝜇(𝐵)
1

𝑞

‖𝑓1: ℒ 𝑝(𝜇)‖

≤ 𝜓(𝜇(𝐵))
−1

𝜇(𝐵)
−

1

𝑞𝜇(𝐵)
1

𝑝𝜙(𝜇(𝐵))‖𝑓: ℒ^(𝑝𝜙)(𝑋, 𝜇)‖ 

≤ 𝐶𝜓(𝜇(𝐵))
−1

𝜇(𝐵)
−

1

𝑞
+

1

𝑝𝜙(𝜇(𝐵))‖𝑓: ℒ 𝑝,𝜙(𝑋, 𝜇)‖ 

≤ 𝐶‖𝑓: ℒ 𝑝,𝜙(𝑋, 𝜇)‖. 

Next, we estimate 𝐼𝛼𝑓2. According to definition 

of 𝐼𝛼 , we have 

|𝐼𝛼𝑓2(𝑥)| ≤ ∫
|𝑓(𝑦)|

𝛿(𝑥, 𝑦)𝛽−𝛼
𝑑𝜇(𝑦)

(2𝐵)𝐶
 

≤ ∫
|𝑓(𝑦)|

𝛿(𝑥, 𝑦)𝛽−𝛼
𝑑𝜇(𝑦)

𝛿(𝑥,𝑦)≥𝑟

 

= ∑ ∫
|𝑓(𝑦)|

𝛿(𝑥, 𝑦)𝛽−𝛼
𝑑𝜇(𝑦)

2𝑘𝑟≤𝛿(𝑥,𝑦)≤2𝑘+1𝑟

∞

𝑘=0

 

≤ ∑
1

(2𝑘𝑟)𝛽−𝛼
∫ |𝑓(𝑦)|𝑑𝜇(𝑦)

𝐵(𝑥,2𝑘+1𝑟)

∞

𝑘=0

 

= ∑(2𝑘𝑟)𝛼 (
1

(2𝑘𝑟)𝛽
∫ |𝑓(𝑦)|𝑑𝜇(𝑦)

𝐵(𝑥,2𝑘+1𝑟)

) .

∞ 

𝑘=0

 

 

Then, using Holder’s inequality, we obtain 

|𝐼𝛼𝑓2(𝑥)| ≤ 𝐶 ∑(2𝑘𝑟)𝛼−𝛽 (∫ |𝑓(𝑦)|𝑝𝑑𝜇(𝑦)
𝐵(𝑥,2𝑘+1𝑟)

)

1

𝑝

(∫ 𝑑𝜇(𝑦)
𝐵(𝑥,2𝑘+1𝑟)

)

1−
1

𝑝
∞

𝑘=0

 

≤ 𝐶 ∑(2𝑘𝑟)𝛼−𝛽𝜙(𝐵(𝑥, 2𝑘+1))
1

𝜙(𝐵(𝑥, 2𝑘+1))
(

1

𝜇(𝐵(𝑥, 2𝑘+1𝑟))
∫ |𝑓(𝑦)|𝑝𝑑𝜇(𝑦)

𝐵(𝑥,2𝑘+1𝑟)

)

1

𝑝
∞

𝑘=0

 

≤ 𝐶‖𝑓: ℒ 𝑝,𝜙(𝜇)‖ ∑ 𝜇

∞

𝑘=0

(𝐵(𝑥, 2𝑘𝑟))
𝛼−𝛽

𝑄 𝜇(𝐵(𝑥, 2𝑘+1))𝜙 (𝜇(𝐵(𝑥, 2𝑘+1))) 

≤ 𝐶‖𝑓: ℒ 𝑝,𝜙(𝜇)‖ ∑ ∫
𝜇(𝐵(𝛼, 𝑡))

𝛼−𝛽

𝑄 𝜇(𝐵(𝛼, 𝑡))𝜙 (𝜇(𝐵(𝛼, 𝑡)))

𝑡
𝑑𝑡

2𝑘+1𝑟

2𝑘𝑟

∞

𝑘=0

 

≤ 𝐶𝜇(𝐵)
𝛼−𝛽

𝑄 𝜇(𝐵)𝜙(𝜇(𝐵)‖𝑓: ℒ 𝑝,𝜙(𝜇)‖). 

 

Hence, according to the hypothesis of the theorem, 

we obtain 

𝑣(𝐵) ≤ 𝐶𝑟
(𝛽−𝛼−

𝑄

𝑝′)𝑞
 and 𝜇(𝐵)

1

𝑝
−

1

𝑞𝜙(𝜇(𝐵)) ≤
(𝜓𝜇(𝐵)). 

Thus, we obtain the following inequality 
 

1

𝜓(𝜇(𝐵))
(

1

𝜇(𝐵)
∫ |𝐼𝛼𝑓2(𝑥)|𝑝𝑑𝑣(𝑥)

𝐵
)

1

𝑞
≤ 𝐶𝜓(𝜇(𝐵))

−1
𝜇(𝐵)

−
1

𝑞𝑣(𝐵)
1

𝑞𝜇(𝐵)
𝛼−𝛽

𝑄 𝜇(𝐵)𝜙(𝜇(𝐵))‖𝑓: ℒ 𝑝,𝜙(𝜇)‖. 

The above result can be written as 

1

𝜓(𝜇(𝐵))
(

1

𝜇(𝐵)
∫ |𝐼𝛼𝑓2(𝑥)|𝑝𝑑𝜇(𝑥)

𝐵
)

1

𝑞
≤ 𝐶‖𝑓: ℒ 𝑝,𝜙‖. 

Following the above results, the next corollary is 

the simple implication of Theorem 3.3. 

Theorem 3.4. Let 𝑋, 𝛿, 𝜇) be a homogeneous metric 

spaces, 1 < 𝑝 < 𝑞 < ∞, 𝛼 ∈ (0,
𝛽

𝑝
), and satisfies Q-

Ahlfors regularity condition. if 𝜙 ∈ (𝐴𝐷𝐹), 𝜙(𝑡) ∈
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(𝐴𝐼𝐹), and 𝑣(𝐵) ≤ 𝐶𝑟
(𝛽−𝛼−

𝑄

𝑝′)𝑞
, for some constant 

𝐶 > 0, that is 𝜇 satisfies the Q-Ahlfors regularity 

condition, and 

∫ 𝜇(𝐵(𝛼, 𝑡))
𝛼−𝛽

𝑄 𝜇(𝐵(𝛼, 𝑡))
𝜙(𝛼,𝑡)

𝑡
𝑑𝑡 ≤

∞

𝑟

𝐶𝜇(𝐵(𝛼, 𝑡))
𝛼−𝛽

𝑄 𝜇(𝐵(𝛼, 𝑡))𝜙(𝛼, 𝑟). 

Then, 𝐼𝛼  is bounded from ℒ 𝑝,𝜙(𝑋, 𝜇) to 

ℒ𝑞,𝜓(𝑋, 𝑣) if and only if 

𝜇(𝐵)
1

𝑝
−

1

𝑞𝜙(𝜇(𝐵)) ≤ (𝜓𝜇(𝐵)) 

When 𝑄 = 𝛽, the above theorem implies the 

following corollary. 

 

Corollary 3.5. Let (𝑋, 𝛿, 𝜇) be a homogeneous 

metric space, 1 < 𝑝 < 𝑞 < ∞ and 𝛼 ∈ (0,
𝛽

𝑝
). If 𝜙 ∈

(𝐴𝐷𝐹), 𝜙(𝑡) ∈ (𝐴𝐼𝐹), and 𝜇(𝐵)
1

𝑝
−

1

𝑞𝜙(𝜇(𝐵)) ≤

(𝜓𝜇(𝐵)), that is 𝜇 satisfies the 𝛽- Ahlfors regularity 

condition, and 

∫ 𝜇(𝐵(𝛼, 𝑡))
𝛼−𝛽

𝛽 𝜇(𝐵(𝛼, 𝑡))
𝜙(𝛼,𝑡)

𝑡
𝑑𝑡 ≤

∞

𝑟

𝐶𝜇(𝐵(𝛼, 𝑡))
𝛼−𝛽

𝛽 𝜇(𝐵(𝛼, 𝑡))𝜙(𝑎, 𝑟). 

Then, 𝐼𝛼  is bounded from ℒ 𝑝,𝜙(𝑋, 𝜇) to ℒ𝑞,𝜓(𝑋, 𝑣) if 

and only if 

𝑣(𝐵) ≤ 𝐶𝜇(𝐵)
𝑞(

1

𝑝
−

𝛼

𝛽
)
. 

 

Corollary 3.6. Let (𝑋, 𝛿, 𝜇) be a homogeneous 

metric space, 1 < 𝑝 < 𝑞 < ∞ and 𝛼 ∈ (0,
𝛽

𝑝
). If 𝜙 ∈

(𝐴𝐷𝐹), 𝜙(𝑡) ∈ (𝐴𝐼𝐹), and, that is 𝜇 satisfies the 𝛽-

Ahlfors regularity condition, and 𝑣(𝐵) ≤

𝐶𝜇(𝐵)
𝑞(

1

𝑝
−

𝛼

𝛽
)
 

∫ 𝜇(𝐵(𝛼, 𝑡))
𝛼−𝛽

𝛽 𝜇(𝐵(𝛼, 𝑡))
𝜙(𝛼,𝑡)

𝑡
𝑑𝑡 ≤

∞

𝑟

𝐶𝜇(𝐵(𝛼, 𝑡))
𝛼−𝛽

𝛽 𝜇(𝐵(𝛼, 𝑡))𝜙(𝑎, 𝑟). 

Then, 𝐼𝛼  is bounded from ℒ 𝑝,𝜙(𝑋, 𝜇) to ℒ𝑞,𝜓(𝑋, 𝑣) if 

and only if 

𝜇(𝐵)
1

𝑝
−

1

𝑞𝜙(𝜇(𝐵)) ≤ (𝜓𝜇(𝐵)). 
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