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Abstract: Many linear hyperbolic equations are applied in sciences, for example, propagation wave and transport 

molecules. When the boundary data is discontinuous, the solution of linear hyperbolic equation is also 

discontinuous. This condition influences in finding an approximate numerical method for its solution. In the 

paper, we focus on the least-squares finite element method to solve linear hyperbolic equation. The linear 

system resulting from the discretization is a symmetric and positive definite system that will be solved using 

minimum residual method. Some numerical experiments are tested to illustrate the validity of the method. 

The numerical result shows that the method can efficiently solve the continuous and discontinuous problem 

of linear hyperbolic equation without oscillation 

1 INTRODUCTION 

We consider the linear hyperbolic equations 

satisfying 

 

∇. (𝐛u) = f, in Ω, 
(1) 

u = g, on Γ−, 
 

where 𝐛 is the convection vector and Γ− is the inflow 

boundary condition defined as follow 

 

Γ− = {𝐱 ∈ ∂Ω, 𝐛(𝐱). 𝐧(𝐱) < 0}, 
 

and Γ+ = 𝜕Ω/Γ−. The linear hyperbolic equation is 

applied in engineering and sciences. The equation is 

called transport or linear advection equation.  

The linear hyperbolic equation was the first 

introduced by Reed and Hill in 1973. The equations 

(1) has a discontinuous solution when the boundary 

data is discontinuous. We need an alternative 

method to signify its condition. Numerical solutions 

for the linear hyperbolic equation have been done 

with various methods, such as SUPG (Burman, 

2010), Galerkin (Bochev and Choi, 2007) and least-

squares finite element methods (De et al., 2004). We 

focus our attention on solution of linear hyperbolic 

equation with the least-squares finite element 

methods.   

The finite element methods have been developed 

by researcher for resolving the equations (1). A 

comparative study SUPG, Galerkin, and least-

squares finite element methods had been done by 

Bochev and Choi in 2007. Based on numerical result 

for discontinuous solution, the least-squares finite 

element method gives a better stability (Bochev and 

Choi, 2007). In 2004, the linear system resulting 

from least-squares finite element method was solved 

by using algebraic multigrid methods. Algebraic 

multigrid methods for elliptic equations are applied 

to linear system from least-squares finite element 

methods without modifications. The result show that 

complexity grows slowly relative to the size of the 

linear system (Deet al., 2004). In 2004, the dual 

least-squares finite element method was used to 

solve linear hyperbolic equations. The formulation 

allows discontinuous in the approximate solution 

and then linear system resulting from dual least-

squares finite element method is solved with 

algebraic multigrid method. Based on the numerical 

result, the algebraic multigrid method is success of 

this solver (Olson, 2004). 

In the paper, we use minimum residual 

(MINRES) method to solve linear system resulting 

from least-squares finite element method. MINRES 

method can resolve large sparse linear system with 

coefficient system is a symmetric and indefinite 

system (Yu-Ling Lai et al., 1997). This method can 

also be applied in symmetric and positive definite 
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system (Elman et al., 2005). In 2017, the simple 

finite element method was used to solve linear 

hyperbolic equation. Then, numerical experiments 

are used to test the flexibility of the method (Mu and 

Ye, 2017).  

We study about the least-squares finite element 

and minimum residual method for resolving the 

equations (1). The numerical simulation was 

conducted with several numerical experiments.   

2 KNOWN RESULT 

2.1 The Finite Element Space 

We start by defining the standard finite element 

space Hs(Ω) for Sobolev space with (. , . )s and 

‖. ‖s, where s ≥ 0. When s = 0, H0(Ω) concur with 

L2(Ω). Let 𝒯h denote a partitioned domain Ω into a 

polygons in two dimensions. In this paper, the finite 

element space used is as follow 

 

Vh = {v ∈ L2(Ω): v|T ∈ Pk(T), ∀T ∈ 𝒯h},  

 

where Pk(T) is the family of polynomials on Twith 

rate no more thank (Mu and Ye, 2017). In this paper, 

we use k = 1. 

2.2 The Minimum Residual Method 

Linear system resulting from discretization is solved 

with minimum residual method. The linear system is 

a symmetric and positive definite coefficient matrix.  

The minimum residual (MINRES) method is the 

Krylov subspace method derived from the Lanczos 

algorithm. The MINRES is applicable to symmetric 

and indefinite system as well as symmetric and 

positive definite system. This method adopts QR 

factorization to solve the tridiagonal matrix from 

Lanczos process. The solution can be obtained by 

performing QR factorization on the tridiagonal 

matrix employing givens rotation. The new rotation 

in each iteration can update QR factorization from 

the previous iteration. Algorithm for the minimum 

residual method solves the linear system A𝐮 = 𝐅 

(Elman et al., 2005). 

 

 

Algorithm 1: The Minimum Residual Method. 

 

𝐳(0) = 𝟎,𝐰(0) = 𝟎,𝐰(1) = 𝟎,𝐮(0) = 𝟎 

Choosetol,compute 𝐳(1) = 𝐅 − A𝐮(0) 

Set γ1 = ‖𝐳
(1)‖ and 𝐫 = 𝐳(1) 

Set η = γ1, s0 = s1 = 0, c0 = c1 = 1 

for j = 1 until to converge 

 𝐳(j) = 𝐳
(j)

γj⁄  

 dj = 〈A𝐳
(j), 𝐳(j)〉 

 𝐳(j+1) = A𝐳(j) − dj𝐳
(j) − γj𝐳

(j−1) (Lanczos 

Process) 

 γj+1 = ‖𝐳
(j+1)‖ 

 α0 = cjdj − cj−1sjγj(Update QR factorization) 

 
α1 = √α0

2 + γj+1
2  

 

 α2 = sjdj + cj−1cjγj  

 α3 = sj−1γj  

 cj+1 =
α0

α1⁄ , sj+1 =
γj+1

α1⁄ (Givens rotation) 

 
𝐰(j+1) =

(𝐳(j) − α3𝐰
(j−1) − α2𝐰

(j))
α1
⁄  

 𝐮(j) = 𝐮(j−1) + cj+1η𝐰
(j+1)  

 η = −sj+1η  

 𝐫 = 𝐅 − A𝐮(j)  

 If ‖𝐫‖ ≤ tol  

 stop  

 end  

end  

 

where 

 

 𝐳(j), j = 1,2,3, …is the Lanczos vectors; 

 cj and sj, j = 1,2,3, … are used to compute 

the next rotation; 

 𝐫 is the residual;   

 𝐮(j), j = 1,2,3, … is the unknown functions; 

 α0, α1, α2, α3 are the scalar in QR 

factorization. 

3 RESULTS AND DISCUSSIONS 

3.1 Discretization Using Least-Squares 
Finite Element Method 

The approximate solution of (1) for uh ∈ Vh is 

 

a(uh, v) = l(v), v ∈ Vh. (2) 

 

Since uh belongs to Vh, it can be written as 

 

uh =∑uiϕi

n

i=1

,  
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where ϕi is the basis function. The finite element 

method is to find the unknown uj satisfying 

 

∑uj

n

j=1

∫ (∇. (𝐛ϕj)) (∇. (𝐛ϕi))dΩ
Ω

  

      = ∫ f(∇. (𝐛ϕi))dΩ
Ω

, i = 1,2, … , n. (3) 

3.2 Computer Implementation 

Let {ϕi}i=1
n  be the basis functions for Vh with n is 

the number of interior nodes. Substitute uh =
∑ uj
n
j=1  and choose basis function v = ϕi, i =

1,2, … , n in equation (2), we obtain the following 

linear system.  

 

∑ujAi,j

n

j=1

= Fi, i = 1,2, … , n.  

 

This method can be summarized in the following 

algorithm: 

 Create a mesh triangular at domain Ω and 

define the space of continuous piecewise 

linear V with basis function {ϕi}i=1
n ;  

 Compute the n × n stiffness matrix A and the 

n × 1 load vector 𝐅 with entries; 

 

Ai,j = ∫ (∇. (𝐛ϕj)) (∇. (𝐛ϕi))dΩ
Ω

,  

 i, j = 1,2, … , n;  

Fi = ∫ f(∇. (𝐛ϕi))dΩ
Ω

, i = 1,2, … , n; 

 

 Set boundary conditions;  

 Solve the linear system A𝐮 = 𝐅; 

 Set 

 

uh =∑uiϕi

n

i=1

. 

3.3 Numerical Result 

In this section, we provide several numerical 

simulations to illustrate our method. The simulation 

divided into two cases, numerical simulation for 

cases with continuous and discontinuous solutions. 

The continuous solution is shown in test 1-4. The 

discontinuous solution is shown in test 5-9. The 

main goal is to verify numerically (3). We follow the 

algorithm in previous section. The numerical 

solution is pure convection, which source terms 
(𝑓 = 0) for test 3-9. The Dirichlet boundary 

conditions are chosen to solve for all experiments. 

The numerical simulations are solved in domain 

Ω = (0,1)2. The left, right, bottom, and top in 

domain Ω are denoted byDL, DR, DB, DT, 
respectively. The linear triangular element is used to 

define the finite element space in all simulations, see 

Figure 1. 

 

 

Figure 1: The linear triangular element. 

The size mesh for domain Ω is estimated to use 

uniform grids of Ω into linear element. We estimate 

uniform grids with h = 2−k for k is positive integers 

between 3 until 7. All numerical experiments are 

similar to the tests that considered in Lin Mu and 

Xie Ye (2017). The numerical results are as follow.  

3.3.1 Experiment 1 

We use 𝐛(1,1), Γ− = DB ∪ DL, and u(x, y) for exact 

solution as follow: 

 

u(x, y) = sin(πx) sin(πy).  

 

The error profile is shown in Table 1.    

Table 1: Error profile for experiment 1. 

h Error in experiment 1 

2−3 1.6000e − 02 

2−4 3.8336e − 03 

2−5 1.0392e − 03 

2−6 2.6089e − 04 

2−7 6.9362e − 05 

 

It can be seen in Table 1 that the numerical result 

has relatively small errors. 

3.3.2 Experiment 2 

We borrow the same case as experiment 1, but 

𝐛(1, −1) and Γ− = DB ∪ DL. The numerical result 
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has relatively small errors. The error profile is 

shown in Table 2.  

Table 2: Error profile for experiment 2. 

h Error in experiment 2 

2−3 1.5397e − 02 

2−4 3.6770e − 03 

2−5 1.0301e − 03 

2−6 2.6139e − 04 

2−7 7.0335e − 05 

3.3.3 Experiment 3 

We use 𝐛(b1, b2) for the convection vector. We 

have the degree cos θ and sin θ with θ = π
6⁄  for b1 

and b2, respectively. u(x, y) for the exact solution is 

as follow: 

u(x, y) =
1

(y − ρx − β)2 + σ
,  

where ρ =
b2

b1
⁄ . We consider β = 0.5 and σ = 0.1. 

The error profile is shown in Table 3. The 

numerical result has relatively small errors. The 

contour plot is shown in Figure 2. 

Table 3: Error profile for experiment 3. 

h Error in experiment 3  

2−3 1.6789e − 01 

2−4 4.4709e − 02 

2−5 1.5174e − 02 

2−6 3.8399e − 03 

2−7 1.0483e − 03 

 

 

Figure 2: The contour plot for experiment 3. 

3.3.4 Experiment 4 

We borrow the same case as experiment 3, but 

u(x, y) is as follow. 

 

u(x, y) =

{
 

 
1

(y − ρx − β)2 + σ
, if y ≥ ρx,

20

7
, if y < ρx.

 

 

The error profile is shown in Table 4. The 

numerical result has relatively small errors. The 

contour plot is plotted in Figure 3. 

Table 4: Error profile for experiment 4. 

h Error in experiment 4 

2−3 1.8099e − 01 

2−4 5.1353e − 02 

2−5 2.2329e − 02 

2−6 1.0020e − 02 

2−7 5.4454e − 03 

 

 

Figure 3: The contour plot for experiment 4. 

3.3.5 Experiment 5 

In the experiment, we use 𝐛(1, 𝛿),Γ− = DL ∪ DB, 
and g(x, y) for the boundary data is 

 

g(x, y) = {
2, in DL,
1, in DB.

  

 

The streamline function used is y = 𝛿x, where 𝛿 =
tan 35∘. 

Our experiment shows that boundary data has a 

profound effect upon the method. Figure 4 shows 

that the numerical solution is free from oscillation. 

Figure 5 and 6 show the contour plot with h =
2−4 and h = 2−5,respectively. As can be studied, the 

numerical solutions on smooth mesh produce a finer 

approximation than numerical solutions on coarse 

meshes. 
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Figure 4: The contour plot for experiment 5. 

 

Figure 5: The contour plot for h = 2−4. 

 

Figure 6: The contour plot for h = 2−5. 

3.3.6 Experiment 6 

This experiment is the same as experiment 5, but 

𝐛(−1, 𝛿), Γ− = DR ∪ DB, and g(x, y) is given as 

follow. 

 

g(x, y) = {
2, in DR,
1, in DB.

  

 

The streamline function used is y = −𝛿x. The 

contour plot is plotted in Figure 7. Again, our 

solution is free from oscillation.  

 

 

Figure 7: The contour plot for experiment 6. 

3.3.7 Experiment 7 

Here 𝐛(−y, x), Γ− = DR ∪ DB, and g(x, y) for the 

boundary data is 

 

g(x, y) =

{
 
 

 
 −1, in DB with x <

43

64
,

1, in DB with x ≥
43

64
,

1, inDR.

  

 

The contour plot is plotted in Figure 8. Figure 8 

shows that the solution is free from oscillation. 

 

 

Figure 8: The contour plot for experiment 7. 

3.3.8 Experiment 8 

In this experiment, we use 𝐛(y, 1 − x), Γ− = DL ∪
DB, and g(x, y) chosen is as follow. 

 

g(x, y) =

{
 
 

 
 1, in DB with x <

21

64
,

−1, in DB with x ≥
21

64
,

1, in DL.

  

 

The numerical solution for experiment 8 that 

shown in Figure 9 shows that the solution is also 

free from oscillation. 
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Figure 9: The contour plot for experiment 8. 

3.3.9 Experiment 9 

In the last experiment, we use 𝐛(y, 0.5 − x) and  

 

g(x, y) =

{
 
 

 
 

0, if x = 0, 0 ≤ y ≤ 1,
0, if y = 1, 0.5 ≤ x ≤ 1,
0, if y = 0, 0 ≤ x ≤ 0.17,

 1, if y = 0, 0.17 ≤ x ≤ 0.33,
0, if y = 0, 0.33 ≤ x < 0.5.

 

 

The contour plot for experiment 9 is plotted in 

Figure 10. The conclusion obtained is the same 

conclusion as the previous experiment. 

 

 

Figure 10: The contour plot for experiment 9. 

4 CONCLUSIONS 

Based on the previous section, it can be concluded 

that the least-squares finite element and minimum 

residual method can efficiently solve the linear 

hyperbolic equation without oscillation. The 

numerical result shows that the numerical error is 

relatively small for continuous problem. In addition, 

the solution is free from oscillation for discontinuous 

problem. 
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