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Abstract: The heat transfer process will be disrupted when a leak occurs. Therefore, we need a method that can be 

used to detect the leak. In this paper, the leak detection in cylindrical-shaped metal chip simulated by give 

the heat disturbances in some positions. We discuss the estimation of heat disturbance position using the 

Kalman filter (KF) and the Ensemble Kalman Filter (EnKF) method where the state-space equation is 

constructed by discretization of the diffusion equation using Forward-Time Central Space Method. We 

divide the radius of this metal chip into 17 grids and simulate the detection of 1–4 disturbances in different 

positions. The simulation result shows that the KF and EnKF method succeed to detect the disturbances. 

However, the EnKF is more accurate than KF. The heat disturbances can be detected more clearly if the 

temperature of disturbance is large enough, especially for detection in the edge of chip (close to inner radius 

and outer radius). In addition, the detection of disturbances location is also affected by the number of grids. 

The more number of grids, the more accurate the position of detection. 

1 INTRODUCTION 

Heat transfer is the process of transferring heat from 

objects that have high temperatures to the objects 

with lower temperatures. The flow of heat is all-

pervasive. There are three modes of heat transfer i.e. 

conduction, convection, and radiation. Conduction is 

one process of heat transfer from one solid to 

another one that has a different temperature. Heat 

convection is transfer of heat in fluid or gases, and 

thermal radiation occurs in a range of 

electromagnetic of energy emission (Lienhard, 

1930). 

One obstacle that can cause resistance to heat 

conduction is the leakage of the conductor media. 

Mathematically, several methods have been 

developed to detect leaks in metals including the 

Kalman filter and its development methods: adaptive 

particle filter (Liu et al., 2005), Extended Kalman 

filter (Emara-Shabaik et al., 2002), and EnKF 

(Apriliani, 2011). 
Inspired by Apriliani (2011), in this study, we 

will detect the heat disturbances and its location in 
the cylindrical-shaped metal chip using the Kalman 

filter method and EnKF. The state-space equation 
will be formed by the result of discretization of the 
diffusion equation using Forward-Time Central 
Space (FTCS) Method. 

2 METHODOLOGY 

According to Carslaw and Jeager (1959), the three 

dimensional of heat equation in cylindrical 

coordinates can be expressed by: 

𝜕𝑣

𝜕𝑡
= 𝑘 (

𝜕2𝑣

𝜕𝑟2 +
1

𝑟

𝜕𝑣

𝜕𝑟
+

1

𝑟2

𝜕2𝑣

𝜕𝜃2 +
𝜕2𝑣

𝜕𝑧2),       (1) 

where v is temperature, t is time, r is radius and k is 

conductivity. If we heat the cylindrical with the axis 

coincides with the z axis, the initial and boundary 

conditions are independent of the coordinates of θ 

and z.  

The steady-state is a condition when several 

process variables such as pressure, temperature, 

location or position do not change with time. With 

this steady-state, a process will be more easily 
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managed and planned. One-dimensional heat 

conduction in a steady-state condition based on 

Equation (1) is  

𝑑𝑣

𝑑𝑟
(𝑟

𝑑𝑣

𝑑𝑟
) = 0,   𝑎 < 𝑟 < 𝑏.              (2) 

The solution for equation (2) with the initial 

conditions and boundaries: 𝑣(𝑟, 0) = 0, 𝑣(𝑎, 𝑡) =
𝑣1 and 𝑣(𝑏, 𝑡) = 𝑣2, 𝑎 < 𝑟 < 𝑏  is 

𝑣 = 𝑣1 + 𝑣2 ln 𝑟,       (3) 

where 𝑣 is temperature. This heat transfer can be 
illustrated in figure 1 and this object called 
cylindrical-shaped metal chip. 

 

Figure 1: The heat transfer in the cylindrical metal chip. 

The FTCS discretization for Equation (2) is  

𝑣𝑖
𝑘+1 = 𝑝𝑣𝑖+1

𝑘 + (1 − 2)𝑣𝑖
𝑘 + 𝑝𝑣𝑖−1

𝑘 ,       (4) 

where 𝑝 = −𝑟
∆𝑟

∆𝑟2 
. The general form of equation (4) 

is  
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Therefore, we can write:

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘.            (5) 

In equation (5), it is assumed that the system is 

completely isolated but in fact there is a disturbance, 

called noise, in the transfer of heat between metal 

pieces and air. Let us denote this noise by 𝑤𝑘. Then 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐸𝑑𝑘 + 𝑤𝑘 ,         (6) 

 

where wk is assumed to be 𝑁(0, 𝑄)
 

distributed. 

Equation (6) is called the equation of state (Kalman, 

1960). The measurement equation is formed from 

𝑧𝑘+1 = 𝐻𝑥𝑘 + 𝜂𝑘,                  (7) 

where k is a matrix represents the disturbance in the 

measurement equation which is assumed to be 

𝑁(0, 𝑅) distributed. From equation (6) and (7) we 

can form the state-space representation.  

A state-space representation is a basic equation 

in Kalman filter. The Kalman filter is an algorithm 

for updating linear projections of this system 

sequentially (Hamilton, 1994). Kalman filters can 

estimate the state of a process by minimizing the 

mean square error. This filter is very resilient in 

several aspects: it can estimate the past state, current 

state, and future state, and can be used on systems 

that contain unknown observations (Tan, 2011). 

There are 2 steps in the Kalman filter algorithm: the 

prediction and the correction step with the initial 

state generated from the normal distribution.  

The Kalman filter algorithm is (Kalman, 1960): 

Initialisation step: 𝑥0
𝑢~𝑁(𝜇0, 𝑃0)   

Prediction Step: 

State: 𝑥𝑘
𝑓

= 𝐴𝑥𝑘−1
𝑢    (8) 

Covariance matrix: 𝑃𝑘
𝑓

= 𝐴𝑃𝑘−1
𝑢 𝐴𝑇 + 𝑄      (9) 

Correction Step: 

State: 𝑥𝑘
𝑢 = 𝑥𝑘

𝑓
+ 𝐾(𝑧𝑘 − 𝐻𝑥𝑘

𝑓
)  (10) 

where Kalman gain 

 𝐾𝑘 = 𝑃𝑘
𝑓

𝐻𝑇(𝐻𝑃𝑘
𝑓

𝐻𝑇 + 𝑅)
−1

  (11) 

Covariance matrix:𝑃𝑘
𝑢 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘

𝑓
  (12) 
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𝑟 = 𝑎 𝑟 = 𝑏 

The generalization of Kalman filter for the non-

linear dynamical system is EnKF which is 

introduced by Evensen (Evensen, 2003). This 

method has been widely used as a sequential data 

assimilation technique. The EnKF algorithm is based 

on state-space representations formulated in 

Equations (6) and (7). 

For the EnKF linear convergent linear system to 

Kalman Filter (Butala et al., 2008, Gland et al., 

2009, Mandel et al., 2009, and Tan, 2011). The basic 

idea in the EnKF algorithm is to obtain a filter that is 

used for large scale on non linear systems. EnKF is 

an implementation of Monte Carlo from Kalman 

Filter for non-linear dynamic systems where the 

initial state is generated using a sample, called an 

ensemble, and the covariance matrix is 

approximated by sample covariance. The EnKF 

simulation is carried out repeatedly and then 

assimilates new data and updates the model 

simultaneously. 

Basically, the equations used in the EnKF 

method are the same with those in the Kalman fiter, 

equation (8) – (12), but, in the EnKF method, the 

initial state is generated by the number of ensembles, 

Nε. The EnKF algorithm is (Evensen, 2003): 

Initialisation step: 

 𝑥0,𝑖
𝑢 ~𝑁(𝜇0, 𝑃0), 𝑖 = 1,2, … , 𝑁𝜀   

Prediction Step: 

State: 𝑥𝑘,𝑖
𝑓

= 𝑓(𝑥𝑘−1,𝑖
𝑢 ),   (13) 

Covariance matrix: 

    𝑃𝑘
𝑓

=
1

𝑁𝜀−1
∑ (𝑥𝑘,𝑖

𝑓
− �̅�𝑘

𝑓
)(𝑥𝑘,𝑖

𝑓
− �̅�𝑘

𝑓
)

𝑇𝑁𝜀
1 ,    (14) 

    where ,

1

N
f f

k k i

i

x x

=

= .  

Correction Step: 

State: 𝑥𝑘,𝑖
𝑢 = 𝑥𝑘,𝑖

𝑓
+ 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘,𝑖

𝑓
)  (15) 

where Kalman gain 

 𝐾𝑘 = 𝑃𝑘
𝑓

𝐻𝑇(𝐻𝑃𝑘
𝑓

𝐻𝑇 + 𝑅𝑘)
−1

,  (16) 

Covariance matrix: 𝑃𝑘
𝑢 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘

𝑓
.  (17) 

Performance of detection of heat disturbance using 

KF and EnKF will be analyzed using the average of 

norm of error covariance matrix. 

3 SIMULATION RESULT AND 

DISCUSSIONS 

In the simulation, we divide the radius of 

cylindrical-shaped metal chip into 17 grids (the tth 

grid is equal to 𝑟 = 𝑎 + 𝑡
𝑏−𝑎

17
 for 𝑡 = 0,1, … ,17) 

with initial and boundary conditions for equation (2) 

are 𝑣(𝑟, 0) = 0, 𝑣(𝑎, 𝑡) = 100 and 𝑣(𝑏, 𝑡) = 25. 

Figure 1 shows the heat transfer in every grid. If we 

give a heat disturbance in that metal chip, then the 

heat transfer will be different from figure 1. 

To evaluate the performance of KF in detecting 

heat disturbances, we will try several heat 

disturbances, i.e. 1 – 4 disturbances with different 

positions. Heat disturbance detection uses KF with 

initial state, 𝑥0
𝑢, generated from 𝑁(50, 0.1) and 

assume that the error variance of data is 𝑅 = 0.1.  

The detection of one heat disturbance is shown in 

Figure 2. Heat disturbance in the top figure is given 

at 300 and the bottom figure is given at 560 on the 

same position i.e. 11th grid.  From Figure 2, it can be 

seen that, in every grid, estimation of correction 

state in KF close to the data (star symbol). 

Therefore, KF is able to detect the disturbance on 

the 11th grid. The heat detection can be identified 

more clearly if the disturbance is large enough (the 

bottom figure) so that the temperature at that 

location will be higher than its surrounding. 

 

Figure 1: The heat transfer in the cylindrical-shaped metal 

chip using 16 grids with initial and boundary conditions 

for equation (2) are 𝑣(𝑟, 0) = 0, 𝑣(𝑎, 𝑡) = 100 and 

𝑣(𝑏, 𝑡) = 25. 

The detection using KF for two heat disturbances 

can be seen on figure 3. On figure 3 (above), we 

give disturbance at 600 on the 10th grid and at 700 on 

the 11th grid. On figure 3 (middle), we give 

disturbance at 600 on the 10th grid and at 300 on the 

11th grid. On figure 3 (bottom), we give disturbance 

at 300 on the 10th grid and at 600 on the 11th grid. 

Figure 3 shows that KF is able to detect these 

disturbances if these disturbances are in high 

temperature (figure above), but it’s rather difficult to 

detect one of these disturbances if one of them is in 

lower temperature (figure middle and bottom). 
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Figure 2: Detection of one heat disturbance using KF. The 

heat disturbance is given on the 11th grid at 300 (top) and 

at 560 (bottom). The greater heat disturbance given, the 

disturbance will be easier to detect since the temperature 

in this area is higher than the others. 

The heat disturbances on the edges of metal chip 

will be easier to detect if the disturbances are on 

higher temperature than the boundaries conditions 

(figure 4 above), but it’s rather difficult to detect if 

one or two of them are in lower temperature (figure 

4 bottom). It can be seen that figure 4 (bottom) is 

almost same as figure 1. So it’s rather difficult to 

detect disturbances in this condition.  

The conditions described for Figure 2-4 also 

apply to the other number of disturbances i.e. 3, 4, 

and 5. Figure 5 show the detection of three, four and 

five disturbances with temperature given are listed 

on table 1. The disturbance detection also depends 

on the number of grids. The more number of grids, 

the more accurate the position of detection but these 

results are not shown in this paper. 

 

 

 

Figure 3: Detection of two disturbances using KF. The 

heat disturbances are given on the 10th grid at 600 and on 

the 11th grid at 700 (above); on the 10th grid at 600 and on 

the 11th grid at 300 (middle); and on the 10th grid at 300 

and on the 11th grid at 600 (bottom). 

Besides using KF, we also use EnKF to detect 

the heat disturbances on the metal chips. We use 

some difference numbers of ensembles (i.e. 𝑁𝜀 = 50, 

75, 100, 150) with initial state are generated from 

𝑁(50, 0.1). The disturbance detection using EnKF 

result has same conditions as in KF and the figure is 

also almost same as Figure 2 – 4. Table 2 shows that 

the more ensemble number, the more accurate the 

estimation of correction state to the real state. 
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Table 1: Temperatures are given on the disturbances on 

figure 5. 

Number of 

disturbances 
Grid Temperature 

Three 

6th 600 

8th 500 

12th 500 

Four 

6th 600 

8th 500 

11th 500 

12th 700 

Five 

2th 900 

6th 600 

8th 500 

11th 500 

12th 700 

 

 

 

Figure 4: Detection of two disturbances on the edges of 

the metal chip using KF. The heat disturbances are given 

on the 1st grid at 1700 and on the 15th grid at 300 (above) 

and on the 1st grid at 700 and on the 15th grid at 200 

(bottom). 

We will use the average of norm of error 

covariance matrix to compare disturbances detection 

using EnKF and KF and focus on one and two 

disturbances. The comparison result can be seen in 

Table 3. It can be seen that the average of norm of 

error covariance matrix in EnKF are smaller than the 

average of norm of error covariance matrix on KF. 

Therefore, for this case the EnKF is more accurate in 

the disturbance detection than KF.  

 

 

 

Figure 5: Detection of three disturbances (above), four 

disturbances (middle) and five disturbances (bottom) using 

KF.  
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Table 2: The average of norm of error covariance matrices 

for different numbers of ensembles in the disturbance 

detection using EnKF. 

 𝑁𝜀 = 50 𝑁𝜀 = 75 𝑁𝜀 = 100 𝑁𝜀 = 150 

Detection one disturbance  

Average of 

Norm of 

Error 

Covariance 

matrices 

0.00635 0.006 0.00582  0.00574 

Detection two disturbances  

Average of 

Norm of 

Error 

Covariance 

matrices 

0.00637 0.006 0.00584 0.00574 

Table 3. Comparison of the average of norm of error 

covariance matrices between EnKF (𝑁𝜀 = 150) and KF in 

detection of one and two disturbances. 

Detection one disturbance 

 
EnKF with 

𝑁𝜀 = 150 
KF 

Average of Norm of 

Error Covariance 

matrices 

0.00567 0.00944 

Detection two disturbances 

 
EnKF with 

𝑁𝜀 = 150 
KF 

Average of Norm of 

Error Covariance 

matrices 

0.00566 0.00944 

4 CONCLUSIONS 

In this study, the KF and EnKF method succeed to 

detect the heat disturbances in cylindrical-shaped 

metal chip. Detection of heat disturbances has been 

carried out for 1–4 disturbances in different 

positions. Based on the average of norm of error 

covariance matrices, the EnKF is more accurate 

detect the disturbance than KF. The heat 

disturbances can be detected more clearly if the 

temperature of disturbance is large enough, 

especially for detection in the edge of chip (close to 

inner radius and outer radius). In addition, the more 

number of grids, the more accurate the position of 

detection.  
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