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Abstract. When pollutants are found in the environment (such as indoor air, land surface, 

rivers, and aquifers), one of the major challenges is to identify the source position(s) or the 

release history of the pollutants.  This issue can be most efficiently addressed by the inverse 

modelling approach, which can direct ly back track the pollutant’s previous location(s) given 

the current location and travel time, o r calculate the pollutant’s release history given the 

current and initial positions.  It is, however, not trivial to develop the inverse model. Most 

importantly, both normal and anomalous transport can occur for pollutants in different 

systems, and how to build inverse models to efficiently  back track these quite different 

transport dynamics using a unified, physically reasonable approach remains a historical 

challenge.  This study develops inverse models for pollutants undergoing either normal 

transport or super-diffusive, anomalous transport using the well-known and universal mass 

conservation law.  Results show that the combination of the mass balance law with reversing 

time and the standard Tayler series expansion leads to the inverse model for normal transport, 

while the mass balance law combined with the Grünwald  approximation of fractional 

derivative builds the inverse model for anomalous transport.  Numerical solvers are also 

developed to approximate the forward and inverse models, so that this study provides 

convenient tools to identify  environmental po llutants  with a wide range of intrinsic 

heterogeneity. 

1. Introduction 
World-wide contamination such as the global and continuous deterioration of fresh water resources is 
jeopardizing our environment, economy, and society. When pollutants are found in the environment, 
one of the major concerns is its original source location if the travel time or age of the pollutants is 
known, or the release history of the pollutants if the source is known [1]. Environmental management 
and contaminant remediation require previous properties of the pollutant, which can be most 
efficiently obtained using the inverse modeling approach [2]. The inverse models can directly back 
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track the position where the pollutants originated, or the backward time when the pollutants first 
entered the system. Although the inverse models can be extremely helpful, it is not trivial to develop 
reliable inverse models. The sensitivity analysis approach proposed by Neupauer and Wilson [2] has 
been regarded as the most reliable method to build the inverse models for Fickian-diffusive pollutants; 
see the review by Liu and Zhai [3] and Cheng and Jia [4]. 

There are however two historical challenges in the sensitivity analysis approach. Firstly, it is a 
complex statistical approach, where the multi-step statistical analysis (i.e., the adjoint probability and 
marginal performance) is difficult to be interpreted physically by most users. Second, it was applied 
mainly for pollutants undergoing normal transport due to Fickian diffusion (where the variance of 
pollutant displacement increases linearly in time) in relatively homogeneous media. Anomalous 
transport with a nonlinear evolution of the variance of pollutant displacement, however, has been 
increasingly documented in real-world systems which can be heterogeneous with multi-scale intrinsic 
heterogeneity, such as rivers, soil, and aquifers; see for example, Ref. [5~7], among many others. 

This study aims at developing a physically sound approach based on the mass conservation 
(which should be valid for both the forward-in-time and backward-in-time processes) to derive 
inverse models for pollutants in both relatively homogeneous and strongly heterogeneous media. 
Particularly, we consider super-diffusive, anomalous transport of pollutants along preferential flow 
paths, such as fractures or interconnected ancient channels in subsurface that can substantially 
enhance the motion of pollutants and therefore pose a high risk to the ecosystem. 

The rest of this work is organized as follows. In Section 2, we apply the mass conservation law 
combined with the standard Taylor series approximation to derive the inverse model for pollutants 
undergoing normal transport. This methodology is then extended for anomalous transport in Section 
3. Section 4 shows the numerical solver for the forward and inverse models with numerical examples 
and validations, and the relationship between the models is then discussed in Section 5. Conclusions 
are finally drawn in Section 6. 

2. Development of inverse model for normal transport 
For simplicity, here we consider the pollutant particle (in forward-in-time) moves or backward 
probability expands in one direction (x). Note that the following methodology can be conveniently 
extended to multiple dimensions, since it is not dimension limited.  

Let Mi be the number of particles (which can carry backward probabilities in the inverse model) in 
cell i, the particle density in this cell is then given by: 

         ,                                                               (1) 

where    [L
3
] is the volume of cell i.  If the particle generally moves from cell i to cell i+1 under 

ambient conditions, then the particle number flux from cell i+1 to cell i per unit area and per unit 
time in the backward-in-time process is [8]: 

   
( 
 
   )   (

 

 
   )    

 
 *(

 

 
   )   (

 

 
   )    +       ,                      (2) 

where the parameter    [dimensionless] represents the difference in probabilities when particles jump 
forward and backward along the x-axis (    );   [L

2
] is the area of the cell normal to the x-axis; R 

[T
-1

] is the number of jumps per unit time for each particle; and    [L] is the cell length. Using the 
following Taylor series approximation 
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where  () denotes the truncation error, and s denotes the backward time. Equation (2) can then be 
written as: 
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When     , it is obviously that (       )        (where   represents the mean drift).  Also, 
according to Fick’s law [8], one has (        )    

    (where D denotes the dispersion 
coefficient).  The above equation becomes: 

        
  

  
  .                                                          (5) 

We assume that the total number of particles remains stable during jumps; or in other words, we 
only consider the transport of conservative pollutants. The conservation of particle mass also means 
the conservation of the number of particles. Substituting equation (5) into the mass conservation 
equation (for backward-in-time processes) 
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we obtain the inverse model for normal transport in relatively homogeneous systems: 
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The above formula is the well-known Kolmogorov backward equation, which is also the inverse 
model of the 2

nd
-order advection-dispersion equation (ADE) derived by Neupauer and Wilson [2] 

using the sensitivity analysis based, complex statistical approach mentioned above. The forward-in-
time ADE model takes the form: 
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Compared to the forward-in-time ADE model (8), the inverse model (7) reverses the flow field 
while keeping the dispersive (backward probability) flux term unchanged (which is called “self-
adjoint” by Neupauer and Wilson [2]) to back track pollutant source or age. The “self-adjoint” 
dispersion in the inverse model (7) is due to the physical interpretation of backward tracking, because 
the backward location (or travel time) probability distribution function (PDF) expands when moving 
backward further, representing the increasing uncertainty for the identification of the pollutant’s 
source position (or age) with an increase backward time s (or the backward travel distance). Here the 
backward location PDF provides the probability for all upstream locations being the source position 
for a given detection of pollutants with a known age. The backward travel time PDF describes the 
probability of a certain time required for the pollutant particle to travel between the detection well 
and its known source location. Both above PDFs can be calculated from the inverse model (7), using 
the particle tracking approach discussed in Section 4. 

3. Development of inverse model for anomalous transport 
The forward-in-time, spatial fractional advection-dispersion equation (fADE) was derived by 
Schumer et al. [8] using the mass conservation approach similar to the one used above, except for the 
standard Taylor series expansion (3) (which is no longer valid for anomalous jumps). The 
generalized Taylor series proposed by Osler [9] was applied by Schumer et al. [8] to replace formula 
(3) and then derive the fADE model (see for example, equation (10) in Schumer et al. [8]): 
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where the operator   
   
  denotes the Reimann-Liouville fractional derivative with order     (j is 

an integer number) and skewness   [dimensionless] (      ), and   [dimensionless] is the 
Gamma function. The second equality in (9) can be used to replace the standard Taylor series 
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expansion (3) and derive the inverse fADE model. However, the above formula (9) is questionable in 
definition [10]. In addition, it cannot be used to capture the important drift displacement of pollutant 
particles (since the second equality in (9) does not contain the first-order term of  (   )), requiring 
the additional and debatable assumption of Galilei variant [11,8].  

Here we fix the above issue by adopting the zero-shifted Grünwald approximation proposed by 
Meerschaert and Tadjeran [12]: 

   (   ) 

  (  ) 
  

 

(  ) 
 ∑   
 
     (        ) ,                                       (10) 

where q [dimensionless] (      ) is the scale index indicating the order of fractional 
differentiation; the symbol       (  )  denotes the (negative) Riemann-Liouville fractional 
derivative (note that the negative fractional derivative is selected here since the inverse process 
exhibits an opposite skewness for the preferential displacement compared to its forward-in-time 
counterpart; see our recent work in [13]); N [dimensionless] is a sufficiently large number of grid 

points in the downstream direction; and     [dimensionless] is the Grünwald weight defined by: 

   
 (   ) 

 (  ) (   )
 .                                                              (11) 

Inserting (11) into (10), and then approximating the negative fractional derivative using the first 
two major terms (note that the contribution from the remaining terms in (10) is negligible due to their 
small weights [14]), we have 
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which can be re-arranged as: 
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The approximation (13) reduces to equation (3) when    , implying that the Grünwald 
approximation (10) can be used to obtain the generalized Taylor series expansion. 

Combining equations (13) and (2), and then using the mass conservation law (6), we obtain the 
inverse model for pollutants undergoing super-diffusive anomalous transport: 
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which leads to the following inverse model if all parameters are constant: 
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 ,                                                     (15) 

where the index       [dimensionless].  
The forward-in-time counterpart of (15) is the following fADE model [13]: 

   

   
     

   

   
   

    

    
 ,                                                     (16) 

which has been widely used to quantify pollutant/material transport in heterogeneous systems 
[15~18]. 

4. Numerical solutions and validations 
The above forward and inverse models can be approximated by a particle-tracking based, fully 
Lagrangian solver. First, for the forward-in-time ADE model (8), we build the following Langevin 
equation, which describes a Markov process for particle tracking: 
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where   ( ) [L] is a differential distance of travel,    ( ) is the current particle location,    [T] is 
a differential unit of time, and   denotes independent normally distributed random variables with 

zero mean and unit variance. Here we assume D is constant; otherwise an additional drift, (
  

  
)  , 

should be added in (17) to account for the impact of the spatial variation of D on particle dynamics. It 

is also noteworthy that here the velocity   can vary in space, although this variation is not needed for 
a one-dimensional model. The following Langevin equation corresponds to the inverse ADE model 
(7): 

  ( )    ( )     √      ,                                             (18) 

where    [T] is the differential unit of time for backward tracking. 
Second, for the forward fADE model (16), the corresponding Langevin equation is: 

  ( )    ( )    *    (
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 ,                         (19) 

where    
    

 denotes a Lévy α-stable random noise with maximally positive skewness, one scale, 
and zero shift [19]. The Langevin equation for the inverse fADE model (15) takes the form: 

  ( )     ( )    *    (
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 ,                      (20) 

where    
    

 denotes a Lévy α-stable random noise with maximally negative skewness, one scale, 
and zero shift [19]. After obtaining the trajectory of each random walker, the particle number density 
provides the solution of each transport model, which can be converted to the backward location and 
travel time PDFs. This is because the spatial distribution (i.e., the resident number density) of 
particles at a given time is related to the backward location PDF, while the flux number density of 
particles at a given control plane is related to the backward travel time PDF [2,13]. 

Eularian solvers can also be developed to approximate the above forward and backward models, 
by extending for example the implicit Eularian finite difference scheme developed by Meerschaert 
and Tadjeran [12]. 

The above numerical solvers were tested extensively. A few examples are shown in Figure 1, 

where the model parameters are as follows:      , v*=1, and D*=5. In Figure 1b, the inverse 2nd-
order ADE (7) is also shown for comparison (whose solution is multiplied by a factor 0.5 for a better 
visual). The four crosses in Figure 1b, which describe four possible (backward) point source 
positions with different probabilities and can be linked with the forward resident concentration 
showing in Figure 1a, illustrate the equivalence between the forward and the backward location PDFs 
for the fADEs. This equivalence confirms for the first time the result in Zhang et al. [20], who found 
that the backward location PDF should be an image of (and therefore should equal) the forward 
location PDF for super-diffusive pollutants when the backward time s and the forward time t have the 
same magnitude. 
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Figure 1. Numerical experiments. (a) Forward location PDF for model (16) at a forward time 
t = 50 for four possible source locations (x0). (b) The corresponding backward location PDF 
for model (15) at time s = 50, from the detection well located as xd = 0. Circles denote the 
Lagrangian solutions (with 10

6
 particles and 10

2
 time steps), and lines denote the Eulerian 

solutions.  See the main text for other model parameters. 
 
In addition, the backward location PDF for normal diffusion distributes symmetrically in space 

(around the most likely source position at               ) (Figure 1b), implying the equal 
probability for pollutant particles to jump downstream and upstream due to Fickian diffusion during 
each motion. The backward location PDF for anomalous diffusion, however, is highly skewed with a 
prolonged tail toward the upstream zones (Figure 1b), revealing the contribution of potential 
preferential flow paths on pollutants that can convey pollutant particles from a long distance 
upstream in a short time. 

5. Discussion 
The forward/backward models for anomalous transport can be reduced to the models for normal 

transport. For example, when     (representing the end member of the media, which is the 
homogeneous medium), the inverse model (14) for heterogeneous media reduces to model (7) for the 

relatively homogeneous media. In addition, when    , the forward model (16) reduces to the 
classical ADE model (8) with constant parameters. Hence, the forward/backward models for 
anomalous transport contain the forward/backward ADE models as special cases. “Normal” transport, 
therefore, might be regarded as an end member of anomalous transport. Or in other words, all real-
world systems are heterogeneous (note that strictly speaking, there is no absolutely homogeneous 
system in nature), and the “homogeneous” system might just be an ideal case with a negligible 
degree of heterogeneity [21]. 

It is also noteworthy that the Langevin equation for the forward/backward anomalous transport 

cannot be directly linked to those for normal transport. For example, in equation (19), although the  -

stable random variable    
    
 (  )    (which is on the same order as √   in equation (17) when 

   ), the  -stable Lévy motion described by (19) has a different scaling factor ((  )   ) than that 

(√   ) in the Brownian motion in (17). This discrepancy is simply due to the fact that a standard 
stable with     is not standard normal [22]. Numerical experiments (not shown here) do confirm 

that the solution of (19) (or (20)) with     is similar to (17) (or (18)), as expected. 

6. Conclusions 
Long-term environmental management, protection, and remediation require the previous properties 
of pollutants detected in the natural media (such as air, rivers, ocean, land slope, soil, and aquifers), 
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including for example the pollutant source locations and the release time, which can be quantified 
mathematically by the backward location probability density function and the backward travel time 
probability density function, respectively. Both PDFs can be obtained conveniently and reliably by 
solving the appropriate inverse model, whose derivation however remains a challenge. Transport 
process for pollutants can also exhibit either normal behaviour (in ideal, homogeneous media) or 
anomalous behaviour (in heterogeneous media). There is lack of a physically clear method that can 
build inverse models for a wide range of transport behaviours , which motivated this study. Three 
major conclusions are drawn from this work. 

First, the universal mass conversation law, when combined with the appropriate Taylor series 
expansion, can build the inverse models for both normal and anomalous transport. The standard 
Taylor series expansion leads to the inverse model for normal transport following the classical 2

nd
-

order advection-dispersion equation, while a corrected, generalized Taylor series expansion (owning 
to the Grünwald approximation) is needed to derive the inverse counterpart for the fractional 
advection-dispersion equation model that has been widely used by hydrologists to quantify super-
diffusive anomalous transport in natural geological deposits.  

Second, cautions are needed when deriving the inverse models using the mass conversation law. 
The time needs to be reversed, and the dispersive jumps of particles also need to be skewed to the 
opposite direction if the jumping probability along the downstream and upstream directions is no 
longer symmetric. The spatial direction, however, remains unchanged, since the drift is now reversed. 

Third, a particle-tracking based Lagrangian solver is developed and validated to approximate all 
the forward and inverse models. Hence, this study may provide convenient tools to identify 
environmental pollutants. Real-world applications will be conducted to check the feasibility of the 
proposed technique in a future study. 
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