
Best Practice-based Evaluation of Software Engineering Tool Support:
Collaborative Tool Support for Design, Data Modeling, Specification,

and Automated Testing of Service Interfaces

Fabian Ohler1 and Karl-Heinz Krempels1,2

1Fraunhofer Institute for Applied Information Technology FIT, Aachen, Germany
2Information Systems, RWTH Aachen University, Aachen, Germany

Keywords: Software Engineering Collaboration, Service Interface Specification, Service Interface Interaction Design,
Tool Support Evaluation, Software Engineering Tool Support.

Abstract: Especially in complex software development projects, involving various actors and interaction interdependen-
cies, the design of service interfaces is crucially important. In this work, a structured approach to support the
design, specification and documentation of service interface standards is presented. To do so, we refer to a
complex use case, dealing with the integration of multiple mobility services on a single platform. This ende-
avor requires the development of a large number of independently usable service interface standards which
adhere to a multitude of quality aspects. A structured approach is required to speed up and simplify deve-
lopment and also to enable synergies between these service interfaces. In a previous work, we performed a
requirements analysis to identify important aspects and shortcomings of the current development process and
to elicit potential improvements. Starting with a first implementation of collaborative tool support for ser-
vice interface development, we conducted a best practice-based evaluation with experts of the Association of
German Transport Companies (VDV). In this paper, we want to present the results of this focus group-based
evaluation and discuss their implications for the envisaged tool support for collaborative service interface
development (design, data modeling, specification, and automated testing).

1 INTRODUCTION

Software engineering projects involve highly coope-
rative tasks during every project phase (Kusumasari
et al., 2011; Inayat et al., 2017). Over the years, a
lot of approaches have surfaced to support these tasks
in different ways ranging from traceability over awa-
reness to assistance during merges of parallel work
(Whitehead, 2007). A general trend can be obser-
ved, pushing a lot of applications towards support
for cooperation (Dalmau et al., 2000). This implica-
tes additional conceptual challenges to guarantee that
user expectations regarding usability of the software
are met (Garrido et al., 2000).

An intermodal personal mobility platform allows
travelers to query, book, use and pay any combina-
tion of mobility services (Beutel et al., 2016; Beutel
et al., 2018). This might include, but is not limited to
public transportation, vehicle rental services, vehicles
sharing services, parking, charging (of electric vehi-
cles), ride sharing, etc. To simplify taking part on
such a platform and foster innovation, open and stan-

dardized access is required (Beutel et al., 2014). This
can be achieved by supplying formal and comprehen-
sive design documents, specifications and documen-
tation for the respective service interfaces and appli-
cation program interfaces (APIs). As a large number
of such artifacts is required, we ought to simplify and
speed up the creation process by providing integra-
ted support to all involved stakeholders. As a first
step, interviews with domain experts to understand
the current process for developing service interfaces,
e.g., which phases it is composed of, which tools are
used and so on, have been conducted. Furthermore,
we identified both benefits and shortcomings to elicit
potential areas of improvement. These findings were
discussed in (Ohler et al., 2018).

On the basis of these insights, we are developing
an information system that supports service interface
development with respect to design, data modeling,
specification, and automated testing. It focuses on
intensified collaboration and promotes a stronger in-
tegration to avoid diverging artifacts. Furthermore
we aim at implementing features missing in available

348
Ohler, F. and Krempels, K-H.
Best Practice-based Evaluation of Software Engineering Tool Support: Collaborative Tool Support for Design, Data Modeling, Specification, and Automated Testing of Service Interfaces.
DOI: 10.5220/0007227903480355
In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST 2018), pages 348-355
ISBN: 978-989-758-324-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



tools that were identified as relevant in this context.
Starting with a first implementation of the develo-

ped tool support based on the identified requirements,
we conducted a best practice-based evaluation with
experts of the Association of German Transport Com-
panies (VDV). In this paper, we want to present the
results of this focus group-based evaluation and dis-
cuss their implications for the envisaged tool support
for collaborative service interface development.

A short overview over the requirements analysis
proposed in (Ohler et al., 2018) is given in Section 2.
For these requirements, we developed a prototype,
whose implementation is discussed in Section 3. In
this paper, we discuss the best practice-based evalu-
ation of the usability, feature coverage and fitness of
our approach. We introduce the evaluation method in
Section 4 and present the results in Section 5. In clo-
sing, we then conclude with a discussion in Section 6
and an outlook in Section 7.

2 REQUIREMENTS FOR TOOL
SUPPORT FOR SERVICE
INTERFACE DEVELOPMENT

The traditional service interface development process
leads to the highest rated problem constituting the se-
paration of service interface specification, data mo-
dels and test tools as identified by (Ohler et al., 2018).
Additional problems with high impact include the
lacking central availability of latest versions of the ar-
tifacts and problems while merging documents after
parallel work.

Thus, the core derived requirements comprise the
following two:

1. integrated tool support covering all aspects that
were previously scattered over different tools

2. support for cooperative and parallel editing

These requirements also promise to have the hig-
hest impact on the architecture of the tool and promise
the largest improvements for users of the tool. Many
further requirements were identified concerning spe-
cification and documentation functionalities, support
for artifacts of all project phases, etc. For an early
evaluation, we decided to focus on the protocol de-
sign phase that includes the actual data type specifi-
cation and documentation. Therefore, additional re-
quirements were included:

• support for XML / XML Schema for the data type
specification

• export functionality to docx format corresponding
to VDV formatting styles

Web-based AppWeb-based App

Application Service Engine

Synchronization 
Backend

User 
Management

Template 
Management

docx / PDF 
Generator

Database

Web-based App

Synchronization 
Client

Application
Runtime

Static Content 
Provider

Authentication 
Provider

Figure 1: System architecture diagram of the web-based in-
formation system providing tool support for service inter-
face development.

• multilingualism

• commenting of elements

• support for rich-text content editing

Another important requirement we are not yet im-
plemented, but considered in the system architecture
design approach, is the aspect of supporting testing
through automation based on the information speci-
fied using the tool.

3 IMPLEMENTATION

The evaluated application is a web application that
runs in the browser. The server hosting the website
also offers a service to synchronize the data between
the clients using Yjs1 and a service to generate docx
and PDF documents. The generated documents con-
tain the entire documentation of the service interface
development project and the given data type definiti-
ons rendered as tables. A sketch of the system archi-
tecture is shown in Figure 1 and a screenshot of the
user interface is shown in Figure 2.

The application aims to integrate all aspects of
a service interface documentation and specification
in one model and generate the artifacts needed ba-
sed on this information. At the time of the evalu-
ation, it supports the documentation and specifica-
tion of data types, functions, services and additio-
nal project documentation. Data types can be spe-
cified and documented using the XML Schema Lan-
guage. Data types, functions and services can be do-
cumented and further chapters of the project docu-
mentation can be written using rich text (based on
Quill2) in multiple languages. Additionally, functi-
ons can be grouped into services and their interaction
(request and response) messages (defined in the XML

1http://y-js.org
2https://quilljs.com

Best Practice-based Evaluation of Software Engineering Tool Support: Collaborative Tool Support for Design, Data Modeling,
Specification, and Automated Testing of Service Interfaces

349



Figure 2: Screenshot of the user interface of the evaluated tool showing a simple demonstration project.

Schema part) can be linked. All these concepts (in-
cluding the comments themselves) can be annotated
with comments. Every aspect can be edited collabo-
ratively in near real-time3. The service interface do-
cumented and specified this way can be exported to a
docx document formatted according to the rules of the
Association of German Transport Companies (VDV).
This layout template is structured as follows: It starts
with introduction chapters describing the goal and in-
volved entities. Subsequently, possible common data
types and the services are described in separate chap-
ters. Each of the service chapters contains the corre-
sponding functions, which in turn contain their cor-
responding data type. However, the layout template
can be replaced to match the specifications of other
standard setting bodies or the like. The user interface
offers a preview functionality showing a PDF export
of the same document (with some shortcomings). The
XML Schema defined using the tool can also be do-
wnloaded.

Aside from UML modeling aspects and further re-
quirements engineering artifacts, the application thus
presents at least partial solutions for the core require-
ments derived in (Ohler et al., 2018).

3There are no timing guarantees, since messages are sent
through the Internet and the systems involved are not assu-
med to run real-time operating systems.

4 FOCUS GROUP

An increasingly popular method to gather qualitative
feedback is to host one or more focus groups (Green-
baum, 1999). A focus group comprises a small group,
often between 6 and 12 people (Longhurst, 2016),
hosted by a trained moderator. It is often advisable
to include exercises (Colucci, 2007) as proper way to
approach the participants and to steer the focus on the
target area.

“Focus groups are useful when it comes to in-
vestigating what participants think, but they
excel at uncovering why participants think as
they do.” (Morgan, 1996)

Since we are gathering feedback at an early stage and
the software is still in an experimental state, we want
to make sure, that we are able to dig deeper in case
of unclear answers so that we can draw the right con-
clusions from the feedback. Thus, we deem the focus
group method as appropriate to gather feedback in our
current situation.

The applied methodology is now shortly descri-
bed. The focus group was conducted with seven pro-
ject members of an ongoing research project in the
context of information systems for public transporta-
tion. Six of them were male, one of them female.
The test persons were experienced in the context of
service interface development and public transporta-
tion; many of them had more than ten years of ex-
perience in this area. The focus group was led by a

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

350



moderator and written notes were taken by a separate
transcript writer. Additionally, the focus group was
recorded on audiotape. It was held in a closed room of
a university building and all participants were on site.
The event took 110 minutes, starting with a 20 mi-
nute introduction, followed by 25 minutes of hands-
on exercises, and concluded by a 65 minute group dis-
cussion. The introduction presented the methodology
and goal of the focus group and demonstrated how to
use the application described above. At its end, exe-
rcises were given to the test persons that were to be
solved using the application. The test persons 5, 6
and 7 decided to work in a group using only one com-
puter, the others worked by themselves. Thus, five
different exercises were worked on.

For all exercises, a new function was to be added
to an existing service. For this new function, the cor-
responding data types were to be specified. At least
one of the concepts should be documented (multilin-
gually, if applicable). The results were to be contained
in the generated document at the correct position.

The expected tasks involved in dealing with such
an exercise were the following:

• Users had to create the function and assign it to
the correct service.

• They had to create the data types for the request
and the response of the function they were crea-
ting and link them with the function.

• For that, they had to define the data types using
the XML Schema editor.

• They were free to choose whether to document
data types within the XML Schema editor (in
plain text) or to document their function or ser-
vice using rich text.

• In case they did not link their function to a service,
it would not appear in the generated document.

• Failing to use the data types for the function re-
quest or response element would lead to the defi-
ned data types being listed in the “common data
types” section of the generated document.

• They therefore had to check that their work actu-
ally appeared in the document as expected.

During the hands-on exercise the moderator assis-
ted the test persons in case of questions or problems.
All test persons succeeded in completing their tasks.
The subsequent group discussion was structured al-
ong the requirements tackled and an additional part
for further feedback. This is also reflected in the struc-
ture of the section below.

5 RESULTS

The presentation of results in the context of qualita-
tive content analysis includes categorization of the re-
sults (Mayring, 2014). These are given together with
an overview over the feedback in Table 1. The citati-
ons given below were translated retrospectively.

5.1 Integrated Tool Support

Usability Rating. The usability was rated as intui-
tive.
The way we structured the information (into ser-
vices, functions, data types) was deemed challen-
ging by some test persons. The information about
a service, its functions and their data types should
be represented more closely together. It was seen
as a new kind of information fragmentation – ex-
actly the problem we were trying to solve – in the
eyes of some test persons.

Feature Coverage. Test persons wanted to be able to
navigate between interconnected aspects more ea-
sily, e.g., from a function to its request data type
definition.

Approach Fitness. The approach towards the inte-
gration of aspects that were previously scattered
over several tools was found to be suitable.

5.2 Collaboration

Usability Rating. Some test persons had problems
finding their currently relevant aspects in the gro-
wing lists of functions, XML elements etc.
The visible portion of the project scrolled away
in case someone else inserted content further up,
which disrupted the interactions.
New content was always appended at the end of
lists hindering information locality of related con-
cepts.
For newly created functions, their ownership was
unclear, since they were all named “new function”
until users renamed them.

Feature Coverage. The test persons wanted to be
able to manually set the focus to the concepts they
were about to work on, e.g., by filtering or collaps-
ing unrelated concepts.

Approach Fitness. Overall, the group agreed that
the way we tackled the collaboration fits the needs
and is superior to using git4 (or similar tools) as a
foundation.

4https://git-scm.com

Best Practice-based Evaluation of Software Engineering Tool Support: Collaborative Tool Support for Design, Data Modeling,
Specification, and Automated Testing of Service Interfaces

351



Table 1: Feedback Overview.

Usability Rating Functional Coverage Fitness of Approach

Tool Integration + + ++
Collaboration − + ++

XML Schema Support −− −− +
Docx Export ++ ++ ++

Multilingual Support + ++ ++
Comments + + +

Rich-Text Editing ++ ++ ++

++ very positive, + rather positive, − rather negative, −− very negative

“I consider the problems to be marginal com-
pared to the time and effort necessary to merge
two different versions.” (Test Person 4)

“I regard the benefits of collaborating in near
real-time as more important for the practical
use cases than the disadvantages that might
occur when two people actually work toget-
her in an unsynchronized way.” (Test Person
3)

5.3 XML Schema Support

Usability Rating. Test persons, who usually use
graphical notations of XML Schema, were not
sufficiently familiar with the actual syntax and
found the list of suggestions as not fitting for
them.
The part of the suggestion list containing attribu-
tes was not recognized by all test persons.
Some test persons did not figure out how to delete
attributes.

Feature Coverage. Some of the test persons asked
for graphical editing of XML Schema documents
(as possible e.g. in Altova XMLSpy5).
Furthermore, validation of the XML Schema file
was requested.
Some test persons wanted for a mechanism to pre-
vent the accidental deletion of a node including its
children, such as a confirmation dialog.
Moreover, test persons were missing auto-
completion features, e.g., when specifying the
type of an element.
The group requested the possibility to import
XML Schema files edited with external tools into
the XML Schema editor to overcome the afore-
mentioned problems.
Some test persons asked for a way to spread the
data types definitions over several XML Schema
files to increase lucidity.
Additionally, the possibility of including or im-

5https://www.altova.com/xmlspy-xml-editor

porting XML Schema documents from other pro-
jects was seen as important.
A further request was made for an experimenta-
tion feature, that lets you revert your changes in
case the experiment goes wrong while respecting
changes from other users.

Approach Fitness. Our support for the creation and
editing of XML Schema documents was not re-
garded as sufficient in its current state.

5.4 Docx Export

Usability Rating. No problems were mentioned re-
garding the usability.

Feature Coverage. The automatic generation of
cross references was seen as “incredible help”
(Test Person 3) and as a “huge step forward” (Test
Person 3).
Some test persons wanted to be able to reconstruct
which parts of the document were changed after
downloading it from the tool.

Approach Fitness. The generated docx document
containing the documentation and the definitions
modeled using the tool was rated positively.

5.5 Multilingual Support

Usability Rating. It was not made sufficiently clear
to the test persons, that the layout template of the
target standard setting body (VDV) only included
the English documentation on function and data
type level, while including the German and the
English documentation on project and service le-
vel.

Feature Coverage. Test persons asked to prevent the
user from writing text that will not get included in
the generated document.
After an explicit inquiry by the moderator, the
group found that allowing a side-by-side editing
of texts in two different languages would be supe-
rior compared to the current way, where the user

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

352



only sees the text in one language and changes the
language using a flag icon.

Approach Fitness. Despite the mentioned issues,
the approach was rated positively.

5.6 Comments

Usability Rating. Some test persons expected to
have their comments appear in the generated do-
cument, which was not the case (no request was
made to change this behavior).
The fact that comments have to be submitted ex-
plicitly was perceived as a break in the usage pat-
tern compared to the rest of the tool.

Feature Coverage. The test persons requested that
there should be a hint elaborating that comments
have to be submitted explicitly.
It should easily be visible whether there are (new
or any at all) comments for project elements.
Additionally, it was suggested that one should be
able to classify a comment as a bug, problem,
praise, information, et cetera.

Approach Fitness. The approach was well received.

5.7 Rich-Text Editing

Usability Rating. No problems were mentioned re-
garding the usability.

Feature Coverage. Some test persons asked for a
mechanism to prevent accidental changes to texts
written by other people.

Approach Fitness. The approach was well received.

5.8 General Feedback

Usability Rating. The PDF preview windows refres-
hed and scrolled to the beginning too often.
Test persons had to search for their own content
and thus couldn’t benefit from it.

Feature Coverage. It was requested that the PDF
preview should jump to the position that the user
just edited.
Furthermore, there should be a mode switch be-
tween continuously refreshing and manually re-
freshing the PDF preview.
Test persons asked for the integration of a chat fe-
ature.

Employing the usability problem metrics and the
rating scale from (Nielsen, 1993), Table 2 gives an
overview over the identified usability problems and
their severity.

Table 2: Overview over the usability problems and their se-
verity rating.

Usability Problem Severity

Integrated Tool Support
Information fragmentation 3

Collaboration
Finding relevant parts 2
Scrolling away 3
“New function” ownership 1

XML Schema Support
Insufficiency of suggestion list for
users accustomed to graphical notation

3

“Add attributes” not found 2
Could not delete attributes 4

Multilingual Support
Template specifics 2

Comments
Comments do not appear in document 1
Comments have to be submitted 2

General Feedback
PDF preview refreshes too often 1
PDF preview does not scroll to change 1

Rating scale taken from (Nielsen, 1993):

0 I don’t agree that this is a usability problem at all

1 Cosmetic problem only: need not be fixed unless extra
time is available on project

2 Minor usability problem: fixing this should be given
low priority

3 Major usability problem: important to fix, so should be
given high priority

4 Usability catastrophe: imperative to fix this before pro-
duct can be released

6 DISCUSSION

The test persons discovered a lot of relevant issues
and asked for reasonable additional features, especi-
ally in the context of XML Schema support. One
problematic request was to be able to edit the XML
Schema with external tools and then merge the results
back into the tool. This was mentioned for two re-
asons: Firstly, as a short term solution to overcome
the other missing features of the tool. Secondly, to
be able to do experiments and import the changes in
case of success or discard otherwise (reverting the in-
formation in the tool would possibly also revert chan-
ges made by others concurrently). We consider this to
be problematic, since the tool would lose a large part
of its cooperative aspect. The visibility and accessibi-
lity of current versions of the artifacts would then be

Best Practice-based Evaluation of Software Engineering Tool Support: Collaborative Tool Support for Design, Data Modeling,
Specification, and Automated Testing of Service Interfaces

353



dependent on the discipline of the editing person. Du-
ring the group discussion, this was already considered
to be a double-edged sword:

“How to offer the benefits [of being able to
modify project parts externally] without ope-
ning the floodgates to abuse, I don’t know. I
think, at this point we are on the horns of di-
lemma.” (Test Person 3)

It could, however, be possible to implement the expe-
rimentation feature inside the tool, such that one can
do experiments and, in case of failure, discard own
changes up to a specific point without interfering with
foreign changes. Yet, this approach would reach its
limits as soon as another user either explicitly built
upon one’s changes or implicitly relied on an artifact
in its changed state.

Looking at the feedback for the XML Schema
support, the negative scores in Table 1 are compre-
hensible. However, the test persons did not mention
that a lot of problems were implicitly prevented by
the DOM-based approach that is compatible with the
cooperative near real-time editing aspect. One impor-
tant benefit of this approach is that the content of the
XML Schema editor contains a valid XML document
at all times preventing, e.g., that there are opening
tags without their closing counter part or only parti-
ally written tags such as “<element” missing the trai-
ling “>”. This way, it is much easier to parse the do-
cument and, e.g., present users a list of elements de-
fined in the XML Schema editor especially in case of
parallel work. The interactions with the editor more
easily produce meaningful deltas (e.g., node added)
than in the situation of a text editor with XML con-
tent, where deltas would be character insertions or de-
letions. This promises to have beneficial effects on the
synchronization layer. Additionally, combining this
approach with a graphical editing mode seems techni-
cally feasible. Thus, we consider the approach valid
even though there still is a lot of work to do.

To ease the new information fragmentation pro-
blem we will try to let the users determine the struc-
ture of the result document by mirroring it in the pro-
ject structure and thus make it easier for users to see
the connections between services, functions and data
types.

7 CONCLUSIONS, CURRENT
WORK AND OUTLOOK

We presented the results of a focus group evaluating
a first implementation of integrated tool support for
service interface development projects. This evalua-

tion is part of a development project towards a stron-
ger integration and intensified collaborative tool sup-
port for the design, data modeling, specification, and
automated testing of service interfaces. The overall
feedback, especially concerning the chosen approach,
was very positive. This is also reflected in the fact that
we are already getting inquiries from project partners,
VDV working groups and others showing interest in
using the tool. Thus, we are currently remediating
the issues identified, many of which are expected to
be resolvable short-term. We are looking forward to
deploy and evaluate the tool in a real-world service in-
terface development project with the aforementioned
partners. Furthermore, we are working on extending
the type of renderings we can generate with the tool.
These include generated beans, generated communi-
cation adapters, generated test templates or even test
cases.

A lot of the requirements we derived in (Ohler
et al., 2018) are not yet satisfied in the current state of
the tool. Additional requirements have emerged du-
ring the focus group and are expected to surface du-
ring further evaluation steps. Finding solutions to in-
tegrate these into the tool will constitute future work.

ACKNOWLEDGEMENTS

This work was partially funded by the German Fe-
deral Ministry of Transport and Digital Infrastructure
(BMVI) for the project “Digitalisierte Mobilität – die
Offene Mobilitätsplattform” (19E16007B).

REFERENCES

Beutel, M. C., Gkay, S., Jakobs, E.-M., Jarke, M., Ka-
sugai, K., Krempels, K.-H., Ohler, F., Samsel, C.,
Schwinger, F., Terwelp, C., Thulke, D., Vogelsang,
S., and Ziefle, M. (2018). Information system deve-
lopment for seamless mobility. In 7th International
Conference on Smart Cities and Green ICT Systems,
SMARTGREENS 2018, and 4th International Confe-
rence on Vehicle Technology and Intelligent Transport
Systems, VEHITS 2018, Funchal, Portugal, 2018, Re-
vised Selected Papers. M. Helfert and C. Klein and B.
Donnellan and O. Gusikhin and A. Pascoal.

Beutel, M. C., Gökay, S., Kluth, W., Krempels, K., Samsel,
C., and Terwelp, C. (2014). Product oriented integra-
tion of heterogeneous mobility services. In 17th In-
ternational IEEE Conference on Intelligent Transpor-
tation Systems, ITSC 2014, Qingdao, China, October
8-11, 2014, pages 1529–1534.

Beutel, M. C., Gökay, S., Kluth, W., Krempels, K.-H.,
Ohler, F., Samsel, C., Terwelp, C., and Wiederhold,

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

354



M. (2016). Information integration for advanced tra-
vel information systems. Journal of Traffic and Trans-
portation Engineering, 4(4):177–185.

Colucci, E. (2007). “Focus groups can be fun”: The use of
activity-oriented questions in focus group discussions.
Qualitative Health Research, 17(10):1422–1433.

Dalmau, M., Aniorté, P., and Roose, P. (2000). A met-
hod for designing cooperative distributed applicati-
ons. In Proceedings of the 4th International Con-
ference on Designing Cooperative Systems, COOP
2000, Sophia-Antipolis, France, May 23-26, 2000, pa-
ges 369–384.

Garrido, J. L., Gea, M., Gutiérrez, F. L., and Padilla, N.
(2000). Designing co-operative systems for human
collaboration. In Proceedings of the 4th Internati-
onal Conference on Designing Cooperative Systems,
COOP 2000, Sophia-Antipolis, France, May 23-26,
2000, pages 399–410.

Greenbaum, T. L. (1999). Moderating focus groups: A
practical guide for group facilitation. SAGE Publi-
cations.

Inayat, I., Marczak, S., Salim, S. S., and Damian, D. (2017).
Patterns of collaboration driven by requirements in
agile software development teams. In Grünbacher,
P. and Perini, A., editors, Requirements Engineer-
ing: Foundation for Software Quality, pages 131–147,
Cham. Springer International Publishing.

Kusumasari, T. F., Supriana, I., Surendro, K., and Sastra-
mihardja, H. (2011). Collaboration model of software
development. In Syaichu-Rohman, A., Hamdani, D.,
Akbar, S., Adiprawita, W., Razali, R., and Sahari, N.,
editors, International Conference on Electrical Engi-
neering and Informatics, ICEEI 2011, Bandung, In-
donesia, 17-19 July, 2011, pages 1–6. IEEE.

Longhurst, R. (2016). Semi-structured interviews and focus
groups. In Key Methods in Geography, pages 143–
156.

Mayring, P. (2014). Qualitative content analysis: theore-
tical foundation, basic procedures and software solu-
tion.

Morgan, D. L. (1996). Focus groups as qualitative research,
volume 16. SAGE Publications.

Nielsen, J. (1993). Usability Engineering. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

Ohler, F., Beutel, M. C., Gökay, S., Samsel, C., and Krem-
pels, K. (2018). A structured approach to support col-
laborative design, specification and documentation of
communication protocols. In Proceedings of the 13th
International Conference on Evaluation of Novel Ap-
proaches to Software Engineering, ENASE 2018, Fun-
chal, Madeira, Portugal, March 23-24, 2018., pages
367–375.

Whitehead, J. (2007). Collaboration in software engineer-
ing: A roadmap. In Briand, L. C. and Wolf, A. L., edi-
tors, International Conference on Software Engineer-
ing, ISCE 2007, Workshop on the Future of Software
Engineering, FOSE 2007, May 23-25, 2007, Minnea-
polis, MN, USA, pages 214–225. IEEE Computer So-
ciety.

Best Practice-based Evaluation of Software Engineering Tool Support: Collaborative Tool Support for Design, Data Modeling,
Specification, and Automated Testing of Service Interfaces

355


