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Abstract: Webpage fingerprinting allows an adversary to infer the webpages visited by an end user over an encrypted
channel by means of network traffic analysis. If such techniques are applied to websites that contain user
profiles (e.g. booking platforms), they can be used for personal identification and pose a clear privacy threat.
In this paper, a novel HTTPS webpage fingerprinting method - IUPTIS - is presented, which accomplishes
precisely this, through identification and analysis of unique image sequences. It improves upon previous work
by being able to fingerprint webpages containing dynamic rather than just static content, making it applicable
to e.g. social network pages as well. At the same time, it is not hindered by the presence of caching and
does not require knowledge of the specific browser being used. Several accuracy-increasing parameters are
integrated that can be tuned according to the specifics of the adversary model and targeted online platform. To
quantify the real-world applicability of the IUPTIS method, experiments have been conducted on two popular
online platforms. Favorable results were achieved, with a F1 scores between of 82% and 98%, depending on
the parameters used. This makes the method practically viable as a means for personal identification.

1 INTRODUCTION

Historically, it was presumed that encryption of data
communication was the ultimate protection of sensi-
tive information against malicious adversaries. Un-
fortunately, in the late 90s, pioneers have shown that
encrypted tunnels such as SSL can leak information
that is critical for the construction of fingerprinting
techniques, such as packet sizes and timing (Cheng
et al., 1998; Sun et al., 2002). However, attacks based
on these techniques were not feasible on a large scale.
In late 2000, social networks have grown in popula-
rity which quickly led to a collection of personal in-
formation given by the end users themselves. Due to
the strict regulations in recent years (such as GDPR
(European Commission, 2018)) that have been put
in place, the method of extracting personal informa-
tion has shifted back towards more covert approaches,
such as fingerprinting, where the explicit input from
the end user is not necessary (Perez, 2018). The con-
cepts applied in fingerprinting techniques have also
given rise to companies and government organizati-
ons that combine the analysis of public and intercep-
ted data (Rao et al., 2015; Brandwatch, 2017; Gallag-
her, 2014). Regardless whether or not these analyses

are legal, they are actively being used for predicting
social media influence (Liu et al., 2016), personalized
advertisements, assessing financial and health condi-
tions (Economist, 2012) and forensic science (Ejeta
and Kim, 2017). However, additional encryption me-
chanisms and tools such as SSH, VPN and Tor exist
and can be (partially) utilized to protect the end user
against these exposures. Despite their sophisticated
and valuable capabilities, a considerably low number
of users adopt these tools, which reminds us of the
importance to not neglect the impact of HTTPS fin-
gerprinting attacks on such scale. Moreover, several
studies have explored website fingerprinting (WFP)
over various encrypted layers and tunnels (Panchenko
et al., 2016; Lu et al., 2010; Panchenko et al., 2011;
Herrmann et al., 2009; Hayes and Danezis, 2016) and
several countermeasures have been developed that de-
fend the end user against such attacks (Panchenko
et al., 2011; Cai et al., 2014a; Dyer et al., 2012). On
the other hand, an exceeding number of the proposed
WFP attacks have at least several issues that limit the
ability to perform those attacks in a realistic environ-
ment (Juarez et al., 2014). Hence in this paper, we
propose an HTTPS webpage fingerprinting technique
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called IUPTIS 1 that infers the webpage of an indi-
vidual online profile by analyzing the encrypted net-
work traffic trace of an end user in order to identify
a sequence of unique web object images. Our met-
hod improves upon the practicality of previous work
by introducing parameters that can be fine-tuned ac-
cording to the adversary model and the targeted on-
line platform. Browser caching, dynamic webpages
and the generation of a single fingerprint per profile
for all browsers and versions is incorporated in these
parameters and thus can be balanced with the preci-
sion and sensitivity of our technique. We specifically
focus on a practical attack in a realistic scenario for
traffic communicated over HTTPS, without additio-
nal encryption tunnels such as Tor. To quantify the
value of our attack, we have conducted an experiment
on two popular online platforms while accomplishing
favorable results.
We summarize the key elements of our WFP attack:
• A novel HTTPS webpage fingerprinting attack

that infers profile webpages of an online platform
by searching for a unique sequence of images that
are associated to that online profile, in a network
traffic trace.

• Our attack introduces a technique that integrates
the ability for the end user to enable browser ca-
ching and utilizes different browsers by establis-
hing parameters that can be fine-tuned according
to the intended model of the end user and online
platform. Additionally, it also takes care of Con-
tent Distribution Networks (CDN) inserted bet-
ween the targeted platform and attacker. This
directly relaxes numerous of the assumptions in
previous state-of-the-art methods (Juarez et al.,
2014).

• We can perform our attack in an open world sce-
nario without fingerprinting a selection of un-
monitored webpages as was realized in previous
work (Sun et al., 2002; Lu et al., 2010; Hayes and
Danezis, 2016; Panchenko et al., 2016).

• We show that, unlike previous work has claimed
(Sun et al., 2002; Panchenko et al., 2016), dyna-
mic webpages that undergo frequent changes such
as social profile pages can be fingerprinted with
promising results.

• In the context of the adversary model, two experi-
ments on popular online platforms are performed
to demonstrate the effectiveness of our method.
Experiments on online platforms with similar pro-
perties were not yet explored in previous state-of-
the-art techniques.

1IUPTIS stands for ’Identifying User Profiles Through
Image Sequences’

In this paper, we first discuss the related work that
has led to the development of our WFP attack. In
Sect. 3, we introduce our intended adversary model in
which we can succesfully perform our IUPTIS attack
and compare its abilities with several state-of-the-art
techniques. In the next section, we provide in-depth
details of the inner workings of our WFP method. To
quantify the practicality of our technique, we conduct
experiments on two popular online platforms, Devi-
antArt and Hotels.com and discuss our findings in
Sect. 4.1 and Sect. 4.2. To conclude our paper in Sect.
4.3 and Sect. 5, we briefly examine existing counter-
measures that are able to mitigate our attack and dis-
cuss future work that might enhance the overall per-
formance.

2 RELATED WORK

Early work have shown that it is feasible to finger-
print webpages over HTTPS by taking the size of web
objects into account (Cheng et al., 1998; Sun et al.,
2002). Nonetheless, some of the assumptions pro-
vided in these works, such as one TCP connection
per web object, are not valid anymore in current mo-
dern browsers (Panchenko et al., 2011). The intro-
duction of classifiers to infer webpages over the SSL
protocol (Liberatore and Levine, 2006) has lead to the
construction of Hidden Markov models to utilize the
link structure of a website in combination with sup-
plementary features such as the sizes and order of
HTTPS web objects to deduce the browsing path of
the end user (Miller et al., 2014; Cai et al., 2012).
Furthermore, the ability to fingerprint webpages over
encrypted tunnels such as SSH and Tor has been rese-
arched extensively (Panchenko et al., 2016; Lu et al.,
2010; Panchenko et al., 2011; Herrmann et al., 2009).
Recent work and currently a state-of-the-art techni-
que to fingerprint HTTPS webpages (originally de-
veloped for Tor hidden services) is k-fingerprinting
(Hayes and Danezis, 2016). Their work extends a pre-
vious approach (Kwon et al., 2015) and is also suit-
able over HTTPS. The classification of webpages is
implemented using random forests and their experi-
ment produces a TPR of 87% with a world size of
7000 unmonitored HTTPS webpages and 55 monito-
red HTTPS webpages by using the ordering, timing
and size of TCP packets without the need to identify
the actual web objects. Nevertheless, defenses against
WFP attacks have been designed to reduce or comple-
tely nullify the precision and sensitivity of these expe-
riments. Different padding methods have been evalu-
ated to avoid the possibility of selecting packet size as
a main feature (Dyer et al., 2012). Specifically desig-
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ned for HTTPS, HTTPOS is a defense in the form of
a client-side proxy which implements several coun-
termeasures to make it difficult for an adversary to
use features such as timing, flow and size (Luo et al.,
2011). Their defense uses the HTTP Range header
to request parts of the HTTP content multiple times
instead of requesting the entire content at once. Furt-
hermore, it injects junk data to the content in order
to cover up the real traffic data. A countermeasure
named Camouflage (Panchenko et al., 2011) is a met-
hod to confuse WFP attacks by randomly requesting
existing dummy webpages during the request of a le-
git webpage coordinated by the end user. Such miti-
gation has the advantage of explicitly generating false
positives and is generally easy to incorporate in ex-
isting client-side proxies. Other defenses are much
more deceptive such as ”Traffic Morphing” (Wright
et al., 2009), in that they provide a theoretical ap-
proach to transform the distribution of packets of a
traffic trace to another distribution in such manner
that it resembles a different webpage. More recently,
a defense called CS-BuFLO and an improved ver-
sion has been devised (Cai et al., 2014a; Dyer et al.,
2012; Cai et al., 2014b). This defense transforms a
stream of original TCP packets to a continuous flow
of fixed size packets to reduce the variance in timing
and size of the original packets. Akin to the aforemen-
tioned defense, ’Walkie-Talkie’ is a similar approach
(Wang and Goldberg, 2017) where they greatly im-
prove upon bandwidth and practicality by devising a
method that sends packets in short bursts and is cur-
rently regarded as a state-of-the-art defense. More re-
cently, instead of manually selecting features to de-
sign WFP attacks, deep learning algorithms have been
utilized to develop a process that allows an advers-
ary to automatically select features (Rimmer et al.,
2017). To conclude this section, we refer to an exten-
sive and critical evaluation of the various WFP attacks
and their countermeasures (Juarez et al., 2014).

3 IUPTIS: IDENTIFYING USER
PROFILES THROUGH IMAGE
SEQUENCES

3.1 Adversary Model

In the interest of a practical and reliable WFP attack,
we would like to lay out some assumptions that are
made:

• The adversary has a network traffic trace from the
end user during the period in which they navigated

to the webpage profile. Such traffic trace can be
extracted with any passive MiTM attack.

• The recorded communication between the targe-
ted online platform and the end user is handled
by the HTTP/1.1 protocol encapsulated in TLS re-
cords. In other words, the end user is visiting the
profile webpage over the HTTPS protocol.

• Each individual profile page may be accessed by
an individual URL where distinctive and unique
images are the main source of information on the
webpage of that profile. A profile is associated
with a person (e.g. social network pages) or uni-
que entity (e.g. hotel pages). The images on each
webpage profile have to be large enough (> 8
Kb) and usually larger than other resources (for
instance, stylesheets) on the same webpage, to
achieve acceptable results.

• The headers of the TCP and IP layer of the traffic
trace are not encrypted and thus may be analyzed
by the adversary. Background traffic (noise) from
other websites or protocols is therefore trivial to
filter out, since they will not match the IP or dom-
ain name of the targeted server.

Adversaries that adhere to these assumptions come in
many forms. Social Wi-Fi providers and government
agencies may essentially hold a passive MitM posi-
tion and can therefore apply these techniques. More-
over, the introduction of WiFi4EU (WiFi4EU, 2016)
will boost the number of accessible Wi-Fi access
points and in turn, increase the attack surface to per-
form MitM attacks. In a similar fashion, social net-
works such as Facebook may provide VPN tools like
Onavo (Perez, 2018) that still have access to HTTPS
payloads with the ability to correlate the data with
their own collection of online profiles.

3.2 Fingerprinting Images

Profile pages often contain several images that are
uploaded by the owner of the page. These images are
often the largest part of the page content and are most
likely unique over the whole platform. The unique-
ness of these images is very convenient to select as a
feature for WFP attacks. When visiting such a profile
page in a browser over HTTPS, the images will be
downloaded in several TCP connections. As we are
using HTTP over TLS, the actual content of the ima-
ges is encrypted and thus not visible. However, the
HTTP request and response sizes are not encrypted
and can therefore be calculated easily (Lu et al., 2010;
Cheng et al., 1998). Extracting the absolute raw size
of each image contained in a HTTP response is not tri-
vial due to the addition of HTTP headers, which are
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often dynamic in length. HTTP headers are the largest
overhead in size that we have to eliminate in order to
get the absolute size of each image. However, it is
possible to deterministically model the appearance of
these headers in each request and response. For each
image contained in a HTTP response, we formulate
the following equation that defines the total size of
such HTTP response:

Outx = wout + pout + iout (1)
Here, wout is the length of all HTTP headers (inclu-
ding the corresponding values) that are dependent on
the webserver that issues the response to the brow-
ser. For instance, the header ”Accept-Language” or
”Server” is always added by the webserver (online
platform) independent of the image that is requested
or the browser that is used. Considering that we are
targeting a specific webserver and leave out the pre-
sence of a Content Distribution Network (CDN) in the
middle, the value of wout can be calculated easily.
pout is the length of all HTTP headers (including
the corresponding values) that depend on the image
requested. For instance, the ”Content-Type” and
”Content-Length” header can be different for each
image requested from a given webserver and is inde-
pendent of the browser that is used.
iout is the length of the complete HTTP response body.
In our case, this only contains the raw data of the
image requested. In a similar fashion, we also for-
mulate an equation that defines the total size of HTTP
request of a web object image:

Inx = pin +bin (2)
Similar to the response, the variable pin is the total
length of all HTTP headers that are dependent of each
requested image. Examples are the GET path in the
first request line and the ”Referrer” header.
bin is the length of all HTTP headers (including the
corresponding values) that are dependent on the brow-
ser that issues the request. For instance, the ”DNT” or
”User-Agent” header may be different for each brow-
ser.
Since we would like to fingerprint webpage profiles
based on the images that they contain, we have to de-
termine the total size for each image. Then, based on
the calculated values, we use the collection of all the
images contained in a profile page to construct a fin-
gerprint for the whole profile webpage.
We will extract the fingerprint of an image from the
corresponding HTTP request and response sizes as
follows:

Imgy = (Inx,Outx) (3)
To construct our fingerprint database for this prepro-
cessing stage, we develop a fingerprint for each pro-
file webpage x with n images where the approach is

similar to the ordered sequence method (Lu et al.,
2010):

Profilez = 〈(Img0, Img1, . . . , Imgn−1, Imgn)〉 (4)

Unlike previous work (Lu et al., 2010), the order in
which the images are added have no impact on the
experimental results of our method.
A practical consideration that arises is the fact that the
variable bin is unknown and is most likely to be diffe-
rent for various browsers. It is therefore necessary to
either figure out the browser that the end user is uti-
lizing in order to estimate the variable (Husák et al.,
2016; Cao et al., 2017) or to set the variable bin to a
fixed size. The latter option will result in a trade-off
with a lower precision of the WFP attack as we will
show in Sect. 4. Likewise, wout may be hard to predict
due to the variation of this variable within the same
browser. More specifically, the usage of a CDN may
introduce HTTP headers with irregular sizes, usually
dependent on whether or not the requested image has
been cached by the CDN. A possible solution for this
concern is provided in Sect. 3.6.1 where we employ
a single dimensional clustering method called ’Jenks
optimization method’.

3.3 Constructing a Request/Response
List

After our fingerprinting stage is finished, we have to
build an ordered list of sizes that correspond to the
HTTP requests and responses in our intercepted traf-
fic trace, which we call a Request/response list (RRL).
A request/response list of length n is an ordered list
that contains the timestamp of each HTTP request
(Tn), the size of each HTTP request and HTTP re-
sponse (request/response pair) associated with a web
object image:

RRL = 〈(R0,R1, . . . ,Rn−1,Rn)〉 (5)
Rn = 〈(Tn,Reqn,Respn)〉 (6)

When the end user navigates to a profile webpage,
several TCP connections to the webserver will do-
wnload the resources located on that particular we-
bpage. These resources consist of images, stylesheets,
source files, etc. . . . Due to the encryption provided by
HTTPS, an adversary cannot trivially identify the re-
sponses that contain images. Therefore, similar to the
ordered sequence approach (Lu et al., 2010), we use
the fair assumption that images are usually larger in
size than other resources and filter out all other resour-
ces that are below a fixed threshold. Such threshold
will effectively reduce the amount of noise associated
with other resources. The value of this threshold is
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usually set to the fingerprinted image with the smal-
lest size (Respx). Other images (which we will also
observe as noise) such as icons or banners are usu-
ally much smaller in size than the fingerprinted ima-
ges and are often downloaded at the beginning or end
of the HTML page. Interference of such noise with
our method is therefore minimal.

3.4 Building a Profile Prediction List

At this stage, we have collected the necessary finger-
prints and have constructed a RRL based on the inter-
cepted traffic trace.
Subsequently, for each request/response pair (R) from
our RRL, we evaluate whether this pair matches one
or more Imgy fingerprints from any Profilez, where
z denotes any fingerprinted profile and y denotes all
image fingerprints from Profilez. The matching is per-
formed i.f.f. the following equations hold:

Imgy = (Inw,Outw) (7)
Inw−πreq < Reqx < Inw +πreq (8)

Outw−πresp < Respx < Outw +πresp (9)

In the equation above, we perform the matching if
the request and response sizes lie within an interval
defined by 2 newly introduced parameters, πreq and
πresp. Both parameters are defined as the statistical
variance for respectively the request and response size
and should be chosen with the intended platform and
browser in mind. If the specific browser that is em-
ployed is known, bin can be calculated to be very
accurate and thus requires a low πreq. Similarly, πresp
depends on the accuracy of bout. In the experiments
discussed in Sect. 4, we show that a large πreq and
πresp are still sufficiently robust enough to achieve fa-
vorable results.
If the equations above (eq. 8 and 9) hold, the mat-
ching is then performed by passing the corresponding
Reqx and Respx to construct a Pn

g which is finally ap-
pended to the Profile Prediction List (PPL):

Pn
g = 〈profileName,εreq,εresp〉 (10)

εreq = Reqx− Inw (11)
εresp = Respx−Outw (12)

Subscript g denotes the index in the second dimension
and superscript n denotes the index in the first dimen-
sion of the PPL. All elements in the PPL are chrono-
logically ordered based on the timestamp of the mat-
ched request/response pair. The PPL is constructed as
a 2D array with variable size in the second dimension.
The first dimension defines each matched R element
(ordered by the timestamp) and the second dimension
defines all the newly constructed Pn

g :

PPL[0] = 〈P0
0 ,P

0
1 ,P

0
2 , . . .〉 (13)

PPL[1] = 〈P1
0 ,P

1
1 ,P

1
2 , . . .〉 (14)

PPL[. . . ] = 〈P...
0 ,P...

1 ,P...
2 , . . .〉 (15)

PPL[q] = 〈Pq
0 ,P

q
1 ,P

q
2 , . . .〉 (16)

In other words, for each intercepted request/response
pair Rn (with a total of q pairs), we assign all image
fingerprints (associated to a profile) that might belong
to that pair and construct a Pn

g for each of them as
shown in figure 1.

3.5 Finding a Valid Profile Sequence

After the creation of our PPL, we attempt to
identify an uninterrupted sequence with length
Φ in the PPL starting at any X such that
PPL[X ],PPL[X + 1],PPL[X + . . . ],PPL[X + Φ] in the
sequence have respectively a PX ,PX+1,PX+...,PX+Φ

such that they all have the same profileName:

PX ∈ PPL[X ] (17)

PX+1 ∈ PPL[X +1] (18)
PX+... ∈ PPL[X + . . . ] (19)

PX+Φ ∈ PPL[X +Φ] (20)

profileName ∈ (PX ∩PX+1∩PX+...∩PX+Φ) (21)

In other words, we have found a valid profile sequence
if Φ request/response pairs in a row are all matched
to at least one fingerprinted image of the same pro-
file. We say that PX ,PX+1,PX+... and PX+Φ form a
valid sequence for that particular profileName. Multi-
ple profile sequences may obviously exist. The intro-
duction of the parameter Φ defines a balance between
browser caching and resulting precision and sensiti-
vity. When choosing this value, it’s useful to look at
the number of images that are exposed on each indi-
vidual webpage. A large value for Φ will have a more
accurate prediction but might reduce the effectiveness
of the attack. For instance, if a profile webpage only
has 2 images, then a Φ below 3 is necessary to identify
that particular webpage. More importantly, the para-
meter is also utilized to reduce the impact of browser
cached images. For instance, if the end user is visiting
the webpage of a Profilez which has 10 images where
5 of those are already cached by the browser, we can
still set Φ to a value below 6 in order to succesfully
find a valid sequence.

3.6 Evaluating a Profile Sequence

For a small collection of image fingerprints, the re-
sulting profile sequences are already a valuable pre-
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diction. However, this is insufficient if multiple se-
quences for the same time range exist or when the va-
riance between the fingerprinted images is too small.
Therefore, we have to exclude profile sequences that
have very different values for εreq and εresp. The ex-
clusion is accomplished by calculating the standard
deviation σreq and σresp over respectively all εreq and
εresp in that particular sequence. The mean over all
εreq and εresp for a sequence can be large if respecti-
vely bin and wout are inaccurate or unknown even
though it should not influence our result and for this
reason, the standard deviation is utilized. Afterwards,
we evaluate whether the standard deviations are be-
low a threshold Hreq and Hresp. I.f.f. both deviations
are above the thresholds, we can assume that the error
differences in that sequence are too large and thus ex-
clude that sequence. All other sequences are said to be
’complete’. A complete sequence will establish a pre-
diction saying that the end user has navigated to the
profile corresponding to the sequence. For instance,
assume we have Φ profiles in our valid sequence –
P1, P2 , P..., PΦ−1 and PΦ, we can then calculate the
following parameters:

µreq =

Φ

∑
i=1

εreq(Pi)

Φ (22)

µresp =

Φ

∑
i=1

εresp(Pi)

Φ (23)

σreq =

√√√√
Φ

∑
i=1

(εreq(Pi)−µreq)
2

Φ (24)

σresp =

√√√√
Φ

∑
i=1

(εresp(Pi)−µresp)
2

Φ (25)

3.6.1 Jenks Optimization Method

Determining the standard deviations and then com-
paring it to a predefined threshold is relatively robust
considering that bin and wout remains constant over all
images of the same profile. Although, the presence of
a CDN will essentially break that assumption by ap-
pending additional proprietary HTTP headers such as
’X-Cache’ or ’X-Amz-Cf-Id’, in case the requested
image was cached by a CDN server. In the interest of
distinguishing cached images 2 from uncached ima-
ges or at least reduce the effect on the standard de-
viations, we employ the Jenks optimization method.
This optimization method (also known as ’Goodness

2Note the difference between browser-cached and CDN-
cached images. We are talking about the latter here.

of Variance Fit’) clusters an 1D array of numbers into
several classes with minimal average deviation from
each class mean. For our IUPTIS attack, all εresp of
each Pn

g (Eq. 10) in a valid sequence will be clustered
into 2 classes (CDN-cached and uncached images).
The integration of this method happens immediately
after finding a valid sequence. Following the cluste-
ring, we compute σreq and σresp for each class, which
makes a total of 4 standard deviations. However, if
one of the calculated classes only contain 1 element,
we will have to assume that the single element is a
false positive and therefore, fallback to the original
method of computing the standard deviations for the
whole sequence. Having multiple CDN of the same
provider is not an issue, due to the responses not chan-
ging in size. When validating our experiments, we did
not encounter an instance where multiple CDN of dif-
ferent providers were utilized on the same webpage.
If it nevertheless does occur, the number of classes for
the optimization method can be increased to compen-
sate for this.

3.7 Recap

Our IUPTIS method is composed of the following
steps:

1. Intercept a network traffic trace from the end user.

2. Establish the collection of fingerprints by ex-
tracting the fingerprints of each targeted profile
(Sect. 3.2).

3. Build an ordered Request/Response list (RRL)
from the raw traffic trace as discussed (Sect. 3.3).

4. Construct a Profile Prediction List (PPL) by mat-
ching the elements from the RRL to one or multi-
ple image fingerprints (Imgx).

5. Find a sequence of Φ elements in the PPL that all
contain at least one image from the same Pro f iley
(Sect. 3.5)

6. Evaluate the formed sequence by our IUPTIS al-
gorithm which decides whether or not the se-
quence is classified as a valid profile prediction
(Sect. 3.6).

Each attack is executed with the following tuneable
parameters:

• bin: The expected size of data (HTTP headers and
corresponding values) in a request that is depen-
dent on the webbrowser. If this value is unknown,
an average value can be set albeit with a large
πreq and πresp to compensate for different brow-
sers. It is for instance possible to extract this value
by identifying the browser through the extraction
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of the User-Agent header from an unencrypted
HTTP request.

• useJenks: Utilized if a CDN is employed on the
targeted online platform.

• Φ: Minimum matching sequence or streak of ima-
ges. This value can be freely set, although a long
sequence results into an accurate prediction, but
with a low accuracy for webpages that have ca-
ched images.

• πreq, πresp: Request and response variance that al-
lows matching to an image fingerprint. Calculate
πreq by taking the difference between Inx and Iny
where x defines the largest possible request size of
any fingerprinted image and y defines the smallest
possible request size of any fingerprinted image.
Some manual fine-tuning is necessary for πresp if
a CDN is utilized. Creating a test case with se-
veral random profile fingerprints and then iterati-
vely increasing πresp with a constant size is recom-
mended until the preferred results are achieved.

• Hreq, Hresp: The threshold of the maximum stan-
dard deviation for respectively, the requests and
responses. Both parameters are fixed for each on-
line platform. Similar to πresp, both parameters re-
quire manual fine-tuning by iteratively increasing
the value.

The ideal combination of parameters depends on the
adversary model, such as whether he wants to allow
browser caching or a high precision in trade for a lo-
wer sensitivity. Possible combinations are provided in
Sect. 4. In figure 1, we show an example of the IUP-
TIS method consisting of the first 5 steps. Starting
from the bottom, the actual images are downloaded
by the browser, resulting into a request and response,
each with a specific size. Subsequently, the PPL is
constructed by matching the request and responses to
one or more profiles from our fingerprinting database.
Then, we find an uninterrupted sequence of at least
length Φ, which is ’Profile C’ in our case. Finally,
the sequence is evaluated to be fit for a valid profile
prediction.

3.8 Comparison to State-of-the-art
Techniques

Our attack differs from state-of-the-art techniques like
k-fingerprinting (k-FP) (Hayes and Danezis, 2016)
and the Miller method (Miller et al., 2014), in the
idea that we specifically target a subset of online plat-
forms, and decouple browser caching and dynamic
webpages by introducing several parameters that can
be fine-tuned according to the demands of an adver-

PPL

RRL [Req,resp] [120,12510] [122,41578] [120,32669] [121,38112]

- Profile D
- Profile E

- Profile B
- Profile C

- Profile C
- Profile D
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- Profile C
- Profile F

Profile Sequence - Profile D
- Profile E

- Profile B
- Profile C

- Profile C
- Profile D

- Profile A
- Profile C
- Profile F

Valid sequence for Profile C

Start time End time

Actual image

Evaluate sequence for Profile C

Figure 1: Toy example with a visual 5-step overview of the
IUPTIS method. Assume Φ is 3 and our fingerprint data-
base consists of Profile A to Profile G.

sary. In comparison to machine learning (ML) at-
tacks (Panchenko et al., 2016; Panchenko et al., 2011;
Hayes and Danezis, 2016) where we have to col-
lect several traces from page loads, our fingerprin-
ting stage only requires one page load for each pro-
file. Numerous strong assumptions made in state-of-
the-art methods are relaxed or completely removed in
our IUPTIS attack (Juarez et al., 2014). For instance,
the ability to perform our attack on different browsers
and devices, without the need to collect session tra-
ces from each one individually, is an approach that is
rarely proposed. Moreover as we will demonstrate in
the experiments, our attack does not assume that we
know the end and the beginning of a page load in a
given trace, which is shown to be difficult to deduce
(Coull et al., 2007; Juarez et al., 2014). Although due
to such valuable properties, our attack is only appli-
cable over TLS and thus it does not support anonymi-
zation services such as Tor. On the other hand, disad-
vantages of our attack can be found when applying
mitigations. Due to the rather deterministic nature
of our algorithm, existing defenses can be very ef-
fective to mitigate our attack as discussed in Sect. 4.3.
Current state-of-the-art techniques are more resistant
against defenses such as padding and have even defe-
ated more advanced defenses such as HTTPOS, CS-
BufLo or Tamaraw (Hayes and Danezis, 2016; Cai
et al., 2012; Juarez et al., 2016; Cai et al., 2014b).
Although, as presented in the taxonomy ”I Know Why
You Went To Clinic” (Miller et al., 2014), most of
these WFP methods need to fingerprint unmonitored
webpages to make it feasible in an open world scena-
rio (Cherubin, 2017; Juarez et al., 2014) and almost
all WFP attacks require browser caching to be turned
off, which is less feasible nowadays. Furthermore, the
flexibility of our attack parameters requires manual
preliminary work which involves analyzing the HTTP
request/responses and then tune these parameters in
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pursuance of an effective attack. In addition, we ad-
dress the base rate fallacy (Juarez et al., 2014; Wang,
2015) by carefully formulating our assumptions and
adversary model and focussing on precision instead
of sensitivity. Subsequently, the IUPTIS technique
does not explicitly measure similarities between fin-
gerprinted profiles and thus eliminates the necessity
to create a separate collection of unmonitored webpa-
ges. As a result, our attack has the valuable property
that whenever we increase the world size, only the
precision will be affected and the sensitivity will re-
main relatively the same.

4 EXPERIMENTAL VALIDATION

In this section, we perform our IUPTIS attack on the
social platform ’DeviantArt’ and the travel booking
platform ’Hotels.com’. Our experiment is simula-
ted by randomly selecting one of the following brow-
sers (for each test): Firefox 56.0.2 (Linux), Goo-
gle Chrome 62.0 (Linux) and Google Chrome 61.0
(Android). Nevertheless, in the context of our at-
tack, there are no notable differences between diffe-
rent browsers except from the change in request size.
Besides the 2 platforms discussed below, we have also
succesfully experimented with other platforms such
as Pornhub, Pinterest and We Heart It. Unfortunately,
we are not able to elaborate on these additional expe-
riments due to page limitations.

4.1 DeviantArt

DeviantArt is an online art community that consists
of 36 million users where artists can upload and view
a substantial number of artworks. We randomly com-
pile a list of 2150 DeviantArt profile webpages 3 that
have at least 5 uploaded images. Our traffic trace
is constructed by spawning each profile webpage se-
parately after each other until all images are loaded
with a minimum delay of 3 seconds before closing the
previous page and opening the next webpage. Lazy
loading is a concept that is applied on DeviantArt
which means that only the images in the current vie-
wport will be downloaded and thus visible in the traf-
fic trace. With this generated traffic trace containing
2150 profiles, we run our IUPTIS attack and obtain
the results in table 1. The first test has set the pa-
rameter bin which indicates that the adversary knows
which browser the end user is using. Including this
additional parameter has a considerable positive ef-
fect on the precision of the attack with an increase of

3https://www.deviantart.com/[USER NAME]/gallery

Table 1: Experiment on DeviantArt with parameters (πreq
= 300, πresp = 40, useJenks = no, bin = 252, Hresp = 3.6
and Hreq = 0.4) and a worldsize of 2150 profiles. Parame-
ter ’cache=X’ indicates that we pre-cache (browser based)
the first X % of all the images located on the profile we-
bpage. Sensitivity, precision and F1 score are presented as
percentages.

Φ Other parameters Sens. Prec. F1
2 πresp=10, bin=X 99 98 99
2 πresp=10, bin=X , cache=40 94 98 96
2 / 99 88 93
3 / 98 93 95
4 useJenks=yes 97 97 97
5 useJenks=yes 96 99 98
5 useJenks=yes, cache=40 87 99 92

11% (ceteris paribus). It is also evident that a large
sequence will increase the precision and decrease the
sensitivity. We can attribute this due to the statistical
probability that it is less likely for a profile to have
the same size of several images in a row as another
profile. Browser-cached images do influence the sen-
sitivity since the request for those images will not lead
to the image contained in a HTTP response. It is the-
refore possible that the number of images that are left
on a particular profile do not meet the requirements to
evolve into a valid sequence. Although, the precision
is clearly not affected since browser-cached images
do not generate any additional false positives due to
the fact that those browser-cached images are often
being requested at the start or end of the series of fin-
gerprinted images.

4.2 Hotels.com

Hotels.com is an online travel booking platform
with an average of 50 million visitors per month and
currently has around 260 000 bookable properties.
We compile our profile list by randomly selecting
900 hotel profile webpages 4. Our traffic trace is
constructed by spawning each hotel webpage and
then opening 75% of all the images located on the
webpage. Images are not loaded automatically and
thus requires the end user to click on the image in
the interest of downloading the full resolution image.
We argue that the average end user does not open all
images when browsing through the webpage.
In table 2, we show the sensitivity, precision and
F1 score based on the experiment run by altering
parameter Hresp, the sequence length and whether or
not we use the Jenks method. With the exception
of ’Without Jenks(Hresp=3.5)’, a consistent F1 score
between 80 - 98% is achieved. For a sequence (Φ)
of 8 images, ’With Jenks (Hresp=6.0,Φ = 8)’ yields

4https://hotels.com/ho[NUMBER]/?[GET PARAMS]
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a F1 score of 98%. Overall, sensitivity is relatively
constant in almost all tests and only decreases slightly
when a longer sequence is necessary as shown in
Fig. 2 and Fig. 3. On the contrary, the precision
starts low and increases to a very convenient 99%
in some cases. However, a low sequence length is
prefered to incorporate the ability for the end user to
use browser caching in trade for a lower precision.
Fortunately, performing the attack without Jenks and
Hresp=8.5 already attains a sensitivity and precision of
respectively 99 and 92% for a sequence of 6 images.
Furthermore, applying the Jenks method to model the
CDN cache behavior does show major improvements
in sensitivity over different Hresp values (ceteris
paribus) with only a nominal decrease in precision.
For instance, ’Without Jenks (Hresp=3.5)’ has inferior
sensitivity (below 55%) compared to the other tests
due to the fact that some images are cached by the
CDN server which makes the resulting responses
very different in size. On the contrary, in the Devi-
antArt experiment, the CDNs employed did not had
a significant impact on the response size. Ultimately,
we argue that ’Without Jenks (Hresp=8.5)’ is ideal in
this scenario due to the very advantageous precision
(85% to 100%) and relatively high sensitivity (82%
to 99%) over all possible sequence lengths. In
conclusion, we determine that the combination of
parameters to perform the attack will greatly depend
on the adversary and end user model.

A timeframe of 14 days was created between
generating the image fingerprints and performing our
experiment to show the longevity of our fingerprints.
Within this timeframe, several profiles of our targeted
platforms had added and deleted several images.
The results of our experiment demonstrates that the
impact with such modifications is neglectable. Furt-
hermore, we have conducted our tests on different
hours and days in a week to get a decent statistical
overview of all the requests. This is crucial due to the
fact that a CDN is heavily dependent on the time of
day which influences the responses and in turn our
results.

4.3 Defenses

Existing WFP defenses are highly effective against an
IUPTIS attack. Primarily because mitigations such
as CS-BufLo (Cai et al., 2014a) and Walkie-Talkie
(Wang and Goldberg, 2017) completely remove the
ability for the adversary to deduce the exact size of
a web object image, thus rendering our attack inef-
fective. Nevertheless, it is extremely important to
note that the end user from the adversary model that

Table 2: Experiment on Hotels.com with a worldsize of 900
hotel profiles and fixed parameters (bin = 250, πresp = 100,
πreq = 450 and Hreq = 0.2) . Sensitivity, Precision and F1
score are presented as percentages. WOJ stands for ’Wit-
hout Jenks’ and WJ stands for ’With Jenks’. The underlined
percentages represent the highest F1 score for that particu-
lar sequence Φ.

Parameters Sens. Prec. F1 score
WOJ (Hresp=3.5,Φ = 5) 55 86 67
WOJ (Hresp=3.5,Φ = 6) 27 97 43
WOJ (Hresp=3.5,Φ = 7) 9 99 16
WOJ (Hresp=3.5,Φ = 8) 3 99 6
WOJ (Hresp=3.5,Φ = 9) 1 100 2
WOJ (Hresp=8.5,Φ = 5) 99 85 92
WOJ (Hresp=8.5,Φ = 6) 99 92 96
WOJ (Hresp=8.5,Φ = 7) 91 95 83
WOJ (Hresp=8.5,Φ = 8) 90 99 94
WOJ (Hresp=8.5,Φ = 9) 82 100 90
WJ (Hresp=3.5,Φ = 5) 91 77 83
WJ (Hresp=3.5,Φ = 6) 91 91 91
WJ (Hresp=3.5,Φ = 7) 99 92 96
WJ (Hresp=3.5,Φ = 8) 83 99 90
WJ (Hresp=3.5,Φ = 9) 73 100 85
WJ (Hresp=6.0,Φ = 5) 97 71 82
WJ (Hresp=6.0,Φ = 6) 99 80 88
WJ (Hresp=6.0,Φ = 7) 99 85 89
WJ (Hresp=6.0,Φ = 8) 99 98 98
WJ (Hresp=6.0,Φ = 9) 82 99 89

Figure 2: Hotels.com experiment consisting of various tests
from table 2 with different parameters, plotting the preci-
sion on the length of a valid sequence.

Figure 3: Hotels.com experiment consisting of various tests
from table 2 with different parameters, plotting the sensiti-
vity on the length of a valid sequence.
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we are targetting often does not have the knowledge
nor the ability to apply such defenses. We can ar-
gue that it is the responsibility of the online platform
to protect the end users from any fingerprinting at-
tack. Recent work has shown the demand for such
a server-side countermeasure called ALPaCA (Che-
rubin et al., 2017). Despite their promising results
on a Tor network, it is not suitable for webpages ser-
ving over HTTPS. However, recent work has also de-
monstrated that a proper server-side implementation
of HTTP/2 does make it troublesome for an adversary
to infer the exact image sizes (Morla, 2017). Even
though this would defeat our current attack, it does
not completely mitigate the risk for future WFP at-
tacks that might enhance our method to discover new
techniques that use a sequence of images as their main
feature. To conclude, we think it is critical to educate
the end user about the available tools that exist to pro-
tect themselves against fingerprinting attacks such as
IUPTIS, on a wide scale.

5 CONCLUSION AND FUTURE
WORK

We have proposed a new webpage fingerprinting
technique called ’IUPTIS’ that focuses on the practi-
cality in an open world scenario. The ability to
use different browser versions and enable caching is
an improvement over previous state-of-the-art techni-
ques. Our experiments have generated favorable re-
sults with F1 scores between 90% and 98% depen-
dent on the parameters utilized and highlights the pri-
vacy impact on various online platforms. However,
our attack is only applicable on the HTTP/1.1 pro-
tocol due to the assumption that we can infer the ex-
act response size. Nonetheless, recent work (Wijnants
et al., 2018) has indicated that some implementations
of the HTTP/2 protocol have a rather deterministic ap-
proach in multiplexing which might make the estima-
tion of response sizes in such protocol still relatively
accurate. Furthermore, we did show the impact of our
attack on a small subset of all profiles available on a
platform. However, some platforms only have a small
collection of online profiles (DeviantArt has 36 mil-
lion users). The impact of our attack on an even lar-
ger scale is unknown and should be explored in future
work.
Easing the manual fine-tuning of the parameters such
as Hreq and Hresp is also an important aspect to be im-
proved in future work. A possible extension to this
issue, would be to automatically learn these parame-
ters by utilizing some form of machine learning. Mo-
reover, our addition of the Jenks optimization method

only shows improvements in parts of the experiments
where the CDN heavily influences the response size.
Further experiments on other online platforms should
be performed to analyze how exactly incorporating
this optimization method will improve the overall F1
score. Additionally, other metrics for calculating the
error (ε) for each fingerprinted image in Sect. 3.4,
such as the squared difference are not examined yet
and might be able to generate superior results.
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