
Lean Ontology Development: An Ontology Development Paradigm
based on Continuous Innovation

Joel Cummings and Deborah Stacey
School of Computer Science, University of Guelph, Guelph, Ontario, Canada

Keywords: Ontology Development, Lean Startup, Agile Software Development, Lean Ontology Development.

Abstract: This position paper explores the utility of adapting the principles of Lean Startup and Agile software develop-
ment to the development of ontologies. A main thesis is that ontology development should be approached in a
manner similar to software development. Lean Ontology Development (LOD) principles are defined and cur-
rent ontology development methodologies are discussed in relation to these principles. The principles defined
are Continuous Development, Minimum Viable Ontology via Prioritization, Community Evaluation, Ontology
as API, Reuse, and Sustainability.

1 INTRODUCTION

1.1 Motivation

While the number of ontologies is growing and the
number of disciplines that have adopted the use of on-
tologies is also on the rise, the methodologies for the
creation, maintenance and reuse of ontologies are still
fragmented and largely isolated from each other. This
is not to say that there are not powerful techniques
that have been developed; the issue is not so much a
lack of techniques but indeed there are so many tools
in the toolbox that it can be difficult to discern how to
structure your ontology engineering activities.

Instead of developing yet another creation met-
hodology, this paper suggests a systems approach to
ontology engineering patterned after Agile software
development and the theory of organization develop-
ment called Lean Startup. What is proposed is a deve-
lopment philosophy based on continuous, incremen-
tal improvement, competency questions, documented
reuse decisions and, most importantly maintenance
and sustainability planning. This approach does not
restrict ontology developers from using methodolo-
gies not fully examined here (e.g. ontology design
patterns) but suggests that they could be used in the
lean system as long as they do not violate the Lean
Ontology Development (LOD) principles described
in Section 2.

1.2 Lean Software Development

An influential book in 2011 by Eric Ries entitled,
”The lean startup: how today’s entrepreneurs use con-
tinuous innovation to create radically successful busi-
nesses” (Ries, 2011), introduced the idea of the lean
startup. His work developed ideas from software en-
gineering and extended it to the entire process of pro-
duct development. He identified three foundations for
the lean startup: (1) design thinking, (2) agile soft-
ware development, and (3) lean startup method.

We will concentrate our discussion on the last two
of these foundations even though the first two can
have an impact on the development of ontologies. Let
us start first with a definition of the lean startup met-
hod. It is a scientific approach to creating and ma-
naging startups and increasing the speed of getting a
desired product into customers’ hands. While Ries’
original work did concentrate on the idea of startups,
this approach can be and has been applied within large
organizations for product development. And we are
proposing that we can look at ontology development
in the same way as a product for a targeted audience
and that the development principles of lean startups
can be an effective approach.

The lean product development process is a cycle
called Build-Measure-Learn (Ries, 2018). It can be
instantiated in four steps:
Learn. Identify the problem to be solved. As with all

software (and ontology) development it is crucial
that goals and expectations be articulated and do-

Cummings, J. and Stacey, D.
Lean Ontology Development: An Ontology Development Paradigm based on Continuous Innovation.
DOI: 10.5220/0006963003670374
In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018) - Volume 2: KEOD, pages 367-374
ISBN: 978-989-758-330-8
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

367



cumented to facilitate both development and
testing.

Build. Develop a minimum viable product (MVP)
(Moogk, 2012). The minimum viable product is
the bare basics of what you are building that is still
enough to test with customers. Why ”minimum”?
One principle of lean is that the speed of develop-
ment is crucial. This is not meant in a naive sense
of the word. What is fast will differ between dif-
ferent products. Speed is related to the idea of
getting feedback from users as early in the deve-
lopment process as possible. And while it is possi-
ble to involve users in the specifications stage with
focus groups and forums, it is always more com-
pelling to have users able to test out the product
and come to a fuller understanding of how their
expectations and your concepts, as embodied by
the product, differ. This is a central tenet of agile
software development and it is adopted by lean.
The demands of producing working software (or
ontology) force the development team to face is-
sues that might not be fully explored in the spe-
cifications stage and thus will identify issues and
force decisions that are best known soon than la-
ter. Thus, the true function of an MVP is to deliver
your concept or ideas to get feedback from users
as quickly as possible. It allows the development
team to collect the maximum amount of validated
learning about customers and their expectations of
the product with the least effort.

Measure. Start measuring. Your MVP (or it subse-
quent variants) will allow users to work with the
product. Both the development team and the users
will be able to perform traditional testing, realtime
monitoring, formal analysis and case studies. All
of these activities will provide data and feedback
to the development team in a way that is not bi-
ased by the viewpoint of the development team
only. Multiple viewpoints will be brought to bear
on the utility and capabilities of the product at this
stage.

Learn. Employ investigative methods to incorporate
the feedback into the product. At this stage there
can be several paths available: the concepts in the
current MVP can be modified to better suit the
user expectations; the next version of the MVP
can be developed by adding more capabilities to
the product; or it can be decided that there is a
need to pivot. As the MVP is tested and mea-
sured, it might be revealed that a hypothesis or
concept about the product is wrong. If this is the
case then a decision must be made to either ”per-
severe” or ”pivot” (Sekiguchi, 2018) (Eisenmann
et al., 2012). This decision is critical and is often

hard to accept. A pivot can be a total reimagining
of the product or it could be a refocusing of the de-
velopment on only a specific part of the product.
In all cases, this is a difficult decision but since
it will be supported by the facts in the Measure
stage it is hard to ignore.

Lean is a principled approach to new product de-
velopment. And it does not only provide a methodo-
logy to follow for the development of a product, it also
encourages the development team to ask the following
questions: ”Should this product be built?”, and ”Can
a sustainable business be built around this set of pro-
ducts and services?”. It is fairly obvious that the first
question can be easily repurposed to the development
of ontologies. The development of an ontology is a
long, hard process and thus should not be embarked
on lightly. But the second question, although it looks
like it is too ”business-y” to apply to ontology deve-
lopment is actually even more important for the de-
velopment of a lean ontology development methodo-
logy. It is a sad fact that although reuse is a major te-
net of ontologies, many ontologies have a very short
lifespan. Many are produced but few are reused. Even
upper level ontologies which should be sustainable
(constant evaluation, active users, new versions when
needed, etc.) are often active for only a few years
and then abandoned. So it is not outside the discus-
sion of development methodologies to borrow from
the world of commercial (and open source) software
development and to treat ontologies like substantial
software systems and apply a creation to deployment
to retirement (cradle to grave) view to ontology deve-
lopment.

2 LOD PRINCIPLES

This section will briefly outline the principles of Lean
Ontology Development (LOD) and will be used to
develop guidelines for methodologies to instantiate
these principles in practice.

One of the main tenets of LOD is that ontology de-
velopment should become much more like software
development. This does not imply that ontologies
need to be developed by computer scientists or soft-
ware engineers; the principle is that many of the esta-
blished techniques used in software development are
not yet fully embraced within ontology development
techniques explicitly and that this can be a disadvan-
tage.

The major design principles are:

Continuous Development. Since the LOD view of
ontologies is that they will undergo continuous

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

368



and iterative development, the integration of ver-
sioning into the ontology development process is
essential. Thus, all ontologies should have road-
maps that illustrate the versioning process so that
adopters of an ontology can plan to change and
grow along with the ontology. The major and mi-
nor version numbering scheme used by software
should be adopted.

Minimum Viable Ontology via Prioritization.
With the adoption of versioning it is extremely
important for priorities to be established. Not
all requirements or features are created equally
and they should all be prioritized early in the
development cycle and reviewed constantly.
These priorities must be explicitly stated and
documented within the development roadmap
and within the ontology itself. With prioritization
comes the idea of a Minimum Viable Ontology
(MVO) analogous to the MVP in Lean Startup.
An example of how to realize this principle is the
use of competency questions (CQs) to describe
the required features of the ontology. The deve-
lopment of CQs is not sufficient on their own to
allow for LOD. The next step to the development
of CQs is their prioritization. This extra step for-
ces the developers to think of the CQs as a whole
and not as individual items in a list. Asking the
ontology development team to rank or order the
CQs will force discussion of what must be in the
ontology for it to function within its imagined ap-
plication domain. This will allow for the develop-
ment of a Minimum Viable Ontology (MVO) and
lead to the first iteration of the ontology that can
be released to the user community. This establis-
hes the principle of always having a ”working”
version of the ontology available to the commu-
nity so that they can start evaluating it.

Community Evaluation. The previous principle is
in line with a major principle of ontologies which
is that they are a ”shared conceptualization”
(Gruber, 1995) and therefore there is a community
of users. LOD indicates that this community must
always be considered and involved. This commu-
nity must be explicitly identified and documented
in the ontology development process. Documen-
tation can be in the form of backlogs, issues ma-
nagement, identification of features to be depreca-
ted, user forums, amongst other communications
mechanisms.
This evaluation by the community does not totally
replace in-house testing of the ontology by the
developers. It enhances the verification and va-
lidation methodologies already developed by en-
larging the group of people who are contributing

to this testing of the ontology.

Ontology as API. Ontology developers should em-
brace the notion of the ontology as API. A soft-
ware API is a communications mechanism con-
sisting of definitions, protocols and tools for con-
structing software. The construction of an onto-
logy should be viewed in the same light; one can-
not remove the applications of the ontology from
its design and construction.

Reuse. It would be difficult to discuss principles of
ontology design without mentioning the principle
of reuse. Although considered to be a major ad-
vantage in using ontologies, in practice it is often
the case that reuse is minimal or not even expli-
citly considered in the ontology development met-
hodology. And there are good reasons for this -
many ontologies do not lend themselves to reuse.
A major factor in this is a lack of discussion on
ontology latency (rate of change) and release cy-
cles. Thus, ontology developers may feel unsure
about reusing other ontologies because of the ra-
mifications and uncertainty of changes in the reu-
sed ontology.

Sustainability. This principle is a culmination of all
of the previous principles. The establishment of
a roadmap and release cycle combined with an
emphasis on the user community along with the
appropriate communication mechanisms will re-
sult in a sustainable ontology. So many ontolo-
gies, including upper level ontologies, have not
had as much impact as they could have had be-
cause they were not designed with sustainability
in mind. LOD envisions a different approach that
will hopefully move ontology development closer
to methodologies that can achieve sustainability.

The ”take home” message is that LOD is pat-
terned after Agile (Highsmith and Cockburn, 2001)
software development. Most current ontology deve-
lopment methodologies resemble the Waterfall deve-
lopment model. Embracing Agile will encourage the
idea that ontologies are linked to communities and
thus development is to be driven by the many not the
few. To accomplish this goal, ontology developers
must strive to always provide a working version of the
ontology under development so that the community
can experiment with it and give immediate feedback.

3 LOD METHODOLOGY

The following are some suggestions for existing met-
hodologies that can be used within the LOD context.
It is by no means an exhaustive list but strives to

Lean Ontology Development: An Ontology Development Paradigm based on Continuous Innovation

369



show how various methodologies can be repurposed
for LOD.

3.1 Development of Competency
Questions

LOD principle: Minimum Viable Ontology via
Prioritization

Competency Questions serve to specify all areas
the ontology and the overall system (Fox and
Grüninger, 1994) must include to be a complete pro-
duct. The ontology must be able to represent the tasks
needed for an external system should one be required.
In developing these questions it is important to con-
sider if and how the ontology will interoperate with
other systems.

Competency questions are to be divided into basic
categories as defined below but may be further sub-
divided into domain specific requirements to establish
logical parts of the system.

• Selection – questions that are answered through a
SELECT query on the ontologies instances

• Counting – questions that are answered through
aggregation of instances

• Capability – a technology or interface the onto-
logy must support in its design

• Reasoning – an aspect of reasoning that is requi-
red either through validation or categorization of
instances.

In terms of further breakdown of common questi-
ons, (Ren et al., 2014) provides examples of the types
of questions that are valid competency questions. It
is important to remember that it must be possible for
the competency questions to be answered by an on-
tology. As an example, questions about whether ele-
ments should be included in an ontology should be re-
moved. Instead, concepts that should be included are
derived from competency questions. In developing
questions one may find redundant questions that are
better answered by a more precise question. Develo-
pers should review all questions to remove redundant
questions and focus on validity.

Once a set of questions is chosen, consideration of
possible answers for each question should be taken.
To be more precise, these answers can be thought of
as return values in a function. Developers should con-
sider cases where part of the question may become in-
valid due to a lack of results in an earlier part of the
query; an example might be where aggregation is per-
formed on a category without instances. Additionally
answers may return both instances and values to be
complete; these should be identified.

As an an example of multiple return values sup-
pose in an ontology modelling used vehicles, one
asks: ”Which vehicles have the lowest price?”. In this
case we want both a numerical value and the instance
of the cheapest vehicle. Breaking down questions like
this can help in the development potential queries for
selection and counting based competency questions.

Competency questions are an important vehicle
for the documenting of specifications and goals for
the ontology under development. A prioritization of
these questions can aid in the selection of a subset of
these questions to be used in the development of a mi-
nimum viable ontology (MVO).

3.2 Three Stage Ontology Development:
Upper Level, Import, New

LOD principles: Reuse and Sustainability

3.2.1 Upper Level Ontologies

Upper level ontologies are formally defined by com-
bining mathematical logic with philosophy to produce
the most general abstraction that applies to all catego-
ries of ontology development. (Conesa et al., 2010;
Kiryakov et al., 2001; Herre, 2010). Upper level on-
tologies define the most basic concepts, relations, and
axioms to model objects within time and space. This
means developers can use their expertise of the dom-
ain they are developing for without the need to be-
come an expert in space/time. It also means one is
not attempting to redefine existing agreed upon noti-
ons of time and space. Finally, there is the advantage
of being able to relatively easily integrate your onto-
logy with other ontologies built upon the same upper
level ontology. This allows your ontology to interact
with more than one domain or a larger part of your
domain.

Upper level ontologies however, are not essential
to ontology development and the first decision one
must make is if an upper level ontology’s qualities
are applicable to your needs. Consider the following
when determining whether or not to use an upper level
ontology:

• Upper level ontologies require a significant invest-
ment of time to understand their design and usage.

• Ontology developers must consider the domain
that they are modelling in the context of existing
ontologies. Is it common to use an upper level
ontology in your domain and if so what are they?
Failure to take this into account can greatly impact
the acceptance of the ontology by its community
of users.

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

370



• If usage of upper level ontologies are not com-
mon in your domain, then check for commonality
in the definition of time and space between what
your ontology needs and what exists (or is dupli-
cated) in an existing upper level ontology. If there
is not enough commonality then using an upper
level ontology may require you to modify these
definitions thus defeating the power of using an
upper level ontology.

• The ontology developer must consider their requi-
rements for reasoning. This can help in determi-
ning if the formality and definitions for axioms of
an upper level ontology may help direct this rea-
soning.

When choosing a particular upper level ontology,
active development and usage is essential. The com-
plexity of defining such a general design requires ite-
rative and continuous work (Herre, 2010). This often
results in the development of more than a single ver-
sion. Such is the case with the Basic Formal Ontology
(BFO) which is in its second major version as of this
writing. Version 2 of BFO made structural changes
based on community feedback and usage and the de-
velopers were responsive to user requirements which
is a good sign to developers looking to adopt it.

In the case where one considers an upper level on-
tology to be complete and not needing changes then
one should also consider new implementations and
technologies. These upcoming technologies within
the knowledge engineering field are often essential to
ongoing works. An upper level ontology should strive
to support as many technologies as possible and de-
precate those that are no longer used. A sound de-
sign for an upper level ontology is one that is defi-
ned formally in first order logic with implementati-
ons in ontology specific languages. Due to differen-
ces in capability one may not meet feature parity but
should strive to be as close to parity with the original
design as possible. New technologies and languages
often allow upper level ontologies to be implemented
more precisely which can provider greater utility to
prospective users. In other words, consider the deve-
lopment philosophy of the upper level ontology that
you are evaluating.

3.2.2 Importing/Using External Ontologies

The first question to ask when considering importing
an external ontology is “Why?”. There are many re-
asons for doing so including: the need to use recog-
nized vocabularies in the domain of the ontology, and
to provide a mechanism for connecting to other on-
tologies and their communities. The exploration of
other ontologies and taxonomies can serve to inspire

and can be a vehicle for facilitating reuse by deciding
not to reinvent the wheel.

But there are a number of reasons why developers
are not willing to using other ontologies including the
problem of totally buying in conceptually with the ex-
ternal ontology; there is often unease with parts of an
external ontology that may dissuade adoption of even
parts of that ontology. There is also the perception
that it is easier to just build it yourself and often that
is the case with the adoption of complex ontologies.

But given that reuse is considered to be a major
advantage of using ontologies, how can selection of
external ontologies for reuse be approached? Guide-
lines for safe reuse include:

• Do not just cherry pick one or two concepts or
terms from another ontology. Use relations such
as ”owl:sameAs” and ”skos:broaderThan” to refe-
rence other ontologies so that other communities
can understand your ontology.

• Use active ontologies or standards like W3C on-
tologies to ensure sustainability of your ontology.
Select ontologies that have documented versions
and roadmaps and allow for community feedback.

• Connect with the highly relevant ontologies in
your domain. This will facilitate community un-
derstanding and buy-in. It can often be difficult
to search for ontologies so strive to identify those
portals that contain well documented ontologies
in your domain such as Bioportal, GitHub, and
W3C. Identify search terms in these portals as
well as in general search engines that select for
ontologies in your areas of interest.

• Documentation is of extreme importance. When
importing or using any external ontology, docu-
ment all decisions as to why, what, and how ex-
ternal ontologies are used in your ontology. This
will aid in sustainability and versioning.

• An often neglected part of reuse is the notion of
reusing the competency questions from imported
ontologies. This is often not possible because
most ontologies either do not use or do not em-
bed their CQs within themselves. If the other on-
tologies did not use CQs, the same effect can be
had by collecting and linking to their specification
documents.

These guidelines help expose the complexities of
reusing ontologies and identify the need for tools to
aid the ontology development analogous to makefiles
and version control in software development.

Lean Ontology Development: An Ontology Development Paradigm based on Continuous Innovation

371



3.2.3 The Development of New Ontology
Elements

Developing new ontology elements is ultimately the
result of not finding an existing ontology that meets
your requirements. This may be because an ontology
exists but is large and/or includes unrelated elements
from another domain that will not fit within the exis-
ting design or that a viable option does not exist. In
the development of these new elements it is common
for researchers to define classes and relations directly
into their existing ontology. This often results in the
same issue for future researchers who may be inte-
rested in a component of your ontology but are un-
willing to import it due to conflict of domain content.

Instead of integrating this content directly into
your ontology it is preferable to create a smaller sub-
ontology that can be imported and used within your
existing design. The smaller sub-ontology will de-
fine all domain specific content required for your pro-
blem. Developing in smaller sub-ontologies provides
several benefits: firstly, it provides an ontology for ot-
hers who may require a description of this domain in
an ontology to import and use; secondly, it allows for
early feedback on your design and may garner inte-
rest from experts in a community outside your own
who are more familiar with the domain and will in-
dependently contribute to strengthening your initial
design; and thirdly, it allows one to divide and cate-
gorize their competency questions and associate them
with sub-components which can help direct users to
which parts to look at when querying. Finally, the gre-
atest advantage it provides is in the future where you
and other ontology developers can use these smaller
specific ontologies to develop new ontologies faster
allowing one to amortize their work over time.

3.3 Evaluation and Sustainability

LOD Principles: Ontology as API, Community
Evaluation, and Sustainability

3.3.1 In-house Evaluation

Community evaluation does not preclude the need for
in-house evaluation of the ontology by the develop-
ment team. But this level of testing should be released
to the community for comment and to inform commu-
nity evaluation.

Evaluating the ontology requires consideration of
its requirements but should also follow a high level
check of competency questions, axioms and some
form evaluation methodology such as FOCA (Band-
eira et al., 2017). An important step to in-house inva-
lidation is to start using the ontology internally; that

means to use it with any systems or software products
and generate instances as soon as possible. Ideally
one has a test set of instances that can be re-used for
regression testing so that each version that is released
can be compared to examine breaking changes. Re-
gression testing results can often help produce guides
for others to migrate.

If the ontology is expected to be used with a re-
asoner, developers should be validating against the
test set of instances ensuring that rules are correct and
complete based on the requirements of the version.

Competency questions can be validated using ex-
ample queries for selection and counting based questi-
ons. These should be validated to ensure that they re-
turn the correct instances or values and that they pro-
vide a useful response. A useful response would be a
question that meets the needs of the user, i.e. would
be a question the user would actually ask. Now is the
time to reconsider the questions themselves to ensure
that they make sense. Often early in the development
process, requirements may not reflect actual usage re-
quirements due to missing information or misunder-
standings of user needs.

3.3.2 Releases and Versioning

Developing a standard for releasing and versioning
the ontology should be established early in develop-
ment. The standard should include documentation on
release number schemes, release note contents, and
methods for user contribution. In scheduling releases
one should consider the competency questions par-
ticularly in order since one can define a preliminary
road map of where they fit.

Versioning should use some form of major and
minor versioning which denoted using a standard na-
ming scheme. Minor versions should include small
additions, bug fixes or other errors within the onto-
logy. It should also include some form of annotations
that denote elements that will be deprecated or chan-
ged within the next major version. These annotations
will allow users to work with the ontology and avoid
using soon to change terminology and also contribute
to replacement terms. In other terms, minor versions
should not make breaking changes to the interface as
in software libraries. In ontological terms this means
users should be able to use the same classes and rela-
tions they were using in the prior minor version.

Major versions may include breaking changes that
alter the structure, remove terms, and or include sets
of competency questions to meet some milestone.
Within each major or minor version any competency
questions implemented and/or terms added or depre-
cated should be included in the release notes as well.
Major versions should only include significant feature

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

372



inclusions or alterations to the ontology otherwise mi-
nor versions should be used.

Prior to starting the next version one may choose
to publish a tentative road map that lists competency
questions that will be included within the next release.
Community feedback may alter the order or priority
of issues.

Finally one must remember that their ontology li-
kely depends on other ontologies which may make
breaking changes to their design. This requires
tracking versions of required source ontologies in the
way that package managers and build scripts do in
software. A similar approach will need to be taken for
source ontologies to track versions used and breaking
changes. Throughout time these ontologies will need
review to ensure newer versions are still compatible
with usage. External ontology changes then make an
impact on future releases as they will influence things
like deprecated terms, etc..

The release cycle consists of the following:

• Develop - Evaluate/Testing - Repeat (Agile met-
hodology)

– evaluating and testing by community, e.g. simi-
lar to the way BFO does this

• Versioning by adding more CQs

• Versioning of dependent ontologies - need the
concept of a makefile for ontologies. This is cur-
rently done by documentation alone.

4 CASE STUDY

A brief example of how this approach can help is il-
lustrated by our experience as part of a large team
developing a complex ontology on culture with the
Canadian Writing Research Collaboratory (Brown,
2018). A very large and detailed list of competency
questions was compiled for the ontology (although
not before extensive preliminary ontology develop-
ment was done). This has served the ontology de-
velopment process well but it also exposed to us a
danger in not documenting all requirements explicitly.
One of the tools being used to visualize the ontology
has limitations on what relations it can handle at the
current time (it is also under development) and so
if the ontology cannot be visualized by the tool this
might limit its use by the user community. This ne-
cessitates that this requirement to conform to this tool
should be in the CQs. Because this requirement is not
in the CQs this means that we did not prioritize this
and thus decisions based on the usability of the tool
are addressed outside of the CQs and could result in
incomplete documentation of design decisions. The

CQs are meant to provide documentation for design
decisions and so must include every aspect of the use
of the ontology including tools that will be used with
the ontology. This tool identification aspect is par-
ticularly important since the development of quality
tools for ontologies is in its infancy and the decision
to link design decisions to tools must be considered
carefully. This does not mean that a decision on using
a particular tool is wrong, in fact, it might be essential
for community acceptance. But documenting this de-
cision via CQs is essential for the development of an
MVO and acceptance by the user community. Identi-
fication of this tool requirement and its documentaton
has aided us in our MVO development.

Another benefit was the discussion generated by
this issue and the realization that although the use of
the visualization tool was desirable it was not to be
used as an argument against specific ontological ele-
ments if they possessed other distinct advantages. A
mature approach to prioritization has been developed
via this discussion.

The need for evaluation, both in-house and by the
user community, has resulted in the development of
a testbed of linked data that can be used to evalu-
ate the utility of the ontology to describe the dom-
ain area. This testbed is being developed in-house
but has involved external consultations with exter-
nal researchers. The development team has also star-
ted to survey (personal consultations and on-line sur-
vey) the user community with regards to their fami-
liarity with and usage of existing ontologies. This
will help the team to make choices with regards to
the use of existing ontologies. One example of this
is the exploration and decision making around the
representation of events in the ontology. The team
has examined many existing Event ontologies inclu-
ding CIDOC-CRM’s Event class, W3C’s Event on-
tology and DOLCE Lite’s event handling. Discussi-
ons with the user community is ongoing to establish
which Event ontology will be used by the CWRC on-
tology. The Agile/Lean principle of consulting and
engaging the user community throughout the entire
development process has definitely helped to inform
the ontology development work and to excite the user
community with the possibilities of this new Digital
Humanities ontology.

5 CONCLUSIONS

This short discussion paper on adapting Lean Startup
and Agile Software Development to ontology deve-
lopment aims to inspire discussion about the inter-
section of ontology development and software engi-

Lean Ontology Development: An Ontology Development Paradigm based on Continuous Innovation

373



neering. There are many areas of similarity between
the two domains and it appears that ontology deve-
lopment and the tools to enable it are at a point where
they can benefit from the appraoches and tools invol-
ved in software development. The principles of Con-
tinuous Development, Minimum Viable Ontology via
Prioritization, Community Evaluation, Ontology as
API, Reuse, and Sustainabilty are a start to the deve-
lopment of a Lean Ontology Development paradigm
that takes lessons and tools from software engineering
and adapts them to the needs of ontology developers.

ACKNOWLEDGEMENTS

This work has been greatly improved by the authors’
discussions and collaboration with Shawn Hind and
the following members and staff of CWRC: Susan
Brown, Kim Martin, Abi Lemak, Jasmine Drudge-
Wilson, Alliyya Mohammed, and Gurjap Singh.

REFERENCES

Bandeira, J., Bittencourt, I., Espinheira, P., and Isotani, S.
(2017). Foca: A methodology for ontology evaluation.
https://arxiv.org/abs/1612.03353v2. Accessed: 2018-
06-18.

Brown, S. (2018). Cwrc/csec — canadian writing research
collaboratory. https://beta.cwrc.ca/. Accessed: 2018-
06-18.

Conesa, J., Storey, V. C., and Sugumaran, V. (2010). Usabi-
lity of upper level ontologies: The case of researchcyc.
Data & Knowledge Engineering, 69(4):343 – 356.

Eisenmann, T. R., Ries, E., and Dillard, S. (2012).
Hypothesis-driven entrepreneurship: The lean star-
tup. Harvard Business School Entrepreneurial Ma-
nagement Case No. 812-095.

Fox, M. S. and Grüninger, M. (1994). Ontologies for enter-
prise integration. In CoopIS.

Gruber, T. R. (1995). Toward principles for the design of
ontologies used for knowledge sharing. International
Journal Human-Computer Studies, 43(5-6):907–928.

Herre, H. (2010). General formal ontology (gfo): A foun-
dational ontology for conceptual modelling. In Ro-
berto Poli, Michael Healy, A. K., editor, Theory and
Applications of Ontology: Computer Applications,
pages 297–345.

Highsmith, J. and Cockburn, A. (2001). Agile software
development: the business of innovation. Computer,
34(9):120–127.

Kiryakov, A., Simov, K., and Dimitrov, M. (2001). Onto-
map: portal for upper-level ontologies. In Proceedings
of the International Conference on Formal Ontology
in Information Systems, pages 47–58.

Moogk, D. R. (2012). Minimum viable product and the
importance of experimentation in technology startups.

Technology Innovation Management Review, 2(3):23–
26.

Ren, Y., Parvizi, A., Mellish, C., Pan, J. Z., van Deem-
ter, K., and Stevens, R. (2014). Towards competency
question-driven ontology authoring. In Presutti, V.,
d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., and
Tordai, A., editors, The Semantic Web: Trends and
Challenges, pages 752–767, Cham. Springer Interna-
tional Publishing.

Ries, E. (2011). The lean startup: how today’s entrepre-
neurs use continuous innovation to create radically
successful businesses. Portfolio, London.

Ries, E. (2018). The lean startup methodology. http://
theleanstartup.com/principles. Accessed: 2018-06-
18.

Sekiguchi, Y. (2018). Lean startup - what is pi-
vot? http://www.slideshare.net/YukiSekiguchi/lean-
startup-what-is-pivot. Accessed: 2018-06-18.

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

374


