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Abstract: The growing demand for processing of streaming data contributes to the development of distributed 
streaming platforms, such as Apache Storm or Flink. However, the volume of data and complexity of their 
processing is growing extremely fast, which poses new challenges and tasks for developing new tools and 
methods for improving the efficiency of streaming data processing. One of the main ways to improve a 
system performance is an effective scheduling and a proper configuration of the computing platform. 
Running large-scale streaming applications, especially in the clouds, requires a high cost of computing 
resources and additional efforts to deploy and support an application itself. Thus, there is a need for an 
opportunity to estimate the performance of the system and its behaviour before real calculations are made. 
Therefore, in this work we propose a model for distributed data stream processing, stream scheduling 
problem statement and a developed simulator of the streaming platform, immediately allowing to explore 
the behaviour of the system under various conditions. In addition, we propose a genetic algorithm for 
efficient stream scheduling and conducting experimental studies. 

1 INTRODUCTION 

The processing of data flows is increasingly being 
introduced into our daily life through the 
development of Internet of Things, social networks, 
online streams, monitoring centers. The industry and 
the scientific community are also confronted with 
the constantly increasing volume and processing 
complexity of streaming data. This poses new 
challenges and tasks for researchers of developing 
tools and methods for processing of data streams. 

Currently, there are distributed platforms for 
streaming data processing. One of the most common 
is Apache Storm, Spark Streaming, Flink, S4. 
Operators of streaming applications, which process 
data, are assigned to nodes of a computing cluster on 
which the platform was deployed. The functionality 
of such platforms involves mechanisms for scaling 
by adding new nodes and replication of application’s 
operators. Such functionality is especially important 
when a platform is deployed in clouds (Amazon 
EC2, Microsoft Azure), where new nodes can be 
added or terminated depending on the density of 
application’s workload. 

The optimal configuration of both the platform 
and the application may improve the performance of 

data processing in terms of throughput, latency, 
energy consumption. Choosing the optimal number 
of nodes, correct platform parameters and the 
optimal distribution of applications' operators across 
the computing nodes can achieve maximum 
performance of the system. Moreover, there are 
options for modifying the structure of streaming 
application (Hirzel et al., 2014). For example, the 
union of operators to get rid of serialization, or 
permutation of operators to reduce the amount of 
data transferred between them. 

To solve optimization problems, new methods 
and algorithms for scheduling of composite 
applications in distributed computing environments 
are developed. In comparison to data processing in 
batch mode, the scheduling of streaming data is 
characterized by the continuous arrival of new tuples 
of data that require their immediate processing. It 
created the need for simultaneous work of all 
application’s operators. Due to the continuity, the 
final amount of data for processing can’t be 
determined. However, the density of incoming 
workload can be predicted, and the received system 
load estimates can be taken into account during the 
scheduling of streaming application. Since the 
workload density is dynamic and may have a peak 
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and off-peak time intervals, it is possible to 
distribute operators of streaming application in such 
a way as to combine peak intervals with off-peak 
ones to increase resources utilization and improve 
system’s performance without losing the 
performance of overloaded resources. 

Therefore, the main idea of this work is to 
investigate the scheduling problem of streaming data 
processing with an ability to overload the 
computational resources in order to combine peak 
and off-peak workload densities of application’s 
operators on the basis of predictive and performance 
modeling. The contribution of the work is: 

 Modeling and problem statement of scheduling of 
applications for streaming data processing taking 
into account the forecasting of incoming 
workload and overloading of computing nodes; 

 Development of the distributed streaming 
platform simulator that allows exploring the 
behavior of the system under various conditions 
and scenarios; 

 Development of a genetic algorithm for 
scheduling of streaming data processing. 

The article is further structured as follows. 
Section 2 is devoted to a review of the related works 
to the scheduling of streaming data processing. 
Sections 3 presents the background of streaming 
data processing. The model and problem statement 
of scheduling problem are described in section 4. 
Section 5 is devoted to the development of simulator 
and genetic algorithm to solve the scheduling 
problem. Experimental studies and analysis of their 
results are carried out in section 6. Section 7 
includes a conclusion and future works. 

2 RELATED WORKS 

In general, the field of task scheduling in distributed 
computing environments has long been at sight of 
the scientific community. There is a huge amount of 
works devoted to the scheduling of batch data 
processing in a form of composite applications or, 
for example, MapReduce applications in various 
computing environments (Singh and Singh, 2013; 
Wu et al., 2015). In such works, a lot of algorithms 
of different classes, such as heuristic (Arabnejad, 
2013; Topcuoglu et al., 2002), metaheuristic (Liu et 
al., 2013; Nasonov et al., 2015) and possible 
multiple modifications or hybrid schemes are 
developed and investigated (Rahman et al., 2013; 
Tsai et al., 2014; Yin et al., 2011). However, 
compared to batch processing, the area of scheduling 

of streaming data processing is currently poorly 
explored and is at the development stage. 

Most of the existing algorithms are sharpened for 
a particular streaming platform (Storm, Spark 
Streaming). 

A resource-aware scheduling algorithm for Storm 
is proposed in (Peng et al., 2015). The algorithm is 
aimed at increasing the throughput of the system due 
to the tight placement of application’s operators. The 
allocation is based on the calculation of the minimal 
difference between the available resource on node 
and operator’s requirements to these resources.  

Another algorithm (Xu et al., 2014), which is also 
a modification of the Storm platform is aimed at 
minimizing the inter-node interaction. The algorithm 
works with an allocation matrix of operators on 
computing nodes. Calculation and update of this 
matrix are based on a monitoring of system’s 
workload. 

Authors of (Eskandari et al., 2016) present a 
hierarchical algorithm for Storm. The main idea of the 
algorithm lies in the two-phase partitioning of 
application’s topology graph into roughly equal parts 
for uniform placement of operators across computing 
nodes. The partition is made by minimizing the sum 
of edges’ weights between subgraphs. Moreover, 
before the partitioning, the optimal number of 
required nodes is estimated. 

Two algorithms for the Storm platform are 
suggested in (Aniello et al., 2013). The first is an 
offline algorithm that tries to determine the most 
related parts of the topology and place them on one or 
nearby nodes. The second algorithm uses monitoring 
data of resources utilization and traffic between nodes 
for further periodic adaptation of previous schedules. 

The next work is devoted to Spark Streaming (Liao 
et al., 2016). There, one of the most influential 
system’s parameters, which should be correctly 
selected, is the time window for microbatching. Thus, 
the work is focused on dynamical adaptation of the 
time window for the microbatching, depending on a 
number of entering events in the system. 

Besides platform oriented algorithms, there are 
works devoted to generalized modeling and 
investigation of the streaming data processing. In 
such works, the scheduling problem is presented in a 
more generalized form, with determination of 
indicators and performance characteristics of the 
system and ways to evaluate and improve them. 

The method for grouping incoming tuples across 
operators is proposed in (Rivetti et al., 2016), 
allowing the computational workload to be balanced. 
Due to the evaluation of the execution time of tuples 
and their distribution to less loaded operators, the 
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proposed algorithm achieves the balance between 
execution time of tuples. 

In (De Matteis 2017), authors study questions 
related to the elasticity of streaming platforms and 
how to achieve elasticity by prediction. In the paper, 
performance models of streaming data processing 
are described in detail, such as bandwidth model, 
tuple execution time, resource consumption, and a 
reconfiguration model of the system. 

3 BACKGROUND 

In this section, we’ll look at typical application 
organization for streaming data processing. An 
application for streaming data processing is a graph 
where vertexes are computational operators, and 
edges represent data transfer between operators. 
Such a graph is abstract structure, just as a definition 
of operator also will be considered as a logical unit. 
For the direct processing of data and to enable the 
application to scale, a certain number of operator 
instances are created, which also can be called tasks. 
The data stream is defined as an unlimited flow of 
tuples through operator instances of application’s 
graph. A tuple is a logically complete unit of data, 
i.e., can be processed by the operator. Tuples can be 
different both in volume and in type. Fig. 1 shows an 
example of a graph where black color corresponds to 
logical structures (operators and dependencies 
between them), while other colors indicate physical 
operator instances and physical data flows. 

There are various strategies for organizing the 
transfer of data flows between instances of 
operators: 

 random distribution of tuples through operator 
instances (a); 

 each instance processes tuples with only a certain 
key (b); 

 custom routing of tuples (c). 

 

Figure 1: Example of application graph with logical (black 
color) and physical (other colors) levels of objects. 

A similar representation can be found in the most 
streaming platforms. For example, in Storm, a graph 
is called topology with bolts or spouts as operators. 
Spark Streaming works with stages (operators) and 
tasks (operator instances). In the Apache Flink, the 
logical abstraction of an application is named 
JobGraph, which is composed of JobVertexes 
(operators), while on the physical level, application 
graph called ExecutionGraph with corresponding 
ExecutionVertexes as operator instances. 

The computing environment is presented in the 
form of a set of computing nodes (physical or 
virtual). Some of the resources are allocated for the 
management system of the platform itself and other 
system needs, for example, cluster managers, etc. 
(Zookeeper, Yarn, Mesos). The remaining resources 
are used to place and launch instances of operators 
(tasks) and directly process incoming data (streams 
of tuples). The distribution of computing resources 
(CPU, memory) between placed tasks can be carried 
out in different ways. Resources can be allocated for 
each process, and can also be shared by all running 
processes on the machine. In this paper, we focus on 
the principle with shared computing resources. Thus, 
we assume the possibility of overloading the node in 
order to achieve maximum utilization of resources. 

 

Figure 2: Example of a computing environment with 
allocated tasks across computing nodes. 

To start an application for streaming data 
processing, it is required to provide a schedule 
(Fig. 2). The schedule includes the configuration of 
the application itself, a configuration of the 
computing environment and the assignment of 
application’s tasks to the nodes of the environment. 
Effective scheduling allows improving the 
performance of the system by optimizing for 
selected criteria. The criteria can be the 
maximization of throughput, resource utilization, 
minimization of latency and cost of resources. In 
addition, during scheduling, it is worth considering 
possible constraints, for example, budget, reliability. 
Therefore, there is a need to develop effective 
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scheduling algorithms capable of producing 
schedules that would satisfy the identified 
constraints and optimize the selected criteria. 

4 MODELLING AND PROBLEM 
STATEMENT 

In this section, models of application, computing 
environment, performance models will be presented 
together with a problem statement for scheduling of 
streaming data processing. 

4.1 Computing Environment 

The computing environment consists of a set of 
computing nodes (hosts) ܪ = {ℎ௩}. Each node is a 
set of characteristics or resources that are allocated 
to tasks for their execution. ℎ௩ = {௩ݓ} = ,௩ݑܿ) ,௩݉ܽݎ ,௩ݑ݃ … ) (1)

The set of resources may include the number and 
frequency of CPU cores, volumes of RAM or GPU, 
and others. In this paper, we assume that tasks 
hosted on the same host share its resources in the 
proportion of their workload densities. Assuming 
work in the cloud environment and taking into 
account virtualization technologies, the computing 
environment ܪ can be changed during the 
scheduling process. So, if a task needs a certain 
amount of resources for its allocation, then a new 
virtual machine can be allocated from any of the 
suitable hosts, which satisfies the task's requirement. 

4.2 Workload 

The workload consists of composite applications for 
streaming data processing, each of which has a set of 
operators. Thus, workload ܹ = (ܱ,  ,is a graph (ܧ
consisting of the set of all operators ܱ = { ܱ} of 
these applications and the set of dependencies 
between them ܧ = {݁,}. Edge ݁݅,݆ stands for a 

logical data dependency from the parent operator ܱ݅ 
to the child operator ܱ݆. Parent operators will be 
denoted by function:  ݎܽ( ܱ) = { ܱ ∈ ܱ| ݁, ∈ (2) {ܧ

Similarly, the set of child operators is defined by the 
function:  ܿܿݑݏ( ܱ) =  { ܱ ∈ ܱ|݁, ∈ (3) {ܧ

Operators that don’t have ancestors are called 
sources, and operators that don’t have children are 
sinks. Just like the computing environment can be 
changed during scheduling, the workload’s operators 
can also be reconfigured. 

 Since operators are logical structures, each 
operator is characterized by its performance models, 
the structure of input and output data. These 
performance models can be obtained empirically by 
analysing the statistical data of monitoring system or 
theoretically derived by the application developer. 
The following functions can be included in 
performance models for each operator ܱ݅:  
 ܴܴ(ݏ) – function, which estimates the amount 

of resources ݎ for the complete processing of ݏ 
input tuples; 

 ܫ ܲ,(ݏ,  is a number of input tuples, obtained – (ݎ

by operator ܱ from the parent operator ܱ݇  which will be processed, depending on ,(ܱ݅)ݎܽ∋
the total number of input tuples ݏ (or set of 
tuples) and the set of resources, assigned for the 
task; 

 ܱ ܲ,(݊) – is a number of output tuples, which 
will be transmitted to the child operator ܱ )ܿܿݑݏ∋ ܱ) depending on the number of processed 
input tuples ݊. 

Each operator ܱ has a set of its operator instances {| ∈ ܱ}. All next definitions are directed to a 
task  of operator ܱ. Operator instance or task is 
the immediate object that processes the incoming 
data.  ݆ = (݆ܺ, ܻ݆, ݆ܳ) (4)

Therefore, task  is characterized by the input ܺ 
and output ܻ flows of tuples, as well as the queue of 
tuples ܳ, which accumulates when the capacity of 
this instance doesn’t allow to process all incoming 
tuples ܵ(ݐ) = ܺ(ݐ) + ܳ(ݐ) . 
Input dataflow of tuples ܺ is a set of stochastic 
processes:  ݆ܺ(ݐ) = ݆݇ݔ} ݇{(ݐ) ∈ {1, … (5) {ܯ

where ܯ = )ݎܽ| ܱ)| is equal to the number of 
parent operators of ܱ݅. Similarly, the output stream 

of processed tuples ܻ݆ is a set of stochastic 
processes:  ܻ݆(ݐ) = ቄ(ݐ)݈݆ݕቅ, ݈ ∈ {1, … ܰ}, (6)
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where ܰ = )ܿܿݑݏ| ܱ)| is a number of child 
operators. 
The queue of not processed tuples:  ݆ܳ(ݐ) = ቄ݆݇ݍ ,ቅ(ݐ) ݇ ∈ {1, … (7) {ܯ

is a set of stochastic processes that coincides with 
the dimension of ݆ܺ. Therefore, the total number of 

tuples of stream ݆݇ݔ , that are waiting for their 
processing by the task at a time ݐ is:  ݆݇ݏ (ݐ) = ݆݇ݔ (ݐ) + ݆݇ݍ ݐ) − Δ(8) ,(ݐ

where Δݐ – is a time step. Each next value of the 
queue can be estimated as:  (ݐ)݇ ݆ݍ = ݆݇ݏ (ݐ) − ,(ݐ)݆ݏ)݇,݅ܲܫ (9) ,((ݐ)݆ݎ

where ݎ(ݐ) – are the node’s resources, allocated for 
operator instance  at the moment of time ܫ ,ݐ ܲ, is 
a performance model of operator ܱ and ݏ =  is {ݏ}
the set of total amount of input tuples for processing. 

It is assumed, that resources ݆ݎ of node ℎݒ, 
which allocate task ݆ ∈ ܱ݅ , run a set of tasks ത ܿ|ܿ}= ∈  ∩ ܱ݀ ∩ ℎݒ} with the corresponding total 

amount of input tuples ̅ݏ =   :can be calculated as {ܿݏ}

(ݐ)݆ݎ = ℎݒ ∑((ݐ)݆ݏ)ܴܴ݅ ݏ̅∋ܿݏ((ݐ)ܿݏ)ܴܴ݀  (10)

The resulting number of output tuples as a result of 
data processing can be estimated as:  (ݐ)݈݆ݕ = ,(ݐ)݆ݏ)݈,݅ܲܫ)݈,ܱ݅ܲ (11) (((ݐ)݆ݎ

Suppose that the application was started at time ݐ. 
During the time ݐ௦ we collected data on the densities 
of input, output streams, as well as the queues of all 
operator instances from . For further use by 
schedulers, these stochastic processes can be 
modeled and forecasted for a further period of 
time Δݐ. Suppose that there is a model that allows to 
predict the flow of incoming tuples ݔ. Using the 

model, we can obtain the forecast ݔఫ for the next 
time period Δݐ, from the current time ݐ௦ to the 
moment of time ݐ = ௦ݐ + Δݐ. Further, by analogy 
with the calculation of ݍ and ݕ on the basis of 

input stream ݔ, we can predict the queue ݍఫ and 

density of output stream ݕఫ. An example of a data 
flow through an operator and its forecast is shown in 
Figure 3. 

 

Figure 3: Example of data flow over one operator instance. 

In Figure 3, it is assumed, that node cannot 
process more than 100 tuples for the single 
timestamp. The peak workload of input stream 
exceeds the possible number of tuples. During these 
periods of time, the queue is growing. When the 
workload density decreases, the tuples from the 
queue are processed, and the queue itself is 
reducing. 

4.3 Performance Models 

After we described the compute nodes, operators 
and data streams passing through the running 
instances of the operators, we can proceed to 
determine the characteristics of the performance of 
the task, resource or the entire application. 

Throughput of the entire application will be 
considered as the sum of the output tuples from all 
instances of operators whose operators are sinks, i.e., 
don’t have child operators ݇݊݅ݏ = |݆} ∈ܱ, )ܿܿݑݏ ܱ) = (ݐ)ݎℎݐ .{∅ =  ∈௦(ݐ)ݕ  (12)

A latency is usually understood as the time to 
process a tuple fully. In other words, the time from 
the arrival of the tuple in the application, until the 
result of its processing. In this paper, we are dealing 
with flows of tuples instead of particular tuples. 
Therefore, the delay will be considered a relative 
value, defined as the average ratio of the total input 
tuples of the problem to the processed tuples for all 
tasks of the application. Therefore, the latency for 
task  of operator ܱ can be evaluated as average 
ratio through all input streams: 

(ݐ)ݐ݈ܽ = ݃ݒܽ ቆ ܫ(ݐ)ݏ ܲ,൫ݏ(ݐ), ൯ቇ (13)(ݐ)ݎ
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Utilization of resources determines how tightly the 
resources of the computing nodes are occupied. For 
each node ℎ௩, which runs the tasks ̅ = |} ∈ܱௗ}, the recycling of this resource is considered as:  (ݐ)݈݅ݐݑ௩ = min௪∈{௨,,௨,… } ∑ ௩ݓ∈ത(ݐ)௪ݎ  (14)

The function (ݐ)݈݅ݐݑ expresses the total utilization of 
the resource ݒ. However, in cases when the node is 
overloaded, the lack of node’s characteristics for 
correct processing the entire amount of input data 
will be determined by the function:  (ݐ)ݎ݁ݒ௩ = max௪∈{௨,,௨,… } ∑ ܴܴௗ(ݏ(ݐ))௦ ௩ݓ  (15)

The cost of used resources is calculated on the basis 
of the tariffs of the cloud environment, which 
provides computing resources ܪ and the time of use 
of each of the nodes ℎ௩. A node is considered to be 
used during the time ݐ௩, if at least one task has been 
started during this time ݐ௩, and the rent for the 
resource is a function ݁ݐܽݎ (ℎ௩). Thus, the total cost 
is calculated as:  ܿݐݏ =  (ℎ௩)݁ݐܽݎ  ∙ ௩௩ݐ   (16)

4.4 Scheduling Problem Statement 

The schedule ܵ = (ܹᇱ, ,ᇱܪ  consists of a (ܣ
configuration of the computational workload ܹ′ ={ܱ݅}, a configuration of the computing environment ܪ′ = {ℎݒ} and a distribution ܣ of instances of 

operators from ܹ′ across nodes ܣ  .′ܪ = ൛൫, ℎ൯ൟୀଵ||
 (17)

is the set of pairs composed of the tasks ݆ and the 
computing node, on which this task should be 
started. 

Let’s consider a set of different optimization 
criteria or objectives ܩ = { ݃(ܵ)}, where each  ݃(ܵ)  is a function of a schedule. 

We assume that we would like to maximize all 
the criteria ݃  (ܵ). In a case of minimization, we 
easily can use negative criteria − ݃ (ܵ). 

Beside optimization criteria, an optimization 
problem may include different constraints ܥ ={ܿ(ܵ)}.  

ܥ = ൛ܿଵ(ܵ), ܿଶ(ܵ), … ܿ||(ܵ)ൟ (18)

A produced solution ܵ should satisfy all these 
restrictions. There are two types of constraints. Hard 
constraints, when a schedule must satisfy the 
constraint, otherwise a solution is not valid. The 
second type is soft constraints, which can be 
exceeded, but with penalties. 

Considering all criteria and constraints, we can 
show the problem definition. The main goal is to find 
such optimal schedule ܵ௧, that:  ∃ܵ௧: ∀ ܵᇱ≠ ܵ௧ : ቊ ݃൫ܵ௧൯ ≥ ݃(ܵᇱ), ∀ ݃ ∈ ܿ൫ܵ௧൯ܩ ≤ ܿ(ܵᇱ), ∀ ܿ ∈ ܥ  (19)

In other words, the optimal solution must maximize 
all criteria and don't exceed constraints, and the 
equation above is mostly applicable for a multi-
objective problem. 

Problem can be rewritten as single-objective 
problem by defining two sets of weights α and β. 
These weights are used to determine the significance 
of a particular criterion or restriction. ∑ ߙ ݃൫ܵ௧൯|ீ| − ∑  ܿ൫ܵ௧൯ ||ߚ ≥∑ ߙ ݃(ܵᇱ)|ீ| − ∑  ܿ(ܵᇱ)||ߚ , 

(20)

Thus, we can determine the result estimation of each 
schedule and develop an algorithm, which will find 
the optimal one. 

5 SIMULATION AND 
SCHEDULING 

In this section, the developed simulator for 
streaming data processing will be described. 
Moreover, we present a genetic algorithm for 
scheduling, which is integrated into this simulator. 

The simulator is the agent-based model, and is 
developed on the basis of MASON (Cioffi-revilla 
and Sullivan, 2005) Java library for discrete-event 
multiagent simulation. We have two main types of 
agents: OperatorAgent and NodeAgent. 
Evidently, OperatorAgent is described by the 
operator instance model from section 4 with such 
fields as input and output data flows with their 
forecasts and queue. NodeOperator represents 
computing node with a set of computing resources 
(CPU, RAM) on which operators are placed to 
process a flow of data tuples. 
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Beside the operators and nodes, there is another 
ScenarioAgent. It determines all events that will 
occur during the simulation. The scenario may 
include the following events: 

 NewNodeEvent – add a new node to cluster; 
 NewOperatorEvent – add a new operator to 

current workload; 

 KillNodeEvent – remove a node from 
cluster; 

 KillOperatorEvent – remove an operator 
from workload; 

 ScheduleEvent – launch of scheduling 
algorithm and apply its result schedule. 

During step() function, OperatorAgent 
receives new value of input tuples, updates queue 
and evaluate a number of output tuples at current 
moment of time. Further, new points are predicted 
for forecasts of input and output flows. 

The simulator may work in both online and 
offline mode. Offline mode allows quickly obtaining 
the result of the simulation, while the online mode 
allows monitoring the behavior of the simulated 
system during all the simulation process. 

The simulator includes interface for scheduling 
algorithm to allocate tasks across nodes when the 
ScheduleEvent occurs. The algorithm is able to use 
all the monitoring data about operators' input and 
output data flows. 

For the scheduling, we developed a Genetic 
algorithm (GA). GA is one of the most known 
evolutionary algorithms. GA evolves a population of 
individuals (or chromosomes), which represent 
solutions to an optimization problem. The fitness 
function is used to estimate the quality of each 
solution according to specified optimization criteria 
and restrictions. GA imitates the evolutionary 
process by using further operators: 

 Selection – the more adapted individuals have 
more chances to survive during evolution; 

 Mutation – random change in the individual’s 
genotype; 

 Crossover – generation of children individuals by 
combining features of parents. 

For the development of GA, it is required to define 
the representation of candidate solutions, mutation 
operator, crossover operator, and the most important 
– fitness function. In our development algorithm, the 
chromosome is represented as a mapping of 

operators (tasks) to nodes. The example of the 
chromosome is presented in Fig. 4. 

 

Figure 4: Example of chromosome (candidate solution). 

The next step is to develop appropriate mutation 
and crossover operators. For the mutation, we 
developed two options. The first option is to change 
node for one of the operators. The second option is 
to swap two nodes of two randomly chosen 
operators.  

Crossover is an evolutionary operator that 
recombine the properties of two parents and produce 
a new solution. In our algorithm, the crossover is 
performed by random selection of assigned node for 
each operator between two parents. 

 

Figure 5: Example of two mutation operators and 
crossover operator with two parents. 

The examples of two mutations and crossover 
are shown in Fig. 5. 

GA can take any set of criteria and constraints to 
evaluate the quality of candidate solutions by 
building an appropriate fitness function. Moreover, 
advantages of GA also include the possibility of its 
modification. In particular, the algorithm can be 
extended to work with multi-criteria optimization 
problems. In addition, any problem oriented 
heuristic algorithms may be integrated into an initial 
population of GA to speed up the evolution process 
of finding the optimal solution. 

In offline experiments (Table 1) we used 
following GA’s parameters: crossover probability 
for each pair of individuals = 0.3; mutation 
probability = 0.2; elitism = 3; population size = 100; 
iterations = 1000. The algorithm has generational 
evolution strategy, and the initial population is 
initiated randomly. Fitness function considers 
optimization by resources utilization and a number 
of used nodes with penalties for overloading of 
nodes. 
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6 EXPERIMENTAL STUDIES 

For the experimental study in this paper, we used 
sinusoidal signal as input dataflow for all operators 
in workload. A scenario for an experiment can be 
constructed as follows: 

// params: event time, node id, CPU 
cores; 
NewNodeEvent(0.0, "n0", 20);  
NewNodeEvent(0.0, "n1", 20); 
 
// params: event time, operator id, 
baseline=a, amplitude=b, period=c, 
phase=d; 
// x(t)=a+b*sin(2*π*t/c+d); 
NewSinusOperatorEvent(0.0, "t0", 249, 
40, 40, 0); 
NewSinusOperatorEvent(0.0, "t1", 249, 
40, 40, PI); 
NewSinusOperatorEvent(200.0,"t2",249,40
,40, PI/2); 
NewSinusOperatorEvent(200.0,"t3",249,40
,40, PI/2*3); 
// params: event time; 
ScheduleEvent(0.0); 
ScheduleEvent(100.0); 
ScheduleEvent(300.0); 

Parameters of objects are indicated above them. 
Here, we define the launch of two nodes with 20 
CPU cores on each. This number of cores was taken 
in accordance with the number of available cores on 
physical nodes of our cluster (32 cores, but 12 are 
used for system needs). Further, we define that the 
workload will consist of two operators with a 
sinusoidal input signals at the moment time 0.0, and 
two additional operators that will arrive to the 
system at the moment 200.0.  

We add three scheduling events to the scenario at 
moments 0, 100 and 300. At the initial time 0, 
 

 

Figure 6: Result RStorm schedule of 12 signals with 5 
used resources. 

statistical data about operators' workload will not be 
collected yet. Therefore, the scheduling algorithm 
(GA) would produce a poor-quality random 
schedule. Then, at the moment time 100, when 
statistical data are collected, the algorithm should 
find the optimal solution where signals are placed in 
pair at one node. At the time point 200, new 
operators will arrive and start to collect input tuples. 
Since they are not yet located on nodes, these input 
tuples will be accumulated in their queues. Then, at 
the time point 300.0, the last scheduling event will 
be performed at time point 300, where all four 
operators should be scheduled. 

Further experiments were conducted in offline 
mode. The aim of these experiments is to investigate 
the ability of GA to find the optimal allocation of 
many sinusoidal signals with various parameters 
across the computing nodes. Despite the fact, that 
built GA represents simple structure, this work 
provides opportunities for further experiments with 
more sophisticated algorithms, designed for the 
given problem. In these experiments, we varied the 
number of available nodes, operators and parameters 
of their sinusoidal input streams of tuples. In all 
cases we assume, that peak throughput of each node 
is 500 tuples per time unit (the specific of target 
application, that was simulated here). All operators’ 
input signals are generated with random parameters 
within defined bounds for sinusoids’ baseline and 
amplitude. 

For comparison, we implemented RStorm 
algorithm with only CPU as resource for allocation 
of tasks. We compared the result of our GA with 
RStorm algorithm. Result of all experiments are 
presented in Table 1. Each experiment was 
conducted 20 times with new random samples of 
operators’ input signals. Values in table represent 
average values among performed experiments. 

 

Figure 7: Result schedule of 12 signals, obtained by GA 
with 4 used resources. 
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Table 1: Results of experiments on scheduling of sinusoidal input dataflows. 

Exp # Operators Nodes 
Used nodes Avg utility, % GA avg 

overload, % RStorm GA RStorm GA 

Input params: Min baseline = 100; Max baseline = 200; Min ampl = 40; Max ampl = 60 

1 12 9 5.3 4.3 69.3 86.2 0.01 

2 50 25 19.7 18.2 75.5 82.9 0.02 

3 100 50 38.8 35.8 77.1 83.7 0.02 

4 200 100 73.7 72.8 78.1 81.6 0.02 

Input params: Min baseline = 90; Max baseline = 150; Min ampl = 30; Max ampl = 80 

5 50 25 16.8 15.5 71.0 78.4 0.01 

6 100 50 33.0 31.6 72.4 78.9 0.01 

7 200 100 61.6 60.2 72.5 78.4 0.01 

 

The result of one of these experiments (#1) is 
shown in Fig. 6 and Fig. 7 for RStorm and GA 
schedules accordingly. In the GA schedule, only 4 
nodes were used instead of 5 used nodes in the 
RStorm schedule. 

Due to the optimal combination of peak and off-
peak input dataflows, the algorithm allows to save 
nodes and increase utilization of used resources. In 
order to estimate obtained solutions, we used the 
number of used nodes, the average load on them and 
the average overload of resources (only among 
overloaded ones). Despite the assumed limit on the 
peak workload (500 tuples / s), GA results have 
minor overloads of resources, but not exceeding 
0.03%. However, it can be controlled by using 
penalties for overload of resources. To meet strict 
constraints, stronger penalties should be imposed in 
fitness function, or such solutions should be 
considered as invalid. In comparison with GA,   
RStorm algorithm does not impose the overloading. 
Both algorithms found optimal-like solutions in 
presented experiments, and it was difficult for GA to 
find a solution with fewer used nodes. Nevertheless, 
proposed GA is able to grow better schedules with 
1.6 less number of used nodes and with 6.2% greater 
resources utilization in average among experiments 
even with a large dimension of the optimization 
problem (200x100). For large-scale problems, it 
makes sense to divide a full-dimension problem into 
sub-problems to preserve the effectiveness and the 
execution time of both algorithms.  

7 CONCLUSION AND FUTURE 
WORKS 

In this paper, we investigated the problem of 
scheduling the streaming data processing in 
distributed computing environments. We put 
emphasis on the sharing of resources between 
operators, which allows nodes to be overloaded and 
allocate operators in such a way to combine peak 
and off-peak input dataflows to improve resources 
utilization and system performance. For that 
purposes, we presented the model of streaming data 
processing, based on input and output workload 
densities and their forecasting. Further, we 
developed the simulator of streaming platform, 
based on the proposed model. The simulator allows 
investigating the behavior of a system under various 
conditions. This is important, since running real 
streaming applications requires additional efforts 
and time, and more importantly, can have the cost of 
renting computing resources. The use of simulator 
will allow configuring the system and improving the 
performance of streaming data processing before the 
application is directly launched. Along with the 
simulator, we developed genetic algorithm for 
scheduling of workload on the resources of the 
computing environment. Results of the experiments 
show the ability of algorithm to find optimal 
solutions in terms of increasing of resources 
utilization and reducing the number of used nodes 
even with large dimensions of problem. 
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Currently, the simulator is under development 
and available on GitHub (StreamSim) with 
additional results and experiments. There are many 
features, which can be added, including the ability to 
create complex composite streaming applications 
with the ability to reconfigure their internal 
structures during the execution. We also plan to 
implement more of reviewed algorithms (T-Storm, 
etc.) and evaluate their effectiveness in various 
conditions. 
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