
UML and Agile Methods: Looking for an Agreement

Jose A. Gallud1 and Habib M. Fardoun2

1Escuela Superior de Ingenierı́a Informática, University of Castilla-La Mancha, Albacete, Spain
2Ahlia University, Bahrein

Keywords: UML, Agile methodologies, Xcrum.

Abstract: One of the effects of the nth software crisis is the great expansion of agile methodologies. Many agile method-
ologies have appeared since the publication of the Agile Manifesto. Agile methodologies are considered light
in comparison to the traditional heavy ones. This paper describes (a) whether or not it is worth to use some
UML diagrams as artefacts in Agile methods and, (b) what would be the set of UML diagrams selected as
useful artefacts obtained in an agile process and why. The paper makes use of a particular agile method called
Xcrum to show how and when the proposed UML diagrams would be employed.

1 INTRODUCTION

The field of Software Engineering has solved its nth
growth crisis with the emergence of agile methodolo-
gies. These methodologies seem to free the heavy
burden development teams were suffering while were
applying documentation-based methodologies. The
need to elaborate many UML artefacts has been con-
sidered a heavy task by the development team, with
an unworthy impact in the final product.

The Agile Manifesto declares, among other ideas,
that agile teams come to value working software over
comprehensive documentation (Beck and several au-
thors, 2001). Heavy documentation is not forbidden
but it is not valued. Agile methods are introducing
new ways of controlling the development process and
reducing the need of documentation.

UML (J. Rumbaugh and Booch, 1998) has been
playing an important role in the heavy methodologies
we have been using during the last ten years. People
involved in development teams, software architects,
analysts, requirement engineers, software designers,
database architects, and so on, have been spending
hours elaborating long documents that were full of
use cases, activity, class, deployment and all kinds of
UML diagrams. The question that emerges now is
what is the role of UML in this new agile world?

This article declares the validity of UML in this
new agile age, and proposes a set of UML artefacts
that are compatible with Agile methodologies. The
proposal is based on Xcrum, a new agile proposal
for the object-oriented development of software appli-
cations and services. The Object Oriented program-

ming paradigm maintains its influence thanks to the
new programming paradigms introduced by the Inter-
net languages. Languages such as JavaScript, Python
or Ruby are presented in many modern Web projects,
and they are the appropriate technologies in projects
where Xcrum is applied.

The article is organized in the following sections.
Section II presents a brief overview of the current
landscape of software development. The next two
sections (Section III and IV) presents the basis of
Xcrum. Section V presents a general discussion of
the proposal. Finally, Section VI presents the conclu-
sions and future work.

2 AGILE METHODS

One of the effects of this latest software crisis is the
birth of agile methodologies. The appearance of the
now famous Agile Manifesto (Beck and several au-
thors, 2001) is the starting point of this new era. In
its genesis is a group of software engineers who de-
cided to rebel in the ”plan and document” style om-
nipresent in most development teams. At the time
of the emergence of the Agile Manifesto, methodolo-
gies such as the cascade model, the Rational unified
process (Rational Unified Process) (Kruchten, 2003),
or Rapid Application Development (RAD) (Martin,
1990) dominated the development teams.

As noted by Fox and Patterson (Fox and Patter-
son, 2014), the crisis of the 1960s led engineers to
try to develop methodologies that made it possible

780
Gallud, J. and Fardoun, H.
UML and Agile Methods: Looking for an Agreement.
DOI: 10.5220/0006940907800785
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 780-785
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



to develop quality software and predictable and con-
trolled budget. The results of this effort were a se-
ries of development processes based on planning and
documenting (Plan-and-Document). Some strategies
(process models) on which many of these develop-
ment processes are based are well known: Cascade
model, Spiral model and Iterative and Incremental
models. In this last group, the RUP process should
be located, which is a combination of the previous
models. Development processes based on Planning-
Document are tedious since they put a lot of emphasis
on the preparation of documents, such as templates,
memories and diagrams, which sometimes diverts at-
tention from the software product that is intended to
be developed.

The agile proposal tries to recover the lost promi-
nence for the software product in favour of docu-
ments and diagrams. Alternatively, the Agile Mani-
festo also gives importance to the motivation of the
development team, and to maintain fluid contact with
the client.

As a result, agile methodologies began to emerge
that tried to apply the principles listed in the Agile
Manifesto. Among the best known we can mention
Scrum (Schwaber, 2004) and Extreme Programming
(better known as XP) (Beck, 2004).

From Scrum and XP, there are numerous agile
proposals that have been emerging, although these are
general proposals that are based on applying the prin-
ciples contained in the agile manifesto. For exam-
ple, DSM (Bussiness, 2001) is based on a principle
in the integrates several statements of the Agile Man-
ifesto: the best business value emerges when projects
are aligned with clear business objectives, often visi-
ble results are released and involve motivated people.
In this sense, Xcrum also applies the principles of the
Agile Manifesto, as it is an agile method based on XP
and Scrum.

Letelier, in (Letelier and Penades, 2017), presents
a catalogue (AgileRoadmap) to implement agile prac-
tices in development teams, without suggesting a par-
ticular agile method. The Xcrum proposal is similar
to AgileRoadmap in that it promotes agile practices,
although Xcrum is based on principles that come from
Scrum and XP, to which the object-oriented vision of
the solution joins.

In (Mekni et al., 2017), the authors summarize the
best-known agile methods to point out the little atten-
tion paid to software architecture. The authors then
propose a methodology to define software architec-
ture in agile environments. In Xcrum, the software
architecture is an essential element, since it is based
on starting defining the solution as an object-oriented
solution.

To conclude this section, Xcrum is related to most
agile methods insofar as it applies the principles of the
Agile Manifesto. However, it is novel in that it takes
as reference two of them, Scrum and XP, to propose a
synthesis of both.

3 Xcrum

This section briefly describes the main elements of
Xcrum (Gallud, 2018). The section is organized in
the following sections: roles, iteration, artefacts and
meetings.

Like any good agile method, the most important
artefact in Xcrum is the code tested and working. All
other elements are means to get the software product.

3.1 Roles of Xcrum

The roles of Xcrum take into account the separation of
responsibilities, business and techniques, suggested
by the Agile Manifesto. There is separation and also
complementarity since it is about that both work to-
gether in obtaining the solution.

Thus, Xcrum uses Business and Development as
terms to define the roles that identify two responsibil-
ities. Business defines the user stories and the priority
of them. Development is responsible for estimating
stories and converting them into code.

The Business role of Xcrum is equivalent to the
Scrum Product Owner. The Development role is
equivalent to the Scrum Team role. The ScrumMas-
ter of Scrum is the leader of the development team at
Xcrum.

3.2 Iteration in Xcrum

The heart of Xcrum is the Iteration in the same sense
that the Sprint is for Scrum. The Iteration in Xcrum
lasts from 1 to 4 weeks. At the end of the iteration, the
team must provide an increase in value in the form of
code tested and functioning.

The Xcrum Iteration is equivalent to the Scrum
Sprint.

3.3 Xcrum Artefacts

User stories: Xcrum is based on defining the sys-
tem requirements (functional, non-functional and in-
formation) as user stories, in a similar way to other
agile methodologies.

• List of System’s Histories: is the list of user sto-
ries defined by Business to describe a system.

UML and Agile Methods: Looking for an Agreement

781



This list is equivalent to the Scrum Product Back-
log.

• List of Iteration’s Stories: is the subset of stories
that are assigned to an iteration. This list is equiv-
alent to the Sprint Backlog.

• Progress Chart: is the diagram that in Scrum is
called Sprint Burndown and that serves to mea-
sure the progress of the iteration (sprint).

As it can be noted, the Xcrum artefacts are mainly
those of Scrum.

3.4 Xcrum Meetings

The Xcrum meetings follow the structure of Scrum,
with incorporation of some XP activities. The follow-
ing sections detail how XP activities are combined in
Scrum meetings.

3.4.1 Iteration Preparation Meeting

The two roles, Business and Development, partici-
pate in this meeting. In Scrum the Sprint Preparation
Meeting has two parts, in the first one it is carried out
between Business and Development and its objective
is to choose the functionality of the next Sprint. In
Xcrum this meeting has the same objective, although
it is proposed to incorporate the activities of the Ex-
ploration and Commitment phases of XP, namely:

• Write a story: Business writes a functionality

• Estimate a story: Development estimates the time

• Divide a story: If you can not estimate

• Sort the stories: Business order by value and De-
velopment by risk

• Choose field: Business chooses the end date of the
Iteration or functionality (and Development date)

As you can see, this part of the preparation meeting of
the Iteration takes advantage of the detail of activities
that XP provides, while, in Scrum, it is left undefined.

The second part of the meeting corresponds to the
team and consists of detailing the tasks in which each
story is broken down.

3.4.2 Xcrum Daily Meeting

On a daily basis, the team reviews the status of the
project following the same scheme proposed by the
Daily Scrum. At this point some XP activities are
proposed to obtain the increment:

• Accept a task: a developer chooses a pending task

• Implement a task: define the test cases, implement
the task and integrate the code

• Recovery and re-estimation: these are activities to
readjust the load, or the dates, with respect to the
estimate.

These XP activities, incorporated into Xcrum, serve
to give content to the daily task of the team. The only
difference in relation to XP is that in Xcrum it is not
necessary to implement the task through the technique
of programming in pairs.

An important aspect of Xcrum are the tests. The
team must write test cases so that the meaning of ”fin-
ished” is demanding, not thinking about Business, but
internally, thinking about the team.

In the day to day of development the third princi-
ple of Xcrum is put into play: Object Oriented Solu-
tion. We will deal with this aspect in a later section
(section VI).

3.4.3 Iteration Review Meeting

In Scrum, at the end of the Sprint, two meetings are
held: the Review meeting and the Retrospective meet-
ing. The first is done with the Product Owner. The
second is internal to the team.

In Xcrum, a similar scheme to Scrum is proposed.
In the first meeting (Review) the increase in value of
this Business Iteration is shown to check if it is what
you requested. The second part is that Development
reviews the realization of the iteration.

4 THE OBJECT-ORIENTED
APPROACH IN Xcrum

Since the appearance of the book Design Patterns
(E. Gamma and Vlissides, 2011), the paradigm of Ob-
ject Oriented programming has experienced a grow-
ing development that continues to influence many of
the software solutions regardless of the technology
used.

In recent years we have witnessed, in Web pro-
gramming, a renaissance of dynamic languages, some
of which have appeared for some time, such as
Javascript, Python, Ruby and PHP. While most dy-
namic languages can be said to be object oriented and
class oriented. However, languages such as Javascript
(at least until version 7), omit the definition of classes,
since they are languages oriented to prototypes and
functions, although it is possible to use them with the
same approach used in the object-oriented and class-
oriented paradigm.

There are many advantages to using the object-
oriented and class-oriented paradigm, as opposed to
prototype-oriented. However, this discussion is out-
side the scope of this article.

IDEE 2018 - Special Session on Interaction Design in Educational Environments

782



What interests us here is to define how to obtain
an object-oriented solution, and how it is integrated
into the Xcrum methodology.

Obtaining an object-oriented solution is based on
a single principle:

Object model should come first

This principle establishes as a priority to first de-
fine the object model of our application. This means
that both the user interface and persistence must be
left for later. In this way, and in broad strokes, the
proposal for the content of the iterations follows this
sequence:

• Examine functionality based on user stories

• Define the object model (with the tests)

• Define the service layer

• Define the user interface

• Define the persistence layer

• Final deployment

This principle applies more easily to Web-based
solutions. In these environments, the first phase (de-
fine the object model), can be detailed as follows:

• Develop the model objects in the client: using the
tools provided by most browsers we can validate
our object model

• Define the tests using some testing framework

• Move the model to the server: the ideal solution
is for the client’s own object solution to be the
one we use on the server. This depends on the
technology chosen

• Adapt the tests to the model on the server

The first step (develop the object model) is also
broken down into activities that are repeated until we
get the complete object model. Here we apply an
XP principle by which we design (and implement)
only what is needed, avoiding including everything
we know in advance that we will need. So, the object
model is obtained with the following steps:

1. Choose a functionality (from the list of user sto-
ries)

2. Draw the class diagram with the minimum that is
needed to implement that functionality

3. The team conducts a discussion of the model

4. Implement the classes following the diagram

5. Validation in the browser

6. Optional tests are implemented: It is not conve-
nient to write the tests too early to avoid rewrit-
ing. This contradicts an XP principle but is more
practical.

7. Go back to step 1

The previous steps are completed when the devel-
oped model contemplates a sufficient set of functions.

This procedure is especially useful when using
the same technology for client and server (such as
Javascript and NodeJS). The benefit of using the same
technology is applied to the tests, since the same set
of test cases, with minimal changes, is valid on the
server side.

5 UML AND AGILE
METHODOLOGIES

A true agile team member knows that the most im-
portant artefact obtained in an agile methodology is
the tested and working code. There is nothing more
important than the working code. All the other ag-
ile artefacts (list of user stories, iteration user stories
and progress chart) are only secondary tools to help
developers to control the agile process.

Regarding documentation and UML artefacts, one
thing is to force the development team to follow a
heavy and strict set of documentation as part of the
development process, as it happens in the Unified Pro-
cess, and a different thing is to let them decide what
artefacts they want to use and which ones to avoid.

An important Agile Manifesto principle says
“Build projects around motivated individuals” (Beck
and several authors, 2001), which can be applied to
UML artefacts. Provided that the development team
understand how UML can help to develop a modular
and extensible solution, they will be the first to pro-
pose use one UML diagram.

The following set of UML artefacts are highly rec-
ommended to use in Agile methodology:

• Class diagrams

• Deployment diagrams

UML Sequence diagrams can be useful for the de-
velopment team. However, they could be considered
as optional artefacts.

The following sections describe the role of each
diagram in Xcrum. The fact we illustrate how to use
these UML artefacts in Xcrum does not mean they are
restricted to this agile method. They can be used in
any other agile method in the same way they are used
in Xcrum. At least it is sure they can be used in Scrum
and XP, since these agile methods are the foundation
of Xcrum.

UML and Agile Methods: Looking for an Agreement

783



5.1 UML Class Diagrams

UML class diagrams provides a structural object-
oriented view of our solution. This artefact is one of
the most important artefacts a development team can
use.

The team’s goal is to build an object-oriented so-
lution. One of the best means to reach this goal is by
using UML class diagram. Class diagram allows the
development team to discuss the best design that will
implement the required functionality.

The previous sections shows how Xcrum pro-
motes the definition of the object model at first. As
you can see in that section, the step 2 is “Draw the
class diagram with the minimum that is needed to im-
plement that functionality”. Xcrum recommends the
team to design only those entities and relationships
that are needed to implement the selected user story.

As the solution is built by increments defined by
the iterations, this artefact will be evolving as the
same pace as the software. First iterations will show
a few entities and relationships and, as long as the so-
lution grows, the class diagrams grows as well.

One of the hard aspects of using UML diagrams
is to maintain the coherence between the code and the
class diagram. This is not a problem since this review
can provoke the development team re-think the solu-
tion, which could derive in some kind of refactoring
or redesigning. Some developers find better design
solutions after analysing the class diagram.

5.2 UML Deployment Diagrams

UML deployment diagrams can play an important
role in any software development process. When de-
veloping software using an agile methods, it is pos-
sible to use UML deployment diagrams for the exact
same purpose.

One of the first step in the development of any
software is to define the architecture of the solution.
Special attention deserves the software architecture of
the solution. UML deployment diagrams are one of
the best means to represent the designed software ar-
chitecture.

UML deployment diagrams show the nodes and
artefacts that are involved in the solution, and how
they are interconnected. The different artefacts
change through the development of the software. At
the end of each iteration, the team can show the arte-
fact that has been included in that iteration.

In Xcrum we can use UML deployment diagrams
from the first iteration, since this first diagram pro-
vides the foundation elements of the software archi-
tecture. UML deployment diagrams allow the devel-

opment team to have a global idea of the important
building blocks of the solution.

5.3 UML Sequence Diagrams

UML sequence diagrams can play an important role
when the development team is discussing some com-
plex interaction among objects. The development
team can learn from the designed solution and find
better ways to implement the desired functionality.

However, UML sequence diagrams have been de-
clared as optional artefacts due to different reasons.
There are two main reasons:

• An object-oriented solution well designed con-
sists on many small objects. In this solutions
the use of delegation and composition makes se-
quence diagrams hard to draw (and many times
useless)

• The wide use of dynamic languages (as Javascript
or Python) makes almost impossible to repre-
sent the complex behaviour they are able to im-
plement. Important aspects of the language as
are anonymous functions, cannot be easily rep-
resented using any of the UML interactions dia-
grams.

When using Xcrum, the development team is
kindly invited to design and build an object-oriented
solution. Therefore, we can experience the problem
addressed before about the number of small collabo-
rative objects. However, as stated before, the devel-
opment team can use a sequence diagram to discuss
a particular design or to explain the rest of the team,
how works a complex interaction among objects.

In summary, some UML diagrams, as class and
deployment diagrams, can be useful for an agile de-
velopment team since they can contribute to design
and build the best object-oriented solution. An object-
oriented solution provides many of the best qualities
any agile development team seeks, as are extensibil-
ity, modularity, robustness and correction.

6 CONCLUSIONS

This article argue in favour to asign a role to UML
artefacts in this new agile age. The proposal includes
a set of UML artefacts that are compatible with Agile
methodologies.

UML class diagrams and deployment diagrams
have been proposed as essential diagrams to be used
in any agile method. Sequence diagrams have been
declared as recommendable optional diagrams.

IDEE 2018 - Special Session on Interaction Design in Educational Environments

784



The proposal is explained using Xcrum, a new
agile method for the object-oriented development of
software applications and services. Xcrum has been
inspired by Scrum and eXtreme Programming.

This article shows that UML diagrams may be
useful to reach the goal of designing and building the
best software in the shortest time.

ACKNOWLEDGEMENTS

There is always someone whose ideas have been
source of inspiration. In our case we would like to
thank the small but bold group of Smalltalk develop-
ers since they are always promoting object-oriented
creative software.

REFERENCES

Beck, K. (2004). Extreme Programming Explained.
Addison-Wesley; 2nd edition.

Beck, K. and several authors (2001). Agile Manifesto. Web-
site. http://www.agilemanifesto.org.

Bussiness, A. (2001). The Dsm Agile Project Framework.
Website. https://www.agilebusiness.org/resources/
dsdm-handbooks/the-dsdm-agile-project-framework-
2014-onwards.

E. Gamma, R. Helm, R. J. and Vlissides, J. (2011). De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

Fox, A. and Patterson, D. (2014). Engineering Software as a
Service. An Agile Approach Using Cloud Computing.
Strawberry Canyon LLC.

Gallud, J. A. (2018). An agile object-oriented method to
develop modern software applications. In Technical
Report DIAB-18-05-2, DSI, UCLM.

J. Rumbaugh, I. J. and Booch, G. (1998). The Unified Mod-
eling Language Reference Manual. Addison Wesley.

Kruchten, P. (2003). The Rational Unified Process: An In-
troduction. Addison-Wesley Professional.

Letelier, P. and Penades, M. C. (2017). Agileroadmap: An
approach to implement agile practices in teams. In
IEEE Latin America Transactions, VOL. 15, NO. 7.

Martin, J. (1990). Rapid Application Development.
MacMillan Publishing Co. Ed.

Mekni, M., Mounika, G., Sandeep, C., and Gayathri, B.
(2017). Software architecture methodology in agile
environments. In J Inform Tech Softw Eng 7: 195.
doi: 10.4172/2165-7866.1000195.

Schwaber, K. (2004). Agile Project Management with
Scrum. Microsoft Press.

UML and Agile Methods: Looking for an Agreement

785


