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Abstract: In this paper, we present a robust and fast implementation of a closed loop EEG-transcranial-alternating-

current-stimulation (tACS) paradigm focusing on phase coupling between the tACS signal and alpha-

oscillations of the ongoing EEG signal. We provide an evaluation of three phase-prediction methods for alpha 

oscillations of offline EEG data and for artificially generated oscillations with different noise levels in terms 

of optimization time as well as accuracy of prediction. Successful functioning of the whole system with delays 

compensation and data corrections is demonstrated in real-time pilot measurements with humans. 

1 INTRODUCTION 

Transcranial alternating current stimulation (tACS) is 

a technique adapted to investigate relationships 

between oscillatory neuronal activity and behavior. 

This method allows to non-invasively apply 

oscillatory currents to the human brain thereby 

modulating ongoing neuronal oscillatory activity in a 

frequency-dependent way (Herrmann et al., 2013; 

Reato et al., 2013). tACS has been successfully used 

to modulate neuronal oscillatory activity and human 

brain function in different modalities such as vision 

(Vossen et al., 2015), motor function (Feurra et al., 

2011) or audition (Riecke et al., 2015). There is 

preliminary evidence that tACS might be effective to 

support recovery of motor functioning in patients 

with stroke (Fedorov et al., 2010) or optic neuropathy 

(Sabel et al, 2011). 

Conventional non-adaptive stimulation does not 

take into account states of neuronal oscillation and 

their response to stimulation, thereby limiting 

investigation of mechanisms and efficiency of 

possible applications. The increasingly prominent 

field of research using closed-loop EEG-tACS or 

EEG-TMS models (Thut et al., 2017; Bergmann et 

al., 2016) aims for a better understanding of the 

mechanisms of tACS and an enhancement of tACS 

effects. However, there are several common 

challenges and limitations, which slow down the 

development of closed-loop models. One of the main 

challenges is the difficulty to analyze online effects 

due to induction of oscillatory stimulation artifacts in 

EEG/MEG, that are several magnitudes larger than 

the measured signals in the EEG. Although, there are 

some attempts (Witkowski et al., 2015), which may 

allow elimination of artifacts, such approaches 

require sophisticated experimental design or heavy 

computational procedures. Another issue for a closed-

loop system is the demand for maximum proximity to 

real-time functioning to allow for following rapid 

(millisecond range) dynamics of brain oscillations, 

which imposes additional restrictions on both 

technical equipment and data processing methods. 

Moreover, the whole set up of such system requires a 

broad technical knowledge and is, therefore, not 

easily adaptable for clinical applications.   

In this paper, we present a robust and fast 

implementation of a closed loop EEG-tACS 

paradigm focusing on phase coupling between the 

tACS signal and alpha-oscillations. The alpha rhythm 

is prominent brain rhythm linked to many brain 

functions such as perception, attention and working 

memory (Jensen et al., 2010; Foxe et al., 2011) and 

which was previously successfully modulated by 

tACS (Helfrich et al., 2014; Vossen et al., 2015). Our 

closed loop EEG-tACS model incorporates different 

methods and concepts to overcome above-mentioned 

challenges. In the methods section, we describe our 

general model scheme and methodological 

framework. Further, in the results section, firstly, we 

provide an evaluation of three phase prediction 

methods based on offline alpha oscillations and 
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artificially generated waves with different noise 

levels in terms of optimization time as well as four 

metrics for accuracy of prediction. Secondly, we 

demonstrate successful functioning of our system 

with delays compensation and data corrections based 

on pilot measurements from first real-time 

experiments. Finally, in the discussion section, we 

consider the properties of our model, future directions 

for development and further extended experimental 

investigation implementing our closed-loop system to 

answer questions about tACS mechanisms and 

parameters to yield optimal stimulation effects. 

2 METHODS 

To perform real-time experiments with phase 

prediction and adaptive stimulation our system 

should be capable of precise, reliable and fast data 

processing. Besides, an essential part of the 

implementation of closed-loop systems is the 

minimization and compensation of computational 

(time for extraction and prediction of signals 

according to predetermined relation to brain state) 

and technical (signal transmission between devices 

and interfaces) delays. We used an intermittent 

protocol with separated sliding windows for EEG 

acquisition and stimulation that had two modes of 

phase relation between alpha band and tACS-signal 

implemented – in-phase and anti-phase. In order to 

satisfy the condition of real-time functioning and 

minimize computational delays - we implemented our 

model with all data processing procedures in C++ 

language and performed compensation of phase shift 

based on required optimization time. 

2.1 General Model Scheme and 
Definition of Elements  

The proposed model consists and works in terms of 

following parts (Figure 1): 

 

Figure 1: General model scheme. 

where EEG represented by brain activity recorded 

with BrainProducts amplifier, ClosedLoop 

Application – by program in C++ with BCI2000 

(Schalk, 2004) module for data acquisition, NI DAQ 

device – by National Instrument USB 6343 for 

transmitting stimulation signal on tACS stimulator 

input, tACS – by neuroConn DC-Stimulator Plus.  

The model is implemented with 3 different modes of 

functioning – “Online”, “Offline”, “Record-only” / 

“Stimulation-only”. In “Online” mode (Figure 2) the 

system functions in a state required for adaptive 

stimulation - in short interval cycles (e.g. 1 sec) and 

incorporates: import of EEG signals (imaging or pre- 

stimulation interval), estimation of optimal 

parameters (e.g. phase shift) and stimulation signal, 

computation of required optimization time, actual 

compensation of optimization and transduction 

delays and transmission of stimulation-signal 

(stimulation interval) through NI DAQ card to 

stimulator device input (BNC port). A setting for a 

typical experiment also includes post stim interval for 

analysis of effects and inter trial interval. 

  

Figure 2: “Online” mode, data from pilot measurement, 

sampling rate 500 Hz, 1 trial, EEG data from Oz channel, 

length of all intervals – 1 sec, vertical lines here and later 

represent borders of trials. 

“Offline” mode is used for testing optimization 

methods and procedure on predefined datasets of real 

and artificial EEG, therefore, it has only imaging and 

stimulation intervals. In “Record-only” mode EEG 

signal is recorded and saved for further analysis. In 

“Stimulation-only” mode particular number of 

stimulation signals with predefined fixed parameters 

are transferred to stimulator. This mode – non-

adaptive stimulation – that can be used for 

comparisons with adaptive stimulation mode. 

Our application allows choosing between 2 

modes of phase relations with respect to the neuronal 

control signal: “in-phase” (minimal phase lag), “anti-

phase” (phase lag close as possible to π) and 3 

methods for phase prediction: 1) Phase prediction 

(Hilbert based)  (PP), 2) Phase prediction using 

Autoregression model (PP on AR), 3) Zero Crossing 

(based on Butterworth zero-phase filtering) (ZC). The 

evaluation of methods with offline data is based on 4 

measures: 1) Relative accuracy (based on relation to 

optimally possible stimulation), 2) Degree Deviation 

(from optimal phase), 3) Phase Locking Value (PLV), 

4) Phase Synchrony (based on entropy). 
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2.2 Phase Prediction Methods 

2.2.1 Phase Prediction (Hilbert based) 

In general, measurements of neural oscillations 

demonstrates variable phase dynamic, because of 

complex source signals and volume conduction 

effects (Nolte et al., 2004; Nikulin et al., 2011). 

However, if we analyze short time intervals we can 

consider phase dynamics to be quasi stationary. This 

assumption allows us to perform phase prediction by 

extraction of phase from a current (imaging or pre-

stimulation) interval in order to forecast phase 

dependent stimulation for the following interval. 

Importantly, we include only a predefined part of the 

imaging interval for phase extraction (extraction 

interval), which is controlled by a parameter and is 

usually represented by the second half or last quarter 

of the whole interval. For the extraction interval, 

phase values should be optimal to achieve better 

prediction. We used Hilbert transformation (with FIR 

filtering) and iterative search across sinusoidal waves 

with different phases for this optimization. Euclidean 

difference (L2 norm) for vectors of instantaneous 

phase between extraction interval and various 

generated sine-waves were criteria for minimization 

– in case of “in-phase” relation, maximization – in 

case of “anti-phase” relation.  

2.2.2 Phase Prediction using Autoregression 
Model 

Autoregressive (AR) models are a class of linear 

predictive techniques. They attempt to predict the 

signal sample based on previous signal samples by 

using the AR parameters as coefficients and 

additional noise component. The number of samples 

used for prediction determines the order of the model. 

The AR parameters can be estimated by different 

techniques such as Kalman filter, Yule-Walker, 

Expectation-Maximization, Least-square. We 

implemented AR model based on a modified Burg 

Maximum Entropy method (Bourke et al., 1998), the 

order of AR model was chosen as half of the length 

of imaging interval. AR model was applied for 

prediction of data of the stimulation interval. 

Precisely, we perform prediction only for the first part 

of stimulation interval (AR interval), where the exact 

proportion is controlled by a parameter. Similarly to 

the previous method, the AR interval is used for 

determining phase by an iterative optimization of 

generated sine waves and with Hilbert-transformed 

data of the interval. Afterwards, optimal phase is 

assigned to the whole stimulation interval.  

2.2.3 Zero Crossing (Based on Butterworth 
Zero-phase Filtering) 

Another possible approach for phase prediction is 

related to the analysis of the last zero crossing point 

of the filtered signal (Wilde et. al, 2015). Most of 

conventional filters produce phase shift into the 

filtered data. One of the ways to eliminate this issue 

is processing the input data in both forward and 

reverse directions. We implemented an algorithm 

similar to the Matlab filtfilt() function, which, after 

filtering the data in the forward direction, reverses the 

filtered sequence and runs it back through the filter; 

the result has zero phase distortion and doubled order 

of the filter. There are two possible scenarios with 

analysis of the last zero crossing point – transitions 

from negative to positive and the opposite (“- +”, “+ 

-”). In both cases we calculate the distance from zero 

crossing to the end of interval (“- +”: “a”, “+ -”: “b”), 

for “in-phase” relation: in “- +” scenario phase shift 

can be approximated by the value of “a”, in “+ -” by 

“π + b”; for “anti-phase” relation: in “- +” by “π + a”, 

in “+ -” by “b”. 

2.3 Evaluation Metrics 

2.3.1 Relative Accuracy 

The phase of neural oscillations is always not clearly 

expressed due to noise in measured signals and rapid 

fluctuations of brain activity and states (Freyer et. al, 

2009), therefore, the evaluation of the prediction 

methods requires some relative measure. In case of 

short quasi stationary intervals, we can estimate 

accuracy by comparison the predicted forecasted 

phase and the actual “optimal” phase of the 

stimulation interval. “Relative accuracy” (RA) is 

determined as a relation of differences (Euclidean 

distances) of instantaneous phase vectors. For “in-

phase” relation (1): 

RA (in) =
 Δoptimal

Δpredicted
∗ 100,                 (1) 

for “anti-phase” (2): 

RA (anti) =
Δpredicted

Δoptimal
∗ 100,               (2) 

where Δpredicted is the difference of instantaneous 

phase values for predicted wave and data from 

stimulation interval, Δoptimal – difference of 

instantaneous phase values for optimal wave (for 

stimulation interval) and data from that interval. For 

“in-phase” relation, the optimal wave is defined as 

sinusoidal wave with minimum difference of 
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instantaneous phases between this wave and EEG 

data, for “anti-phase” as a sinusoidal wave with 

maximum difference. Figure 3 illustrates the 

“Relative accuracy” measure and provides a 

comparison of results for the three phase prediction 

methods on the one interval. 

 

Figure 3: Relative Accuracy metric values, “in-phase” 

relation, ¼ sec interval, EEG data, dot line: “Phase 

Prediction (Hilbert based)” / PP , dash line : “Phase 

prediction using Autoregression model” / PP on AR, dot 

dash line: “Zero Crossing” / ZC,  solid line: “optimal” 

phase. 

2.3.2 Degree Deviation 

After we determined the optimal phase shift for 

stimulation interval and phase shifts predicted by 

different methods, we can calculate the “Degree 

Deviation” (DD) for predictions (3): 

DD = |δpred − δopt| ∗ 360° /
Sr

Afr
 ,             (3) 

where δpred, δopt are predicted and optimal phase 

shifts, Sr the sampling rate frequency and Afr the 

alpha frequency. For our purposes, phase coupling 

has only two important modes: “in-” and “anti-” 

phase, therefore, we can consider the “Degree 

Deviation” DD > 180° as DD = 360° – DD. In case 

many trials are available for the calculation of 

“Degree Deviation”, the statistical deviation is 

determined to estimate stability of prediction method 

as well as dynamics of phase changes for oscillations. 

2.3.3 Phase Locking Value 

The Phase Locking Value (introduced for neural 

signals by Lachaux et al., 1999) - defined at time t as 

the average value (4): 

𝑃𝐿𝑉𝑡 =
1

𝑁
|∑ 𝑒𝑗𝜃(𝑡,𝑛)𝑁

𝑛=1 |,                     (4) 

where 𝜃(𝑡, 𝑛) - the instantaneous phase difference: 

𝜑1(𝑡, 𝑛) − 𝜑2(𝑡, 𝑛), n – trials. PLV measures the 

intertrial variability of this phase difference at t: if the 

phase difference varies little across the trials, PLV is 

close to 1; otherwise it is close to 0.  

2.3.4 Phase Synchrony 

Another measure to investigate the relation between 

oscillations is phase synchrony, based on entropy and 

was proposed by (Tass et al., 1998). We can consider 

series of instantaneous phase differences, obtained 

from the Hilbert transform of two intervals, and build 

a histogramm of their distribution on a number of 

phase bins for [-π, π]. For two sinusoidal waves, the 

histogram should be centered around one bin, for two 

random signals, the histogram should span across all 

bins. Using the concept of Shannon’s entropy we can 

calculate the entropy for the histogram (5):  

𝐻 = − ∑ 𝑃𝑘ln (𝑃𝑘)𝑁
𝑘=1 ,                       (5) 

where 𝑃𝑘 can be approximated as relative frequency 

of phase difference for k-th bin (value of k-th bin 

divided by number of all points in histogram). Then, 

the Phase synchrony index can be estimated as (6):  

𝛾 =
𝐻𝑚𝑎𝑥 − 𝐻

𝐻𝑚𝑎𝑥
,                               (6) 

where 𝐻𝑚𝑎𝑥 = ln 𝑁, and N is the total number of 

phase bins. The phase synchrony 𝛾 is normalized in 

interval [0..1], where 𝛾 closer to 1 reflects the signals 

with high synchrony, and 𝛾 close to 0, reflects low 

synchrony. 

2.4 Compensation of Optimization and 
Transduction Delays 

Optimization delays are estimated by C++ object 

QElapsedTimer as a difference between time points 

before start and after finishing the optimization. The 

transduction delay is estimated by averaging the time 

differences across all trials between the last signal 

before the actual start of stimulation in raw EEG data 

(from BrainProduct Recorder) and the last signal in 

the imaging interval from the ClosedLoop 

Application minus optimization delay. For 

compensation, the total delay divided by factor 

(where factor = 1000 / sampling rate) is added to the 

phase value. To dismiss artifacts caused by 

transduction delay in post-stim interval, after the 

stimulation function was executed, we skip a number 

of points equal to the transduction delay divided by 

factor. For a further analysis of possible effects, we 

need to consider all data before the exact start of 

stimulation. Therefore, after the optimal phase was 

determined, we shifted data in the imaging interval to 

the left (on number of points equal to the total delay 
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divided by factor) and added new signals, received 

during optimization and transduction delays. 

3 RESULTS 

3.1 Evaluation of Phase Prediction with 
Artificially Generated Data 

An analysis of performance was conducted on 

artificially generated signals with different levels of 

noise. Every level is represented by different signal-

to-noise (SNR) ratios, which were measured as the 

ratio of the signal power to the noise power. A 

sequence of 10 stimuli (1 sec duration for imaging 

and stimulation intervals, ¼ sec for extraction and AR 

intervals, AR data filtered by 12 Hz low pass FIR 

filter with length 24 samples, FIR filter with length 

40 samples for Hilbert transform in “PP” and “PP on 

AR”) was created based on a composition of 4 sin 

waves and random Gaussian noise (7):  

𝐴 ∗ sin(4.3) + 𝐴 ∗ 1.5 ∗ sin(9.0) + 

+ 𝐴/2 ∗ sin(20.0) + 𝐴/2 ∗ sin(32.2) + 𝑇 ∗ 𝐺𝑛   (7) 

where A, T – amplitude coefficients, Gn – Gaussian 

noise with µ = 0.0, σ = 0.5). Results are presented in 

Table 1. The “Relative Accuracy” metric was 

excluded, because when increasing noise level, the 

difference between instantaneous phase values of 

generated data and slightly different sinusoidal waves 

will wane, producing even higher “Relative 

Accuracy” results for more noisy data. Optimal phase 

shift for “Average Degree Deviation” was determined 

on data without noise and used for further comparison 

with noisy signals. Results show that even in the case 

of high noise level for two methods (“PP”, “PP from 

AR”) “Average Degree Deviation” does not 

significantly differ from optimum of a noise-free 

signal. Moreover, prediction from autoregression 

data have slightly less deviation, whereas prediction 

based on zero crossing gives considerably worse 

results. “PLV” and “Synchrony Index” show similar 

linearly decreasing dynamics for all three methods. 

Importantly, here, one point or minimal step (8) for 

phase shift is 6.48 ° (𝑆𝑟 = 500 Hz,  𝐴𝑓𝑟 = 9 Hz) : 

𝑠𝑡𝑒𝑝 = 360° /
𝑆𝑟

𝐴𝑓𝑟
 ,                     (8) 

“Synchrony Index” even for signals without noise 

gives significantly lower values, because of high 

entropy level for histogram of phase differences 

between data represented by composition of several 

sin waves and data represented by single sin wave. 

3.2 Evaluation of Phase Prediction with 
Offline EEG Data 

An analysis of phase prediction methods with offline 

EEG data was performed on the LEMON dataset 

(Babayan et. al, 2018) (resting state eyes closed / eyes 

opened, 64 channels, 2500 Hz, resampled to 500 Hz). 

Individual alpha frequency (IAF) was determined for 

each subject before analysis as a contrast of FFT 

amplitude spectra of eyes-open and eyes-closed data. 

The IAF value was used as stimulation frequency. 

Performance of methods for forecasting the exact 

alpha phase was evaluated on data from channel Oz 

with different pre-stimulation time lengths from 100 

ms to 500 ms;  prediction for longer intervals is not 

reliable due to unstable dynamics of alpha phase even 

in closed eyes state. In all cases imaging and 

stimulation intervals were equal to the time window, 

whereas extraction and AR interval were set to ¼ part 

of the time window. Length of the FIR filter for “PP” 

and “PP on AR” was 1/12 of the time window. For 

“ZC” a Butterworth 2nd order 8-13 Hz band pass filter 

was used. Table 2 and Table 3 present the average 

results for 8 subjects, “in-phase” and “anti-phase” 

relations, eyes closed state, sequence of 20 stimuli. 

Table 1: Results of phase predictions for simulated EEG data: 1 sec, 10 stimuli, “in-phase” relation. 

SNR (dB) 
Average Degree Deviation ( ° ) PLV Synchrony Index 

PP PP fr. AR ZC PP PP fr. AR ZC PP PP fr. AR ZC 

no noise 19 ± 7 17 ± 6 38 ± 4 0.931 0.931 0.931 0.527 0.517 0.528 

5.8 22 ± 9 14 ± 6 37 ± 5 0.907 0.907 0.906 0.471 0.469 0.476 

2.8 23 ± 9 12 ± 6 38 ± 7 0.841 0.841 0.840 0.390 0.387 0.403 

1.03  18 ± 11 11 ± 6 39 ± 5 0.759 0.760 0.759 0.326 0.320 0.337 

-1.18 18 ± 13 9 ± 6 45 ± 4 0.603 0.604 0.601 0.250 0.244 0.258 

-2.64 25 ± 18 11 ± 9 49 ± 5 0.479 0.481 0.478 0.214 0.206 0.219 

-3.73 26 ± 18 14 ± 1 52 ± 8 0.390 0.392 0.389 0.193 0.193 0.200 

-5.33 33 ± 18 21±17 56 ± 9 0.280 0.282 0.280 0.187 0.175 0.187 
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Table 2: Results of phase predictions for eyes closed, Oz channel, “in-phase” relation, 8 subjects, 20 stimuli. 

Table 3: Results of phase predictions for eyes closed, Oz channel, “anti-phase” relation, 8 subjects, 20 stimuli. 

 

The results prove the feasibility to predict the 

stimulation signal in determined relation based on an 

intermittent procedure. Actual phase prediction 

accuracy is difficult to evaluate, because phase of 

neural oscillations is not always clearly expressed and 

changes rapidly. 

Similarly to artificial EEG data with increasing 

noise level, “PLV” and “Synchrony index” linearly 

decrease when the length of the time window 

increases. In contrast, “Average Relative Accuracy” 

values increase with the length of the window, which 

can be explained by the fact, that for longer intervals 

the alpha oscillations show more fluctuations. 

Therefore, optimal phase for the whole interval will 

be less predictable and may vary across parts of the 

interval, which means that the difference between 

optimal and predicted waves will be less. For this 

metric, in case of “anti-phase” “PP” has higher 

values, because it is based on the maximization of 

phase values differences and this maximization is in 

general more typical for unstable alpha behaviour 

than concurrence of phases for minimization in case 

of “In Phase” relation. “Average Degree Deviation” 

mostly shows higher values for “ZC”. In general, 

“ZC” produces less accuracy, because it is based on 

representing the data in only one point, where 

particular configuration of sign and distance from that 

point to the end of interval strongly depends on filter 

parameters. Moreover, if phase shifts happen in the 

interval after the last zero crossing, the prediction by 

this method is likely not to forecast the new phase 

properly. The evaluation of the methods based on this 

data did not identify a single best method for the 

stimulation, both “PP” and “PP on AR” may thus be 

used for experiments. Additional broader studies with 

different data sets and more subjects are required for 

better investigation of presented methods. 

3.3 Optimization Time 

Average optimization time for different methods and 

windows are presented in Table 4. A sequence of 50 

stimuli was used for evaluation, extraction and AR 

interval in all cases was set to ¼ part of time window. 

All calculations were performed on Lenovo P70, Intel 

i7 OctaCore 2.6GHz, 16Gb RAM. 

Table 4: Results in terms of required optimization time 

(ms), average values across 50 stimuli. 

time 

window 

(ms) 

PP 
PP from 

AR 
ZC 

100 8.95 9.17 0.18 

200 9.18 9.23 0.2 

300 9.27 9.31 0.22 

400 9.45 9.55 0.24 

500 9.8 9.87 0.25 

1000 10.6 12 0.34 

time 

window 

(ms) 

Average Relative 

Accuracy (%) 

Average Degree 

Deviation ( ° ) 
PLV Synchrony Index 

PP 

PP 

from 

AR 

ZC PP 

PP 

from 

AR 

ZC PP 

PP 

from 

AR 

ZC PP 

PP 

from 

AR 

ZC 

100 67 68 72 67 85 83 0.652 0.645 0.643 0.393 0.415 0.397 

200 77 84 77 62 70 91 0.627 0.626 0.622 0.318 0.333 0.321 

300 79 86 78 58 68 94 0.623 0.623 0.621 0.304 0.313 0.308 

400 81 88 83 66 70 85 0.575 0.575 0.574 0.294 0.296 0.284 

500 80 88 81 69 66 88 0.583 0.582 0.583 0.302 0.294 0.292 

time 

window 

(ms) 

Average Relative 

Accuracy (%) 

Average Degree 

Deviation ( ° ) 
PLV Synchrony Index 

PP 

PP 

from 

AR 

ZC PP 

PP 

from 

AR 

ZC PP 

PP 

from 

AR 

ZC PP 

PP 

from 

AR 

ZC 

100 83 73 77 118 109 82 0.633 0.647 0.639 0.371 0.393 0.385 

200 87 80 78 96 77 94 0.622 0.623 0.622 0.345 0.344 0.339 

300 90 83 78 74 63 90 0.621 0.623 0.621 0.344 0.342 0.340 

400 92 82 80 79 75 85 0.575 0.575 0.574 0.316 0.309 0.304 

500 92 85 81 71 72 89 0.582 0.582 0.583 0.331 0.333 0.326 
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The time for “PP” and “PP on AR” are almost equal, 

because both methods are based on iterative 

optimization with Hilbert transform; autoregression 

prediction requires very short time, less 1 ms, and 

does not change a lot by increasing the interval. The 

order of AR was always set to the half of the imaging 

interval. ZC works significantly faster, since it only 

uses filtering and performs prediction based on 

analysis of sign and distance from one single point. 

The values allow to use all methods for real-time 

processing and compensate optimization delays 

without losing alpha phase dynamics. 

3.4 Pilot Measurements and Delay 
Compensations 

In pilot measurements with 3 participants, we 

performed 8 blocks of 50 stimulation periods – 4 

blocks with open eyes and 4 with eyes closed. In 

every block there were equal numbers of “in-phase” 

and “anti-phase” relations in random order. The 

imaging, stimulation and post-stim interval were 1 

sec, extraction and the AR interval were set to ¼ sec, 

the inter-trial interval was random [range: 333 to 666 

ms] with mean value of 500 ms. “PP” was chosen as 

a method for phase prediction, 1 mA value for 

stimulation was used in all cases. Data from the first 

pilot measurement allowed us to estimate the 

transduction delay, which was on average 72 ms, and 

was used for compensation of phase prediction and 

for correction of data in imaging and post-stim 

intervals. 

4 DISCUSSION 

In this paper we presented a framework for a closed-

loop EEG-tACS system, which is ready for the 

application in experimental investigations of tACS 

mechanisms and effects. We implemented an 

intermittent approach for in-phase and anti-phase 

stimulation in alpha band, evaluating three phase 

prediction methods in terms of four metrics and 

required computational time. Using stimulation-free 

intervals for extraction and prediction of phase values 

allowed us to avoid stimulation artifacts. Results of 

the phase prediction for short intervals with offline 

EEG data demonstrated the feasibility of such an 

approach, allowing to reliably keep the predetermined 

phase relation even with rapid alpha phase dynamics. 

Analysis of performance for simulated EEG data 

testified robustness of the used methods even with 

high noise levels. Short optimization times for all 

methods allows the model to be used for stimulation 

in real-time adapted to ongoing alpha oscillations. 

Successful delay compensation, data corrections and 

functioning of the whole system was proven by pilot 

measurements. 

There are several crucial points in our model, 

which determine the direction of further 

development. Firstly, with the current hardware 

configuration in total we still have a relatively long 

delay between end of imaging and the start of the 

stimulation interval: around 73-85 ms, which may, in 

the case of alpha oscillations, represent a whole cycle. 

One possible solution which we are currently 

developing depends on using another amplifier with 

shorter delay in signal acquisition, such as NeurOne 

from Bittium, which, by transmitting data through 

Ethernet protocol with small delays, is more suited for 

real-time applications. Another solution is to perform 

analysis of phase stability for every participant and to 

develop modification of prediction based on it. 

Secondly, precise coupling in real-time with neural 

oscillations parameters (such as instantaneous phase 

or frequency) requires fast reliable decomposition 

methods or spatial filters to attenuate volume 

conduction effects (and thus signal mixing) and to 

obtain more stable source signals. Therefore, the 

extraction of phase values from one electrode and 

using it for stimulation is a slightly restricted strategy. 

We consider decomposition techniques such as 

Spatio-Spectral Decomposition (SSD) (Nikulin et al., 

2011) as an alternative and promising solution. SSD 

allows to extract oscillations in particular frequency 

band even with low signal-to-noise ratio and has few 

milliseconds running time.  

In the last years, the direction of closed-loop brain 

stimulation has been expanding significantly, 

especially, for considering exact phase dynamics of 

ongoing oscillations. In particular, (Mansouri et al., 

2017) proposed a short window-forecasting 

algorithm for phased-locked stimulation using Fast 

Fourier and Hilbert transformations. They use a 

similar intermittent protocol with separate windows 

for the extraction of phase and the prediction of 

stimulation. However, they consider only two 

methods for phase prediction, use only one metric for 

estimation of performance, and have not presented 

the whole closed-loop system and its functioning. 

Other examples include attempts to establish closed-

loop tACS models based on data prediction from zero 

crossing of slow oscillations (Wilde et al., 2015), with 

the help of autoregressive spectral estimation and 

time-series prediction (Chen et al., 2013), by 

detecting sleep spindles (Lustenberger et al., 2016) 

and based on alpha power analysis (Boyle et al., 

2013). Certainly, directly comparing methods 
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presented in this paper and related other methods will 

be beneficial for the development of closed-loop 

models and will allow to determine better strategies. 

However, comprehensive studies on different 

methods require their implementation in a uniform 

environment (Matlab or C++) with a similar as 

possible parameters, performance metrics, data sets 

and computational power, which was not in the scope 

of this paper, but is of high interest for our future 

work.   

Investigation of possible effects and mechanisms 

of adaptive tACS demands broad and deep analysis 

of data from many participants, different brain states 

and parameters. The presented model is currently 

adapted for experiments focusing on potential alpha-

phase-dependent effects of closed-loop tACS. 

According to (Strüber et al., 2015), conventional 

tACS does not lead to any significant after effects 

within short intermittent procedure. By using closed 

loop tACS with an extended number of subjects we 

want to examine whether phase-locked tACS can 

produce substantial effects. This work represents an 

important step towards adaptive tACS and provides a 

feasible framework for the development of such 

systems. 
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