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Abstract: In an effort to study flow experiences in the context of less structured knowledge work (KW), we explored a 
paradigm we call controlled experience sampling (cESM). Participants worked on a naturalistic, cognitive 
task (a personal scientific thesis), and a difficulty-manipulated math task. Results show that the cESM 
approach elicits a consistent flow experience with intensities as least as high as in the math task flow condition. 
An interesting finding is that given similar flow intensities, different perceptions of stress arise between the 
two paradigms. EEG results from both tasks suggest increased frontal upper alpha band (10-12Hz) activity 
with increased task attention, that has higher temporal stability in flow than in a boredom condition, and that 
is laterally indifferent. Integrating with the presently available literature, the results further consolidate an 
understanding of flow as a state of fronto-lateral activation. 

1 INTRODUCTION 

The experience of flow, where the individual is 
completely involved in a challenging task 
(Csikszentmihalyi, 1996), is deemed a beneficial state 
in the work environment due to its links to improved 
performance and well-being (Spurlin and 
Csikszentmihalyi, 2017). As the requirements for 
flow are complex (e.g. absence of distractions, 
structure of the task, state of the individual, etc.) (Ceja 
and Navarro, 2012), flow facilitation at work is still a 
central challenge (Spurlin and Csikszentmihalyi, 
2017). However, the recent advancements on the 
biological basis of flow (Harris et al., 2017; Knierim 
et al., 2017) highlight promising avenues for 
supportive bio-adaptive systems (Rissler et al., 2018). 
Within the emerging research a central focus lies on 
highly controlled game tasks (Moller et al., 2010), 
leaving gaps to understand flow neurophysiology in 
more unstructured tasks typical to knowledge work 
(KW). Furthermore, the focus on artificial laboratory 
tasks has been argued to be a central limitation in 
studying the (flow) experience of effortless attention 
(Hommel, 2010). Therefore, in an attempt to increase 
external validity and naturalistic character of flow 
laboratory research we propose the adaption of the 
experience sampling method (ESM) 

(Csikszentmihalyi and Hunter, 2003) to the 
laboratory setting. This adaption signifies a controlled 
approach (cESM) prompting individuals to work on a 
personalized KW task during observation with 
neurophysiological sensors and through repeated 
interruption in order to “catch flow in the act”. By 
comparing observations to a validated flow induction 
paradigm, the main research question of how well the 
cESM approach can elicit flow is to be answered. 
Furthermore, while there have been serious 
advancements in the field of brain-computer 
interfaces that keep extending the applicability of 
real-time neuroimaging to in situ phenomena like 
attention, operator workload and engagement 
(Blankertz et al., 2016; Ewing et al., 2016; Kosti et 
al., 2018), the study of neural correlates of flow in 
more externally valid scenarios is still sparse 
(Katahira et al., 2018). In general, the knowledge of 
how flow can be described using neural measures still 
lacks of repeated insights, which is why this work fills 
several important gaps. Overall, our work contributes 
to flow research by: (1) advancing the understanding 
of flow elicitation in laboratory settings in the context 
of KW, and by (2) extending flow neurophysiology 
knowledge by consolidation of related work, across 
task analysis and study of high interest brain regions. 
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2 BACKGROUND 

2.1 Flow Theory 

Flow research spans contexts like arts (de Manzano et 
al., 2010), gaming (Moller et al., 2010; Harmat et al., 
2015), or writing (Csikszentmihalyi, 1996; Erhard et 
al., 2014) and has found the state to occur remarkably 
similar across contexts. The experience is described 
in nine dimensions, that are classified temporally (see 
Table 1). 

Table 1: Flow Experience Components (cf. Nakamura and 
Csikszentmihalyi, 2009). 

Component Class 
1) Challenge-skill balance Antecedents 

2) Clear Goals 
3) Unambiguous Feedback 

4) Action-Awareness Merging During 
Experience 5) Sense of Control 

6) Loss of Self-Consciousness 
7) Transformation of Time 

8) High Concentration 
9) Autotelic experience Consequences 

2.2 Research Paradigms 

In the past, primarily self-reports have been used to 
develop flow descriptions (interviews & surveys) 
(Moneta, 2012). The ESM was specifically designed 
for this purpose, in order to surpass interview 
limitations (e.g. recall bias) and to study flow close to 
its occurrence through repeated interruption 
(Csikszentmihalyi and Hunter, 2003). The naissance 
of experimental flow induction has only later and 
recently occurred, focusing on the paradigm of 
difficulty manipulation (DM) (Moneta, 2012). The 
manipulation of difficulty is used to elicit experiences 
of boredom, flow, and anxiety (through 
low/balanced/high difficulty). It has been criticized 
whether or not the approach can elicit real flow 
experiences, given the reduced motivation and 
involvement common in laboratory tasks (Moller et 
al., 2010), and given the elicitation of effortful 
attention from novel and artificial tasks (Hommel, 
2010). Other approaches have focused on 
engagement (E) paradigms where participants are for 
example asked to play a game and report their 
experience afterwards (e.g. Labonté-Lemoyne et al., 
2016). Flow physiology research has extensively used 
the DM paradigm. Based on a previous survey of 20 
studies on the peripheral nervous system (PNS) 
(Knierim et al., 2017) and three studies published 

since then (Klarkowski, 2017; Tian et al., 2017; 
Barros et al., 2018), we found that 13 of 23 studies 
used this paradigm. Furthermore, 17 of 23 studies 
used game tasks, a pattern similarly visible in flow 
neuroimaging research (see next section). This shows 
a focus with low external validity, that has led to calls 
for creative laboratory research (Harris et al., 2017). 

2.3 Flow Neurophysiology 

Given the youth of experimental paradigms, flow 
research has only recently produced increased 
amounts of theoretic and empiric research on 
underlying neurophysiological processes (Peifer, 
2012; Harris et al., 2017). One of the first 
propositions of flow neurophysiology is the reduction 
of prefrontal cortex activity during flow in favour of 
more implicit, automated processing of learned 
behaviour (Transient Hypofrontality = TH) (Dietrich, 
2004). Extending this proposition, linear reductions 
of default mode network activity with flow 
experience have been put forward that would 
alternatively explain the experience of automaticity 
and the absence of self-referential processing (Peifer, 
2012; Harris et al., 2017). Furthermore, the 
proposition of flow as an emergent property of highly 
synchronized activity in attention and reward 
networks of the brain has been highlighted 
(Synchronization Theory = ST) (Weber et al., 2009; 
Harris et al., 2017). 

Extending the aforementioned literature review 
corpus, several peer-reviewed studies of flow 
neurophysiology were identified. Much of this 
research has focused on hemodynamic imaging (e.g. 
Ulrich et al., 2014; Harmat et al., 2015; Barros et al., 
2018). Also, there has of late been an increase in 
electroencephalographic (EEG) flow research (Wolf 
et al., 2015; Ewing et al., 2016; Katahira et al., 2018). 
Yet there has been little consolidation of these lines 
of work. For this report we decided to focus on results 
on frontal brain regions, as the study of frontal 
regions has been preferred often based on the early 
TH account. (Dietrich, 2004). So far, for TH’s main 
hypothesis of overall frontal activity reduction during 
flow, little support has been found in fMRI (Ulrich et 
al., 2014) and fNIRS (Harmat et al., 2015; Barros et 
al., 2018) imaging studies. Instead, it appears parts of 
the prefrontal cortex (PFC), specifically lateral parts, 
are highly active during flow, yet the medial PFC 
shows activity decreases during flow, and boredom 
conditions show a more general PFC reduction 
(Harris et al., 2017; Barros et al., 2018). 

Frontal activity has also been reported on in most 
of the related flow EEG studies, with repeated results 
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supporting the region as a location of interest. While 
two of these studies (Chanel et al., 2011; Berta et al., 
2013) report on the relevance of frontal activity for 
the machine-learning (ML) based classification of 
flow states, six other studies describe activity in more 
detail (see Table 2). Aggregating the results of these 
studies that primarily focused on frequency band 
activity across difficulty-manipulated conditions, we 
conclude several results that have not been integrated:  

(1) One of the more clear findings is a difference 
in frontal theta band activity in flow conditions, with 
increases compared to boredom task conditions, and 
either similarity between flow and overload 
conditions (Soltész et al., 2014; Katahira et al., 2018) 
or decreases from flow to overload conditions 
indicating an inverted U-shaped relationship between 
frontal theta activity and task demands (Ewing et al., 
2016). Support for theta band differentiation has also 
been noted in ML research on flow classification 
(Chanel et al., 2011). 

(2) Repeated observations have been made for 
frontal alpha activity. While some find increased 
alpha power with higher flow self-reports (Léger et 
al., 2014; Labonté-Lemoyne et al., 2016), within the 
DM group comparison studies, findings point more to 
decreases in alpha activity with increasing task 
difficulty (Ewing, Fairclough and Gilleade, 2016; 
Katahira et al., 2018 report the inverse relationship, 
but use amplitudes as unit of analysis). ML research 
also finds frontal alpha activity to be a differentiating 
feature (Berta et al., 2013).  

(3) Lastly, a few observations have also been 
made regarding frontal beta band activity in flow, 
with ML reports demonstrating differentiation 

potential alone (Chanel et al., 2011; Berta et al., 
2013), left frontal beta band reductions correlated 
with higher flow self-reports (Léger et al., 2014), but 
also right frontal beta band increases with task 
difficulty (Klarkowski, 2017).  

Within this body of research, additional interesting 
EEG observations have been mentioned that are lateral 
differences, specifically frontal alpha asymmetry 
(FAA) (Wolf et al., 2015; Labonté-Lemoyne et al., 
2016), frequency band separation, (e.g. individualized 
theta, alpha band and beta band splits) (Berta et al., 
2013; Soltész et al., 2014; Ewing et al., 2016), and also 
temporal differences of frequency band activity within 
task conditions (Soltész et al., 2014). In this study, we 
followed up on several of these in favor of an in-depth 
analysis of frontal activity patterns. 

3 METHOD 

3.1 Materials & Procedure 

Overall, 12 students (3 female) ages 21-30 
participated voluntarily in our laboratory study. Each 
participant worked on (1) writing for a scientific 
thesis, and on (2) solving math equations in 
manipulated difficulties. Scientific writing was 
chosen for its challenging and frequent task nature for 
scholars and students (exemplary KW). Also, writing 
(scientific or literary) has previously been related to 
engaging experiences in general and flow in 
particular (Csikszentmihalyi, 1996; Erhard et al., 
2014; Galluch et al., 2015). 

Table 2: Frontal EEG results in related work (Legend: Par. = Paradigm, Anal. = Type of analysis, (Q-)Com. = (Quasi-) 
Condition comparison, Regr. = Regression EEG & self-reports, Un. = Unit of analysis, µ = Frequency amplitude, µ2 = 
Frequency power. Exemplary explanation of symbols: = No significant differences,  = Boredom condition significantly 
different from flow & overload condition,  = Positive, linear relation of frequency band and self-report). 

Reference Par. Anal. Un. Frontal Electrodes Bands & Ranges & Findings (Frontal sites only) 
    Left Mid Right θ lo-α hi-α α lo-β hi-β βa 

Katahira et al., 
2018 

DM Com. µ 
(AF3,F3,
F7,FC3) 

(Afz,F
z,FCz)

(AF4,F4,
F8,FC4)

4-7  10-13    14-30 

Ewing et al., 2016 DM Com. µ2 F3  F4 
4-7 7,5-10 10,5-13     

Klarkowski, 2017 DM Com. µ2   AF4 
4-8   8-13 

 
  13-30 

Soltész et al., 2014 DM Com. µ2 (Fp1,Fp2,F3,F4,F7,F8,Fz) 
4-8 8-11 11-13 

 
13-25 

 

25-35 

 
 

Labonté-Lemoyne 
et al., 2016 

E 
Q-

Com. 
µ2   (F4,F8) 

4-7   8-12 

 
  13-30 

Léger et al., 2014 DM Regr. µ2 F3      8-12 

 
  12-22 
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Participants brought their own, active thesis project 
(bachelor or master level) to work on for a session of 
20-25 minutes. Initially they were given time to 
inspect the state of their document and to define a 
challenging, yet achievable goal for a writing session. 
To standardize the goal setting approach the SMART 
mnemonic was used (Doran, 1981). This approach 
was also considered to facilitate the flow experience. 
For example, setting a goal that is specific (S) (i.e. 
less abstract) has been found to facilitate high quality 
writing outcomes (Flower and Hayes, 1981), and 
should further provide on one of the flow pre-
requisites of having a clear goal. Deriving a goal 
attainment measure (M), was considered to be helpful 
in fulfilling the second flow pre-requisite of 
unambiguous feedback. Lastly, the focus on a 
relevant (R) and achievable (A) goal, was considered 
to further enhance the optimality of a task challenge. 
The thesis writing software was standardized to 
Microsoft Word in full-screen mode.  

The math task was chosen as reference to a 
validated DM task (Ulrich et al., 2014; Katahira et al., 
2018). Replicating the design by Ulrich et al., (2014), 
participants sum two or more numbers. Two 
adjustments were made to the design as task difficulty 
was found to be too high in previous tests. The 
boredom condition was adjusted so that, subjects 
solved randomly drawn equations in one of three 
forms (101 + 1, + 2, or + 3). The flow condition was 
altered so that, difficulty was increased/decreased 
when three sequential responses were 
correct/incorrect. There was a constant waiting period 
between trials of four seconds. The math and writing 
task order was randomized. Also, the three math task 
conditions were ordered randomly, which resulted in 
a total count of 12 procedure variations (2 * 3! 
combinations). All variations were executed once. At 
the start of the experiment, participants completed 
eyes-open and eyes-closed baseline phases in which 
they were asked to “let their mind wander to wherever 
it takes them”, to keep their eyes focused on a black 

fixation cross on a white screen (in the eyes-open 
phase), and to avoid unnecessary movements. The 
same message and fixation cross were shown for the 
washout screens prior to each math task condition and 
between math and writing task. The complete 
procedure is outlined in Figure 1. In the recruitment 
survey participants reported mean thesis challenge 
levels of 4.3 (SD: 0.98) and Wilcoxon comparisons 
showed no difference in preference for writing or 
math tasks (measured using three questions from 
Ulrich et al., 2014). 

3.2 Measures 

Round questionnaires contained scales on flow and 
task demand (ten item Flow Short Scale (FKS) and 
one additional task demand question all by Engeser 
and Rheinberg, 2008), stress (five item construct by 
Tams et al,. 2014), and affect (single question arousal 
SAM scale by Bradley and Lang, 1994), amongst 
others. Between-task surveys included scales on task 
importance (Engeser and Rheinberg, 2008). Almost 
all questions used 7-p Likert scales (SAM arousal 
used 9-p). Additionally, ECG data was collected in 
Lead II configuration using gelled electrodes. EDA 
data was collected using gold cup electrodes on the 
left foot. However, we focus in this report on the 
analysis of EEG data only. EEG data was collected 
with an Emotiv Epoc+ headset. This 14-channel 
wireless headset uses saline-based electrodes, 
collecting data at a sampling rate of 256Hz. Electrode 
sites are: AF3, F3, F7, FC5, T7, P7, O1, O2, P8, T8, 
FC6, F8, F4, AF4 (10-20 system). Two reference 
electrodes, the ‘‘common mode sense’’ (CMS) and 
‘‘driven right leg’’ (DRL) are placed on the left and 
right mastoids. While the headset comes with 
downside regarding data quality, it has been found to 
deliver adequate data for our type of study (Barham 
et al., 2017) and has been used in previous studies 
related to the KW context  (Kosti et al., 2018),  and to  

 

 

Figure 1: Experiment procedure. 

Preparation Conclusion 

Rest Eyes Open (5min) 
Rest Eyes Closed (1min) 

Introduction, Sensor  
Attachment, & Start Survey

Exit Survey, Sensor 
Removal, & Debriefing 

Math  OR (Randomized)  Writing

Orientation (2min)
Goal Setting (Open) 

Writing Round (3x)

Round Survey

Task Survey
Round Survey

Boredom/Flow/Overload 
Randomized (5min)

Washout Screen (60s)

Orientation (3min)
Calibration (4min) 

Task Survey

Math Round (3x)

Writing (7min)
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flow experiences (Klarkowski, 2017). Prior to 
application of the headset, the felt-pad electrodes 
were moistened with a standard 0,9%-NaCl saline 
solution. After application, acceptable contact quality 
was controlled for all electrode sites using the 
proprietary impedance information supplied by the 
manufacturer’s API. 

3.3 Psychometric Data Preparation 

Outliers were removed for all psychometric variables 
(>2 SD from the construct mean). Distribution 
normality (Shapiro-Wilk test) and homogeneity of 
variances (Fligner-Killen test) did not hold for many 
samples (p < 0.05), prompting non-parametric test 
use. Removing one item from the stress construct 
improved Cronbach’s Alpha in the math boredom 
condition. Further item removal did not improve 
Alpha values, which left the stress construct Alpha 
level bordering a critical value of 0.6 that is deemed 
acceptable in some cases (Hair et al., 2011). Given the 
high internal consistency across phases (see Table 3), 
and corroborating results from the arousal item, the 
stress construct was retained. 

Table 3: Cronbach’s Alpha levels per experiment phase (m-
B/F/O/All = Math Boredom/Flow/Overload/All conditions, 
w1-3/All = Writing round 1-3/All rounds). 

 mB mF mO mAll w1 w2 w3 wAll
Flow  0.68 0.88 0.89 0.80 0.77 0.98 0.93 0.95
Stress 0.84 0.58 0.78 0.84 0.84 0.78 0.90 0.82

3.4 EEG Data Pre-Processing 

EEG data was processed along the guidelines of Cohen 
(2014) and Picton et al. (2000). Data was processed 
only for a homogenized sub-sample (three female 
participants were excluded) (Picton et al., 2000). Also, 
two data sets had to be excluded due to recording 
failure. The retained sample for EEG analysis 
comprised 7 right-handed males. Data preparation, 
feature extraction, and analysis were conducted in R, 
signal processing and artefact removal in EEGLab 
(Ver. 14.1.1). Initially, experiment phases of interest 
were extracted for each participant (eyes open baseline, 
all three math task conditions, all three writing task 
rounds). Channels were first centred through mean 
subtraction. Afterwards, the extracted data was loaded 
into EEGLab where a 0.5-45Hz bandpass, and a 50Hz 
notch filter were applied. Signal data was then visually 
inspected for artefact removal. First, channels that had 
failed to collect data were removed. Then, paroxysmal 
artefacts were removed manually. Afterwards, using 

the infomax algorithm, an independent component 
analysis (ICA) was performed to identify and remove 
components of the data related to eye blinks and 
sideway saccades (EOG artefacts). Next, data was re-
imported in R in order to extract frequency band 
information for the frontal electrodes (AF3, F3, F7, 
FC5, FC6, F8, F4, AF4) similar to (Ewing et al., 2016) 
on the basis of 2s long epochs with 50% overlap and 
tapered using a Hann windowing function. Average 
band power (µV2) was extracted using the Fast Fourier 
Transformation (FFT). Only artefact-free and 
complete epochs were used for feature extraction 
(epochs containing more than 95% of required 
samples, i.e. > 2s * 256Hz = 512 samples). Extracted 
frequency bands are: Theta (4-8Hz), Alpha (8-12Hz), 
and Beta (12-30Hz). Also, for the Alpha and Beta band 
additional sub-segments were extracted that are low 
Alpha (8-10Hz), high Alpha (10-12Hz), low Beta (12-
15Hz), mid Beta (15-20Hz), and high Beta (20-30Hz). 
Afterwards, frequency band data was normalized (Ln 
transformation). Electrodes were pooled by computing 
the mean for three regions of interest that are all frontal 
sites (AF3, F3, F7, FC5, FC6, F8, F4, AF4), left frontal 
sites (AF3, F3, F7, FC5), and right frontal sites (FC6, 
F8, F4, AF4) for each epoch. Next, feature epochs were 
aggregated temporally by computing the median over 
each experiment phase. Median use was preferred as a 
way of conservative data interpretation, taking care of 
potential outliers. Finally, to facilitate comparisons 
between experiment phases, change scores were 
computed by subtracting the eyes open baseline phase 
mean from each experiment phase (e.g. ∆theta = 
thetaTask – thetaBaseline). For an additional analysis of 
temporal segments of each experiment phase, the same 
procedure outlined above was repeated on 30s-long 
epochs within each phase. The window length of 30s 
was chosen based on the report by Soltész et al. (2014) 
who argue that at the start of phases temporal 
differences could occur in this interval already. 
Distribution tests indicated that assumption of 
normality was violated for many groups (Shapiro-Wilk 
on the temporally and spatially aggregated data sets for 
each condition and frequency band, p < 0.05), which is 
why non-parametric tests were used afterwards. 
Fligner-Killeen tests showed no violation of variance 
homogeneity assumptions. 

4 RESULTS 

We report on  four  psychometric  (flow, task demand, 
stress, arousal) measures together with multiple EEG 
features compared across six experiment phases 
(three math conditions, three writing rounds). Beyond 
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statistical comparisons, the reduced number of 
samples in the EEG data prompted us to include 
additional descriptive analyses. We believe this 
approach also has merit in light of the young age of 
the research on flow neurophysiology. The 
descriptive approach has more of a case study 
character, a format that has previously been employed 
for flow PNS measures (Harmat et al., 2011). 

4.1 Psychometric Data 

Friedman tests indicated the presence of main effects 
in psychometric variables at significant levels (p < 
0.01). Variable means and standard deviations are 
shown in Table 4, and post-hoc pairwise Wilcoxon 
comparisons of experiment phases in Table 5.  

The task demand variable was inspected for a 
manipulation check (cf. Keller et al., 2011; Tozman 
et al., 2015). Between all math conditions significant 
differences were found, displaying increasing task 
demand from boredom to overload conditions. DM 
success was thereby confirmed. Within the writing 
samples task demand levels lay continuously between 
the math boredom and overload condition. Possibly 
task demand in writing was also lower than in the 
math flow condition (trend level indication). No 
differences were found within the writing task for 
task demand, with the exception of one trend level 
difference between writing round 1 and 3. Also, no 
differences were found in all other psychometric 
variables across writing rounds and are therefore not 
reported further. 

Within the math task, flow report (FKS) 
comparisons show significant differences between 
the math flow and overload condition. Also, repeated 
significant differences between the math boredom 

and overload conditions with the writing rounds are 
found. Lastly, a trend level indication is visible for 
higher reported flow in writing round 1 compared to 
the math flow condition. As there are no significant 
differences within the writing task, flow was reported 
as high in writing as in the math flow condition in all 
writing rounds. Support for this consistency is also 
visible in the range of flow reports per participant 
(mean range = 1.13, SD = 0.62, writing task only). 

The stress report comparison showed significant 
differences between all math task conditions, 
increasing with difficulty at every step. In the writing 
task, stress levels were consistently below the math 
flow and overload conditions. Comparisons of the 
arousal reports reveal a similar pattern, with 
increasing arousal from math boredom to overload 
conditions. Albeit only with a significant difference 
for the boredom condition with the other two. Like 
stress, arousal was consistently reported lower in 
writing than in math flow and overload conditions.  

Finally, after both tasks, participants rated the 
importance of the task. No significant differences 
were found (Means: math = 3.82, writing = 4). 

4.2 EEG Data 

4.2.1 Results Between-Phase Comparisons 

Friedman tests were computed for each feature 
(pooled sites) and frequency band to detect main 
effects across experiment phases. A main effect was 
found only for the hiAlpha band (p < 0.05). No 
different effects were found for either the left side or 
right side alone, which is why the analysis of 
hemispheric differences was not pursued further. 

Table 4: Psychometric variable means & standard deviations (in parentheses) across experiment phases. 

 mB mF mO w1 w2 w3 
Flow 4.03 (0.80) 4.53 (1.16) 4.02 (1.21) 5.43 (0.59) 4.93 (1.55) 5.09 (1.14) 
Stress 2.96 (1.32) 4.18 (0.74) 4.75 (1.18) 2.81 (1.26) 2.79 (1.02) 2.64 (1.07) 

Arousal 2.73 (1.19) 6.18 (0.98) 6.27 (1.27) 3.33 (1.50) 2.82 (1.08) 3.91 (1.64) 
Demand 1.45 (0.93) 5.18 (0.60) 6.09 (0.70) 4.42 (0.90) 4.17 (1.19) 3.73 (1.01) 

Table 5: P-values psychometric & EEG data pairwise Wilcoxon tests across experiment phases. 

 Demand Flow Stress Arousal ∆hiAlpha 

 mB mF mO mB mF mO mB mF mO mB mF mO mB mF mO 

mF <.01   >.1   <.05   <.01   <.1   

mO <.01 <.05  >.1 <.05  <.01 <.05  <.01 >.1  <.05 >.1  

w1 <.01 <.1 <.01 <.01 <.1 <.01 >.1 <.05 <.01 >.1 <.01 <.01 <.05 <.1 <.1 

w2 <.01 <.1 <.01 >.1 >.1 <.05 >.1 <.01 <.01 >.1 <.01 <.01 <.1 >.1 >.1 

w3 <.01 <.05 <.01 <.05 >.1 <.1 >.1 <.01 <.01 <.1 <.01 <.01 <.05 >.1 <.1 
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Post-hoc pairwise Wilcoxon tests were conducted 
on the remaining “all frontal” feature hiAlpha 
frequency band (see Table 5). Within the math task, 
the hiAlpha band shows significantly higher levels in 
the boredom condition than in the overload condition, 
and the flow condition indicated on trend level, and 
no difference between flow and overload condition. 
Across tasks, the hiAlpha band activity in the math 
boredom condition is significantly higher than in 
writing rounds 1 and 3, and also higher than in writing 
round 2, indicated at trend level. For the hiAlpha 
band, trend level differences also indicate lower 
hiAlpha in writing round 1 than in the math flow 
condition, and lower hiAlpha in writing rounds 1 and 
3 than in the math boredom condition. 

To further deepen the analysis, phase medians 
were descriptively compared. Difference thresholds 
were defined conservatively by ascertaining that 
classified results fit the previously described 
Wilcoxon tests as medium to larger differences (e.g. 
the significant hiAlpha difference between the math 
boredom and math flow condition has a median 
difference of 0.493). Therefore, differences between 
0.15 and 0.30 are considered as smaller, between 0.30 
and 0.45 as moderate, and above 0.45 as larger 
differences. This process lead to 33.3% of math 
comparisons, 0% of writing comparisons, and 37.5% 
of across task comparisons being subject of 
descriptive interpretation. Within the writing task, no 
differences are found, indicating a consistent 
experience. Within the math task, median 
comparisons show higher hiAlpha in math boredom 
compared to math flow and overload conditions (mB-
mF = 0.493, mB-mO = 0.356), a contrast that is 
similarly visible in the broad alpha band, although 
with smaller differences (mB-mF = 0.284, mB-mO = 
0.277). Furthermore, the descriptive comparison 
points to higher theta in the math flow than the math 
boredom condition (mB-mF = 0.171), also to higher 
hiBeta in math overload compared to math boredom 
(mB-mO = 0.154) and also to higher beta in the math 
overload condition compared to both boredom and 
flow conditions (mO-mB = 0.2, mO-mF = 0.231), all 
with smaller differences. Across tasks, the descriptive 
data again shows increased hiAlpha in the math 
boredom condition compared to all three writing 
rounds (mB-w1 = 0.564, mB-w2 = 0.488, mB-w3 = 
0.548) with larger differences. The same pattern is 
visible for the broad alpha band (mB-w1 = 0.356, 
mB-w2 = 0.332, mB-w3 = 0.394), albeit with 
moderate differences, and the loAlpha band (mB-w1 
= 0.231, mB-w2 = 0.175, mB-w3 = 0.186) with 
smaller differences. Furthermore, the median 
differences point to lower hiAlpha in writing rounds 

1 and 3 than in the math overload condition (mO-w1 
= 0.208, mO-w3 = 0.192) with smaller differences. 
Also, hiBeta shows higher levels in writing round 1 
than in math boredom and flow conditions (mB-w1 = 
0.2, mF-w1 = 0.157), as does the broad beta band 
(mB-w1 = 0.233, mF-w1 = 0.265), all with smaller 
differences. Both the median levels and group 
significance differences are visualized in Figure 2. 

4.2.2 Results within-Phase Comparisons 

To analyse the potential of temporal variation in 
frequency band activity during flow (Soltész et al., 
2014), within experiment phase effects were 
investigated. Friedman tests on 30s-based segments 
of each experiment phase were computed (10/14 
segments for each math/writing task phase). 

Results show main effects for the alpha and 
hiAlpha band in the math boredom condition and 
writing round 3 (all p < 0.05), and for the beta and 
midBeta band in writing round 1 (both p < 0.01). For 
writing round 3 post-hoc pairwise Wilcoxon tests 
revealed only a single significant difference in the 
hiAlpha band (out of 91 comparisons), which is why 
this finding is considered an anomaly. For writing 
round 1 on the other hand, multiple significant 
differences are found for midBeta (19/25) and beta 
(20/23) (p < 0.05/0.1), with the most pronounced 
differences for early vs. late segments, pointing to a 
beta activity increase in the first minutes of writing 
round 1. For the math boredom condition, multiple 
significant differences are found for alpha (5/11) and 
hiAlpha (11/14) (p < 0.05/0.1) (out of 45 
comparisons). This pattern is more volatile with alpha 
showing a difference of the first 30s to the mid part of 
the boredom task round (alpha appears to peak 
slightly in the first 1-3min), but hiAlpha shows 
repeated differences between segment 1 and 3-6, then 
again, a difference of segment 3 to segments 7-9, and 
segment 6 to 7-9, indicating an early and late peak 
(and a mid-part valley). No repeated start or end 
effects were found in all bands and experiment 
phases. Also, besides the beta pattern in writing round 
1, the phases showing higher flow reports are more 
strongly marked by consistency than volatility. 
Significant differences are shown in Figures 3 & 4. 

5 DISCUSSION 

5.1 Psychometrics Findings 

Within the writing task, all variables indicate 
experience consistency, despite repeated interruption. 
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This is an important finding as interruptions are often 
considered a central flow hindrance (Rissler et al., 
2017), which is why we anticipated more experiential 
variance. Possibly, some factors in the writing task 
design (like the goal setting procedure) dampened 
such interruption impacts by providing structure. 

Within the math task, our results show DM 
success with results comparable to previous research, 
showing that flow is reported most strongly when task 
demands are balanced (Keller et al., 2011; Tozman et 
al., 2015; Klarkowski, 2017).  

The results are taken as first support that the 
cESM approach (with this scientific writing design) 
can be used to elicit flow, with at least similar 
intensities compared to a standard DM paradigm (the 
math task). However, a clear difference between the 
two paradigms appears as writing is perceived to be 
less stressful and demanding than the math task in 
flow and overload conditions. A key reason for the 
stress difference could be that per design multiple 
stress factors present in the math task and typical DM 
designs (task demand overload, social-evaluative 
threat, lack of control) (Tozman et al., 2017) were not 
present in the writing task. In the past, these stressors 
have been purposefully introduced to DM designs in 
order to elicit motivated task performances (Ulrich et 
al., 2014; Tozman et al., 2015, 2017). At the same 
time, in these approaches repeated sightings of 
psychometric reports that point to increased 
stress/arousal in balance and overload conditions 
compared to boredom conditions have been made, 
even in contexts where threat experiences could be 
less likely (e.g. in gaming) (Harmat et al., 2015; 
Tozman et al., 2015, 2017; Klarkowski, 2017). Our 
results indicate, that a naturally important task 
lacking these stressors, results in similar reported 
flow intensities without perceptions of strain. It 
would appear that the critique on the applicability of 
the DM paradigm to elicit real flow could therefore 
receive some support (Moller et al., 2010), as could 
the proposition that naturalistic tasks are perceived as 
less effortful (Hommel, 2010). However, these results 
could also indicate a central limitation to how flow is 
collected psychometrically. 

5.2 EEG Findings 

Within the writing task, EEG results mostly support 
the view of a consistent experience across writing 
trials. The only effect that shows variation is the 
initial beta increase within the first part of writing task 
round 1 (temporal analysis). Given that this variation 
is not apparent in later phases, we believe it to be most 
likely attributable to a type of task initiation activity. 

 

Figure 2: Experiment phase frequency band activity over all 
frontal electrodes pooled (y-axis = change scores of ln-
transformed avg. frequency band power). Median values of 
each phase are listed beneath. Bars show Wilcoxon test 
results with p < 0.05 (*) and p < 0.1 (t). 
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Figure 3: Temporal variation math boredom condition. 

 

Figure 4: Temporal variation writing round 1. 

It has been reported in flow and writing research 
(Flower and Hayes, 1981; Csikszentmihalyi, 1996), 
that initiation of a writing session takes additional 
effort to structure the task that may be required less at 
later stages. Given that beta activity is often related to 
increased excitatory cognitive activity, we believe 
this findings shows an initially increase in cognitive 
effort that dissipates after a while, and that is not 
specifically related to flow experience or neural 
correlates thereof, as something similar is not visible 
in the math flow condition either. 

Within the math task, EEG results integrate in 
several ways with previous work. The finding of 
frontal theta activity changes (descriptive analysis) 
with difficulty increases is supported, yet only 
weakly. This could be a spurious effect caused by our 
small sample or point to a need to further specify theta 
band activity (like Ewing et al., 2016 who select 
individualized theta band activity from the 4-7Hz 
range). The finding of lower hiAlpha activity with 
increasing task difficulty (statistical & descriptive 
analyses) is interesting in multiple ways. First, the 
separation of the alpha band shows that hiAlpha is 
more of a differentiating feature between math task 
conditions, a finding that has not been outlined as 
such in previous work, yet would explain why some 
of the work that includes separation does find frontal 
alpha to contribute valuable diagnostic information 
between difficulty conditions (Ewing et al., 2016; 
Katahira et al., 2018), while others that work with the 
broad alpha band do not (Chanel et al., 2011; 
Klarkowski, 2017). Whether or not the hiAlpha band 
provides diagnostic potential for flow observation 
beyond indication of a difference to boredom, 
remains a subject of future work. Presently it appears 
that flow and overload conditions show a similar level 
of hiAlpha, that is lower than in the boredom phase 
(thus showing a potentially reduced activity in frontal 
brain regions in the boredom phase). The results of 
frontal theta and alpha increases with sustained 
attention and increased task difficulty are in line with 
previous EEG research on mental workload (Borghini 
et al., 2014). The results are also fairly similar to a 
recent fNIRS-based study that finds frontal brain 
activity to be reduced in easy/boredom conditions and 
to increase when task difficulty increases (Barros et 
al., 2018). The aforementioned authors attribute this 
activity to attention on the task, which we find 
plausibly transferrable given the volatile hiAlpha 
signature only present in the math boredom phase 
(temporal analysis), specifically as mind wandering 
during this condition was noted explicitly by one 
participant in the final experiment survey comment 
section. However, it needs to be noted that the frontal 
alpha reduction is not a unanimous finding in the 
related work. While it is also inferred from the 
amplitude-based results of Katahira et al. (2018), the 
results by Léger et al. (2014) and Labonté-Lemoyne 
et al. (2016) point in the opposite direction. Mainly, 
this might stem from the difference in experimental 
approaches and analyses. Labonté-Lemoyne et al. 
(2016) for example observe two interacting 
participants and don’t manipulate difficulty 
externally. A last finding with potential implications 
is the increase of beta activity in the math overload 
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condition compared to the boredom and flow 
conditions (descriptive analysis). As previously 
outlined, such beta band activity might be indicative 
of a threshold when cognitive effort increases 
strongly. Lower beta activity has been found to be 
linked to higher flow experience self-reports (Léger 
et al., 2014), yet again has also been found to increase 
with task difficulty increases from boredom levels 
(Klarkowski, 2017). It appears frontal beta can 
increase at a certain level of difficulty. We would 
expect this phenomenon to be visible when the 
perceived stress levels increase, yet find no such 
pattern. However, other studies have also found no 
beta difference at all on frontal sites (Soltész et al., 
2014; Katahira et al., 2018). 

Considered across tasks, beta increases would not 
necessarily appear to be detrimental to flow, or 
related to it for that matter, at least as the first writing 
round that shows beta increases (descriptive & 
temporal analyses), does not show differences in flow 
experience reports (compared to the math flow 
condition). Other comparisons across tasks further 
support the potential relation of the hiAlpha band to 
flow experience, or at least an expected corollary of it 
that is attention on the task. Whether or not there is an 
actually realized decrease in hiAlpha in the writing 
task compared to the math overload condition 
(statistical & descriptive analyses) could be an 
interesting additional support of the relation of flow 
experience to increased voluntary task attention.  

In summary of the different frontal EEG features 
investigated it can be noted, that a role of theta band 
activity across tasks is in this data not supported, 
pointing again to a reduced role in flow experience. 
Overall, alpha band separation shows the most useful 
diagnostic extension. For the beta band, this seems 
less so to be the case, although a few results point to 
potentially higher diagnostic properties of the 
midBeta and hiBeta band. While frontal hemispheric 
differences would intuitively appear to be related to 
flow (e.g. as FAA is related to task approach 
motivation) (Wolf et al., 2015; Labonté-Lemoyne et 
al., 2016), our findings show no such pattern. Lastly, 
the temporal sub-segmentation of experiment phases 
indicates that at least for frontal sites, flow 
experiences could be rather marked by consistency 
than volatility. The findings of lower hiAlpha activity 
in flow-related experiment phases point to further 
support of frontal brain activity in flow experience. 
This finding is in contrast to initial TH reasoning 
(Dietrich, 2004), but in line with both previous EEG 
work (Ewing et al., 2016), and other neuroimaging 
studies indicating a more nuanced frontal activation 
picture (Ulrich et al., 2014; Harmat et al., 2015; 

Barros et al., 2018). Given the lack of midline frontal 
electrode positions for the herein used headset and a 
neglect of such dedicated differentiation of lateral and 
medial frontal sites in related work (see Table 2), it 
appears that the differentiating potential of frontal 
EEG could be dependent on capturing more spatial 
nuances (which might be difficult to attain) or have to 
be accompanied by other sensors. Whether or not 
frontal EEG activity alone can differentiate flow 
experience from other experiential states has yet to be 
explored further. Regardless of frontal activity, what 
might perhaps be most interesting in the context of 
this research approach, is that given the psychometric 
differences in stress perceptions, it might be possible 
to study a difference between the experience of flow 
as a state of effortless (cESM) or effortful (DM) 
attention (Hommel, 2010), if this perceptual 
difference is confirmed in future work to be present 
and relevant. 

5.3 Study Limitations 

The small sample size is a main limitation of this 
study, which is why the results can only be treated as 
preliminary. Through integration with related work 
we have tried to somewhat overcome this limitation. 
Considering the experiment design, future work 
should increase experiential variance in the writing 
task (e.g. by including a controlled, writing boredom 
phase), and employ more psychometric scales 
(involvement, effort, effortlessness, etc.) to enable 
more detailed insights. Similarly, the integration of a 
more self-determined difficulty adjustment as in 
Barros et al. (2018), could provide additional 
comparability between the two paradigms. 
Physiologically, the work is limited to frontal sites in 
favor of a more detailed inspection. We did not take 
into account that there are other topographical regions 
of interest that could be providing interesting 
information on what differentiates flow from other 
experiences. Some research for example points to the 
explicit role of central (Katahira et al., 2018), 
temporal (Wolf et al., 2015), or parietal and occipital 
brain regions (Chanel et al., 2011). 

6 CONCLUSIONS 

We took an extensive look at psychometric and 
physiological data in two flow induction paradigms 
and compared data to unintegrated results of related 
EEG studies. The summarized contributions are: 

(1) We provide evidence for the applicability and 
utility of the cESM approach to study flow in more 
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unstructured tasks in the context of KW. The writing 
task design appears to elicit a constant flow 
experience that is at least as high in intensity as in an 
established DM paradigm. At the same time the 
cESM approaches elicits lower perceptions of stress, 
which makes the approach an interesting, perhaps 
qualitatively different option for flow research. 

(2) We provide further evidence for neural 
activity in flow experience, specifically in the form of 
outlining the role of frontal EEG results, first by 
consolidating related work, then by analysis across 
two cognitive tasks. The results point to further 
refusal of the hypofrontality hypothesis and instead 
point to frontal activation that is visible through split 
of the alpha band over averaged frontal sites (likely 
indicating increased task attention). Furthermore, 
temporal physiological and experiential volatility is 
in this alpha band only indicated for a boredom 
condition. This could support the hypothesis that flow 
is actually experienced as fairly stable (Léger et al., 
2014) at least within these short time segments (5-
7min), and that volatility might be either visible in 
different brain regions or over longer periods. 

In future work, frontal alpha activity together with 
heart rate variability (HRV) data could be a fruitful 
approach to flow detection, given the observed HRV 
decreases in autonomous flow experiences (Barros et 
al., 2018). HRV reductions beyond what is expected 
in higher task difficulties together with stable, frontal 
hiAlpha activity could be a marker of flow experience 
or at least its corollary of increased task attention, that 
is explained by shared regulatory mechanisms 
(Peifer, 2012; Barros et al., 2018). Although this 
might not characterize flow neurophysiology 
uniquely, it could show sufficient diagnosticity to 
infer flow (vs. boredom or overload) experiences 
whilst they are occurring automatically, thus enabling 
the utilization of flow-facilitating bio-adaptive 
systems in KW. Further detection performance might 
then be achieved by inclusion of higher spatial 
resolution on frontal brain activity, as the recent 
fNIRS work by Barros et al. (2018) proposes flow to 
be marked by activation of lateral frontal areas and 
deactivation of medial frontal areas. Whether or not 
this can be achieved using EEG data could be an 
interesting avenue for future work, as would be the 
search for neurophysiological differences that could 
explain the stress perception difference and with it the 
potential difference of flow experience as a state of 
effortless attention (Hommel, 2010). 
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