
Software Engineering Approach to Bug Prediction Models using

Machine Learning as a Service (MLaaS)

Uma Subbiah1, Muthu Ramachandran2 and Zaigham Mahmood3
1Computer Science and Engineering, Amrita School of Engineering, Amritanagar, Ettimadai, 641112, Coimbatore,

Tamil Nadu, India
2School of Computing, Creative Technologies & Engineering, Leeds Beckett University, Headingley Campus,

Churchwood Ave, LS6 3QS, Leeds, U.K.
3Computing, Research, University of Derby, Kedleston Rd, Ilkeston, DE22 1GB, Derby, U.K.

Keywords: Machine Learning, Machine Learning as a Service, Bug Prediction, Bug Prediction as a Service, Microsoft

Azure.

Abstract: The presence of bugs in a software release has become inevitable. The loss incurred by a company due to the

presence of bugs in a software release is phenomenal. Modern methods of testing and debugging have shifted

focus from “detecting” to “predicting” bugs in the code. The existing models of bug prediction have not been

optimized for commercial use. Moreover, the scalability of these models has not been discussed in depth yet.

Taking into account the varying costs of fixing bugs, depending on which stage of the software development

cycle the bug is detected in, this paper uses two approaches – one model which can be employed when the

‘cost of changing code’ curve is exponential and the other model can be used otherwise. The cases where each

model is best suited are discussed. This paper proposes a model that can be deployed on a cloud platform for

software development companies to use. The model in this paper aims to predict the presence or absence of a

bug in the code, using machine learning classification models. Using Microsoft Azure’s machine learning

platform this model can be distributed as a web service worldwide, thus providing Bug Prediction as a Service

(BPaaS).

1 INTRODUCTION

The presence of bugs in any written software is

inevitable. However, the cost of fixing these bugs

varies significantly, depending on when the bug is

detected. If software developers are able to detect

bugs at an earlier stage, the cost incurred in fixing the

bug would be significantly lower.

Recent trends revolve around the fact that bugs

can now be predicted, much before they are detected.

Large collections of previous bug data are vital to be

able to predict bugs with reasonable accuracy.

Software analytics has opened up endless possibilities

for using data analytics and reasoning to improve the

quality of software. Actionable analytics uses the

results of the software analysis as real time data, to

make useful predictions.

By determining the presence or absence of a bug

in a software version, developers can predict the

success of the software version even before it is

released, based on a few features (characteristics) of

the release version. If this prediction is performed at

an earlier stage in the software development cycle, it

will reduce the cost of fixing the bug. Moreover, by

incorporating various software analytical techniques,

we might be able to develop a bug prediction model

that is both agile and efficient enough to be used

commercially by the software development industry.

Machine learning has been successfully applied to

make predictions in various datasets. Given the huge

number of bug datasets available today, predicting the

presence of bugs too can be done using various

machine learning techniques. This paper uses

Microsoft’s popular machine learning as a service

(MLaaS) tool Azure to build machine learning

models and deploy them on the cloud. By employing

a cloud based machine learning tool, this paper

facilitates the easy deployment of a model on the

cloud as a web service for companies to use. Various

metrics are used to evaluate the models, and their

results are tabulated in this paper, for software

Subbiah, U., Ramachandran, M. and Mahmood, Z.
Software Engineering Approach to Bug Prediction Models using Machine Learning as a Service (MLaaS).
DOI: 10.5220/0006926308790887
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 879-887
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

879

developers to use. We also offer suggestions on which

model is best suited for a given scenario.

This paper goes on to propose the use of machine

learning as a service (MLaaS) to provide a viable

solution to software developers for predicting the

presence of bugs in written software, thereby

providing Bug Prediction as a Service (BPaaS).

This paper has been organized as: Section 2

contains a literature review of research results that

have been used in this paper and similar ongoing

work. Section 3 discusses the method suggested by

this paper to provide Bug Prediction as a Service

(BPaaS) on the cloud. Section 4 details the software

defect dataset used in this paper. Section 5 discusses

the experiment performed and the results are in

Section 6. Section 7 concludes this paper and

describes the scope for this model.

2 LITERATURE REVIEW

Software companies around the world use predictive

analysis to determine how many bugs will appear in

the code or which part of the code is more prone to

bugs. This has helped cut down losses due to

commercial failure of software releases. However,

the extent to which these measures reduce the cost of

changing the code is yet to be explored. By looking at

the cost of change curve (Boehm, 1976; Beck, 1999)

for various software development methods it is

evident that the earlier a bug is fixed, the less it will

cost a company to rectify the bug. More recently,

service oriented computing allows for software to be

composed of reusable services, from various

providers. Bug prediction methods can thus be

provided as a reusable service with the help of

machine learning on the cloud.

2.1 Early Use of Machine Learning

The use of machine learning to create an entirely

automated method of deciding the action to be taken

by a company when a bug is reported was first

proposed by Čubranić and Murphy (2004). The

method adopted uses text categorization to predict

bug severity. This method works correctly on 30% of

the bugs reported to developers. Sharma, Sharma and

Gujral (2015) use feature selection to improve the

accuracy of the bug prediction model. Info gain and

Chi square selection methods are used to extract the

best features to train a naive Bayes multinomial

algorithm and a K-nearest neighbours algorithm.

2.2 Bug Prediction

The above mentioned methods work when the bug is

directly reported, though they introduce the concept

of machine learning for software defect classification.

The following papers aim to predict the presence of a

bug in the software release.

Sivaji et al. (2015) envisions bug prediction

methods being built into the development

environment for maximum efficiency. This requires

an exceptionally accurate model. They weigh the gain

ratio of each feature and select the best features from

the dataset to predict bugs in file level changes. They

conclude that of the entire dataset, 4.1 to 12.52% of

the total feature set yields the best result for file level

bug prediction. Zimmermann, Premraj and Zeller

(2007) address the important question – which

component of a buggy software actually contains the

defect. It analyses bug reports at the file and package

level using logistic regression models. The use of

linear regression to compute a bug proneness index is

explored by Puranik, Deshpande and

Chandrasekharan (2016). They perform both linear

and multiple regression to find a globally well fitting

curve for the dataset. This approach of using

regression for bug prediction did not yield convincing

results. In agreement with Challagulla et al. (2005),

since one prediction model cannot be prescribed to all

datasets, this paper documents the evaluation metrics

of various prediction models. This paper too, did not

find any significant advantage of using feature

extraction and/or principle component analysis

(PCA) on the dataset prescribed by D'Ambros, Lanza

and Robbes (2010).

2.3 Software Defect Dataset

An extensive study of the various methods of

predicting bugs in class level changes of six open

source systems was conducted by (D'Ambros, Lanza

and Robbes, 2010). The paper proposed a dataset that

would best fit a prediction model for bug prediction

in class level changes of the Eclipse IDE. This dataset

has been used for bug prediction in this paper.

According to previous findings (Nagappan and Ball,

2005; Nagappan, Ball and Zeller, 2006) the dataset

that was used to train the prediction model includes

code churn as a major feature and is given due

weightage. By including bug history data along with

software metrics, in particular CK metrics in the

dataset used for prediction, we hope to improve the

prediction accuracy. In future we shall work towards

overcoming the `lack of formal theory of program` in

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

880

bug prediction as specified by Fenton and Neil

(1999).

2.4 Software Analytics

Menzies and Zimmerman (2013) provide insight on

the potential of analysing and utilising data obtained

from previous software releases to improve the

efficiency of the software development process as a

whole (software analytics). Bugs are an unavoidable

part of every written software. The huge amount of

software defect data available – both open source and

otherwise, serves as an excellent input for predictive

software analytics. Combining the existing methods

of machine learning and big data analytics with

modern software engineering can have a tremendous

impact on the cost and efficiency of the entire

development process. More importantly, by

providing the analysis results in real time (actionable

analytics), we can keep bug prediction systems up-to

date and accurate. Yang et al. (2018) states that this is

the only way to increase the ‘agility’ and ‘success’ of

software development.

3 BUG PREDICTION IN

SOFTWARE DEVELOPMENT

3.1 Importance of Bug Prediction

A software defect may be an error in the code causing

abnormal functionality of the software or a feature

that does not conform to the requirements. Either

way, the presence of a bug is undesirable in the

commercial release of a software or a version thereof.

The most common bugs occur during the coding and

designing stages. The Software Fail Watch report- 5th

edition (https://www.tricentis.com/software-fail-

watch, 2018) by a software company called Tricentis

claimed that 606 reported software bugs had caused a

loss of $1.7 trillion worldwide, in 2017. It is evident

that an efficient means of predicting software defects

will help cut down the loss due to software production

globally.

3.2 Current Bug Prediction in the
Market

The waterfall model of software development

suggests testing for defects after integrating all of the

components in the system. However, testing each unit

or component after it has been developed increases

the probability of finding a defect.

The iterative model incorporates a testing phase

for each smaller iteration of the complete software

system. This leads to a greater chance of finding the

bugs earlier in the development cycle.

The V-model has intense testing and validation

phases. Functional defects are hard to modify in this

model, since it is hard to go back once a component

is in the testing phase. The agile model also uses

smaller iterations and a testing phase in each iteration.

The various prototyping models too have testing

methods for each prototype that is created. From this,

we can see that the testing phase is always done later

on in the development cycle. This will inevitably lead

to larger costs of fixing the defect.

The model that this paper proposes for bug

prediction hopes to predict the presence of a bug at an

earlier stage, by feeding back information gained

throughout the development cycle of one version

release to the beginning of the next version release

(i.e.,) given information from previous bug reports

and specifics of the current version release, the model

will predict whether the software is buggy or not. A

more sophisticated prediction model may even tell the

developer which part of the code actually contains the

bug. This may replace traditional methods of software

testing like black box, white box, grey box, agile and

ad hoc testing.

3.3 Cost of Change

Boehm (1976)’s cost of change curve is an
exponential curve, implying that the cost of fixing a
bug at a given stage will always be greater than the
cost of fixing it at an earlier stage. This paper works
on two models trained on two different datasets of
bug reports form an Eclipse version release. One
model predicts the presence of a bug based only on
the types of bugs found in versions before this release.
This model can be used to fix a bug at the earliest
stage, with minimal cost. The second model uses a
dataset of CK metrics and code attributes to predict a
defect. Though the second model has a slightly better
performance, the details in the dataset used to train
the second model will only be available to the
developer during design or (worst case) after the
coding stage.
This paper proposes two models – one based solely
on previous version data and a second based on
attributes of the class in the current version. If
Ambler’s cost of change curve is followed (for the
agile software development cycle), the first model is
preferred, since it can predict buggy code at an earlier
stage. However, if Kent Beck’s cost of change curve
(Beck, 1999) for eXtreme Programming (XP) tend to
flatten out. Here, the second model’s higher AUC

Software Engineering Approach to Bug Prediction Models using Machine Learning as a Service (MLaaS)

881

Figure 1: The feedback of defect knowledge gained can

facilitate bug prediction.

score (though only available at a later stage) might be
more desirable, since the cost does not grow
exponentially. Figure 1 shows the feedback of data
after the gain of defect knowledge of previous
versions to the requirements stage of the next version,
to facilitate bug prediction.

3.4 Bug Prediction as a Service

Figure 2: Bug Prediction as a Service (BPaaS) Life Cycle

diagram.

Figure 2 shows the schematic flowchart of the process

of bug prediction using machine learning. The bug

reports from various development environments

along with various software metrics are stored in a

bug database. This database is used to train a suitable

machine learning model. By deploying the machine

learning model on the cloud, bug prediction can be

provided as a cloud based service to software

development companies across the world.

4 SOFTWARE DEFECT

DATASET

The models that this paper proposes are based on two

different datasets, both of which are freely available

at http://bug.inf.usi.ch. For this paper, the “Change

metrics (15) plus categorized (with severity and

priority) post-release defects” dataset for model 1 and

the “Churn of CK and other 11 object oriented metrics

over 91 versions of the system” dataset for model 2

have been used, but this method can easily be

extended to any dataset required.

4.1 Model 1

The “Change metrics (15) plus categorized (with

severity and priority) post-release defects” dataset

used to train the first model is described:

4.1.1 Description

The features in the dataset are:

1. classname

2. numberOfVersionsUntil

3. numberOfFixesUntil

4. numberOfRefactoringsUntil

5. numberOfAuthorsUntil

6. linesAddedUntil

7. maxLinesAddedUntil

8. avgLinesAddedUntil

9. linesRemovedUntil

10. maxLinesRemovedUntil

11. avgLinesRemovedUntil

12. codeChurnUntil

13. maxCodeChurnUntil

14. avgCodeChurnUntil

15. ageWithRespectTo

16. weightedAgeWithRespectTo

17. bugs

18. nonTrivialBugs

19. majorBugs

20. criticalBugs

21. highPriorityBugs

Since this paper aims to detect the presence or

absence of bugs in a software release, we replace

columns 17, 18, 19, 20 and 21 with a single column.

Let the name of the column be ‘clean’; it will take the

value 1 if there are no bugs in the code, and a value 0

if at least one bug exists in the software.

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

882

4.2 Model 2

The “Churn of CK and other 11 object oriented

metrics over 91 versions of the system” dataset used

to train model 2 uses CK metrics to predict the

presence of bugs in a software release.

4.2.1 CK Metrics

Code churn refers to the amount of change made to

the code of a software system / component. This is

used along with CK metrics in this dataset. The

Chidamber and Kemerer metrics were first proposed

in 1994, specifically for object oriented design of

code. The CK metrics are explained in Table 1.

 CBO (Coupling between Objects). CBO is

the number of classes that a given class is coupled

with. If a class uses variables of another class or calls

methods of the other class, the classes are said to be

coupled. The lower the CBO, the better, since the

independence of classes decreases with increase in

coupling.

 DIT (Depth of Inheritance Tree). DIT is the

number of classes that a given class inherits from.

DIT should be maximal because a class is more

reusable, if it inherits from many other classes.

 LCOM (Lack of Cohesion of Methods).

LCOM is the number of pairs of functions that access

the same data (i.e.,) variables. A larger LCOM

indicates more cohesion, which is more desirable.

 NOC (Number of Children). NOC is the

number of immediate subclasses to a class. NOC is

directly proportional to the reusability, since

inheritance is a form of reuse (Bieman and Zhao,

1995). Hence, NOC should be large.

 RFC (Response For Class). RFC is the sum

of the number of methods in the class and the number

of methods called by the class. A large RFC is usually

the result of complex code, which is not desirable.

 WMC (Weighted Methods for Class). WMC

is a measure of the total complexity of all the

functions in a class. WMC must be low for the code

to be simple and straightforward to test and debug.

4.2.2 Description

The features in the dataset are:

1. classname

2. cbo

3. dit

4. fanIn

5. fanOut

6. lcom

7. noc

8. numberOfAttributes

9. numberOfAttributesInherited

10. numberOfLinesOfCode

11. numberOfMethods

12. numberOfMethodsInherited

13. numberOfPrivateAttributes

14. numberOfPrivateMethods

15. numberOfPublicAttributes

16. numberOfPublicMethods

17. rfc

18. wmc

19. bugs

20. nonTrivialBugs

21. majorBugs

22. criticalBugs

23. highPriorityBugs

Column 4 fanIn refers to the count of classes that

access a particular class, while Column 5 fanOut is

the number of classes that are accessed by the class

under study. Here, accessing a class could mean

calling a method or referencing a variable.
Again, to detect the presence or absence of bugs

in a software release, we replace columns 19, 20 and

21, 22, 23 with a single column. Let the name of the

column be ‘clean’; it will take the value 1 if there are

no bugs in the code, and a value 0 if at least one bug

exists in the software.

5 EXPERIMENT

5.1 MLaaS

Machine Learning as a Service is a term used for the

cloud services that provide auto mated machine

learning models with in-built pre-processing,

training, evaluation and prediction modules. Some of

the forerunners in this domain are Amazon’s Machine

Learning services, Microsoft’s Azure Machine

Learning and Google’s Cloud AI, to name a few.

MLaaS has a huge potential (Yao et al., 2010) and is

also much easier to deploy as a web service, for

software companies worldwide.

for every entry i in the dataset:
 clean = 1, if bugs =0
 0, otherwise

for every entry i in the dataset:
 clean = 1, if bugs =0
 0, otherwise

Software Engineering Approach to Bug Prediction Models using Machine Learning as a Service (MLaaS)

883

Figure 3: Schematic flowchart of the machine learning

experiment in Azure.

5.2 Microsoft Azure

Azure is Microsoft’s cloud computing service which

provides a wide variety of services globally. The

Azure ML Studio is a component of the Cortana

Intelligence Suite for predictive analysis and machine

learning. It has a user friendly interface and allows for

easy testing of a number of machine learning models

provided by the studio. Azure provides an option to

set up a web service, in turn allowing bug prediction

to be provided as a service on the cloud. A schematic

flowchart for the process is shown in Figure 3.

5.3 Machine Learning Models

The four categories of machine learning models

offered by Microsoft Azure are Anomaly detection,

Classification, Clustering and Regression. Anomaly

detection is usually used to detect rare, unusual data

entries from a dataset. Classification is used to

categorize data. Clustering groups the data into as

many sets as it may hold, usually useful for

discovering the structure of the dataset. Regression is

used to predict a value in a specified range. Therefore,

we use binomial classification for both the models to

categorize our dataset into two classes – buggy or

clean.

6 RESULTS

6.1 Metrics

Each predicted outcome of the experiment (i.e.,) the

code is clean or buggy can be classified under one of

the following types:

1. True Positive (TP)

2. True Negatives (TN)

3. False Positives (FP)

4. False Negatives (FN)

Figure 4: Classification of predicted outcomes.

The definition of each type is given in Figure 4.

The criteria used to evaluate the classification

model are:

 Accuracy:

Accuracy is the ratio of correct predictions

to the total number of predictions.

 Accuracy =

 Precision

 Precision is the proportion of the

positive predictions that are actually

positive.

 Precision =

 Recall

 Recall is the proportion of the positive

observations that are predicted to be

positive.

Recall =

 F1 Score

F1 score is the harmonic average of the

precision and the recall. It is not as intuitive as

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

884

Table 1: Results obtained from various classification models with training dataset 1.

Table 2: Results obtained from various classification models with training dataset 2.

the other metrics, however it is often a good measure

of the efficiency of the model. F1 score is a good

metric to follow if both false positives and false

negatives have the same cost (or here, loss incurred

by the company).

F1 Score =

 Area Under the Receiver Operating Curve

 The AUC denotes the probability that a

positive prediction chosen at random is

ranked higher than a negative prediction

chosen at random by the model.

6.2 Obtained Results

There are nine models offered by Azure ML Studio

for binomial classification. They are logistic

regression, decision forest, decision jungle, boosted

decision tree, neural network, averaged perceptron,

support vector machine, locally deep support vector

machine and Bayes’ point machine.

The results from training model 1 and model 2 on

each of the nine models are tabulated in Table 1 and

Table 2 respectively.

The threshold is a measure of trade off between

false positives and false negatives. Here, a false

positive would be a clean software version being

classified as buggy. This is of great burden on the

developer who may spend hours searching for a bug

that does not exist. A false negative would mean a bug

in the release, which is a bother to the end user.

Assuming the loss due to both these situations is the

same, the threshold was set to 0.5.

6.3 Interpretation

From Table 1 and table 2, we conclude that a two

class averaged perceptron model for the first dataset

and a two class decision jungle for the second dataset

are the best suited.

The ROC curves for both the datasets are plotted

in Figure 5 and Figure 7. The high area under the

Software Engineering Approach to Bug Prediction Models using Machine Learning as a Service (MLaaS)

885

Figure 5: The ROC curve for model 1. Figure 6: The Precision-Recall curve for model 1.

Figure 7: The ROC curve for model 2. Figure 8: The Precision-Recall curve for model 2.

ROC curve indicates a high chance that a positive

prediction chosen at random will be ranked higher

than a negative prediction chosen at random.

The Precision-Recall curves are plotted in Figure

6 and Figure 8. The area under the precision recall

graph in very high in Figure 6 and reasonably high in

Figure 8, denoting a high precision and a high recall.

Since high precision corresponds to a low FP rate and

high recall corresponds to a low FN rate, this denotes

that this model is very accurate. These graphs are

plotted by the Microsoft Azure ML Studio under the

option ‘Evaluate model’.

We have given equal weightage to all five

evaluation metrics used in this paper, and have

decided upon a suitable model. However, the metrics

for various models have all been documented for

comparison. A software tester may feel that a

different evaluation metric describes his needs better,

for instance when a false positive costs more than a

false negative or vice versa. In such cases, the

machine learning model can easily be switched for a

more suitable machine learning model. This is the

advantage of using machine learning as a service

(MLaaS) on the cloud for bug prediction.

7 CONCLUSION AND FUTURE

WORK

The model proposed by this paper has an F1 score of

91.5% for model 1, which works with only previously

known data, so as to predict the presence of a bug in

the earliest possible stage of software development.

This is more suitable for agile software development,

where the F1 score combined with a reduced cost of

rectifying the defect (according to Ambler’s cost of

change curve) is profitable. The second model

proposed uses a two class decision jungle model with

an F1 score of 90.7%. This model uses details known

at design and coding phase, to predict the presence of

a bug and can be used in XP development due to the

level increase in the cost of change curve. The

accuracy and precision of the models in this paper are

high enough for these models to be commercially

used in software development companies. Moreover,

the memory footprint of the two class decision jungle

is lower than any other model. Future work may

include increasing the accuracy of these models with

commercial datasets (as opposed to the open-sourced

datasets used in this experiment). The use of MLaaS

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

886

in this paper allows the bug prediction models to be

deployed on the cloud, as a service. When these

models are provided as a web service on the cloud,

the proposed model of Bug Prediction as a Service

becomes a viable option for software development

companies.

REFERENCES

Boehm, B., 1976. ‘Software Engineering and Knowledge

Engineering’, Proceedings of IEEE Transactions on

Computers. IEEE, pp. 1226–1241.

Scott W. Ambler. 2009. Why Agile Software Development

Techniques work: Improved feedback. [ONLINE]

Available at: http://www.ambysoft.com.

Čubranić, D. & Murphy, G. C., 2004. ‘Automatic bug triage

using text classification’, Proceedings of Software

Engineering and Knowledge Engineering. pp. 92–97.

Sharma, G., Sharma, S. & Gujral, S., 2015. ‘A Novel Way

of Assessing Software Bug Severity Using Dictionary

of Critical Terms’, Procedia Computer Science, 70,

pp.632–639.

Shivaji, S. et al., 2009. Reducing Features to Improve Bug

Prediction, Proceedings of IEEE/ACM International

Conference on Automated Software Engineering. pp.

600–604.

D'Ambros, M., Lanza, M. & Robbes, R., 2010. An

extensive comparison of bug prediction approaches.

Proceedings of the 7th IEEE Working Conference on

Mining Software Repositories (MSR).

Puranik, S., Deshpande, P. & Chandrasekaran, K., 2016. A

Novel Machine Learning Approach for Bug Prediction.

Procedia Computer Science, pp.924–930.

Zimmermann, T., Premraj, R. & Zeller, A., 2007.

Predicting Defects for Eclipse. Proceedings of the

Third International Workshop on Predictor Models in

Software Engineering. p. 9.

Fenton, N.E. & Neil, M., 1999. ‘A critique of software

defect prediction models’, Proceedings of IEEE

Transactions on Software Engineering, pp. 675–689.

Challagulla, V. U. B., Bastani, F. B.; Yen, I-Ling, Paul, R.

A., (2005). ‘Empirical assessment of machine learning

based software defect prediction techniques’,

Proceedings of the 10th IEEE International Workshop

on Object-Oriented Real-Time Dependable Systems.

pp. 263-270.

Nagappan, N. & Ball, T., 2005. ‘Use of Relative Code

Churn Measures to Predict System Defect Density’,

Proceedings of the 27th international conference on

Software engineering, St. Louis, pp. 284–292.

Nagappan, N., Ball, T. & Zeller, A., 2006. ‘In Mining

metrics to predict component failures’, Proceedings of

the 28th international conference on Software

engineering, Shanghai, pp. 452–461.

Menzies, T. and Zimmermann, T., 2013. Software

analytics: so what? IEEE Software, 30(4), pp.31-37.

Yang, Y., Falessi, D., Menzies, T. and Hihn, J., 2018.

Actionable analytics for software engineering. IEEE

Software, 35(1), pp.51-53.

Tricentis, 2018. Software Fail Watch: 5th Edition,

Tricentis. Available at: https://www.tricentis.com/

software-fail-watch.

Yao, Y et al., 2010. Complexity vs. performance: empirical

analysis of machine learning as a service. Proceedings

of the Internet Measurement Conference. pp. 384–397.

Chidamber, S. R. and Kemerer, C. F., 1994, ‘A Metrics

Suite for Object Oriented Design’, Proceedings of

IEEE Transactions on Software Engineering, 20(6), pp.

476-493.

Hand, D.J. & Till, R.J., 2001. A Simple Generalisation of

the Area Under the ROC Curve for Multiple Class

Classification Problems. Machine Learning, 45(2),

pp.171–186.

Hassan, A.E. & Holt, R.C., 2005. ‘The top ten list: dynamic

fault prediction’, Proceedings of the 21st IEEE

International Conference on Software Maintenance,

pp. 263–272.

Beck, K., 1999. Extreme programming explained: embrace

change, Boston, MA: Addison-Wesley Longman.

Bieman, J. & Zhao, J.X., 1995. Reuse through inheritance:

a quantitative study of C software. Proceedings of

Symposium on Software reusability. pp. 47–52.

Software Engineering Approach to Bug Prediction Models using Machine Learning as a Service (MLaaS)

887

