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Abstract: The presence of bugs in a software release has become inevitable. The loss incurred by a company due to the 

presence of bugs in a software release is phenomenal. Modern methods of testing and debugging have shifted 

focus from “detecting” to “predicting” bugs in the code. The existing models of bug prediction have not been 

optimized for commercial use. Moreover, the scalability of these models has not been discussed in depth yet. 

Taking into account the varying costs of fixing bugs, depending on which stage of the software development 

cycle the bug is detected in, this paper uses two approaches – one model which can be employed when the 

‘cost of changing code’ curve is exponential and the other model can be used otherwise. The cases where each 

model is best suited are discussed. This paper proposes a model that can be deployed on a cloud platform for 

software development companies to use. The model in this paper aims to predict the presence or absence of a 

bug in the code, using machine learning classification models. Using Microsoft Azure’s machine learning 

platform this model can be distributed as a web service worldwide, thus providing Bug Prediction as a Service 

(BPaaS).  

1 INTRODUCTION 

The presence of bugs in any written software is 

inevitable. However, the cost of fixing these bugs 

varies significantly, depending on when the bug is 

detected. If software developers are able to detect 

bugs at an earlier stage, the cost incurred in fixing the 

bug would be significantly lower.  

Recent trends revolve around the fact that bugs 

can now be predicted, much before they are detected. 

Large collections of previous bug data are vital to be 

able to predict bugs with reasonable accuracy. 

Software analytics has opened up endless possibilities 

for using data analytics and reasoning to improve the 

quality of software. Actionable analytics uses the 

results of the software analysis as real time data, to 

make useful predictions. 

By determining the presence or absence of a bug 

in a software version, developers can predict the 

success of the software version even before it is 

released, based on a few features (characteristics) of 

the release version. If this prediction is performed at 

an earlier stage in the software development cycle, it 

will reduce the cost of fixing the bug. Moreover, by 

incorporating various software analytical techniques, 

we might be able to develop a bug prediction model 

that is both agile and efficient enough to be used 

commercially by the software development industry.  

Machine learning has been successfully applied to 

make predictions in various datasets. Given the huge 

number of bug datasets available today, predicting the 

presence of bugs too can be done using various 

machine learning techniques. This paper uses 

Microsoft’s popular machine learning as a service 

(MLaaS) tool Azure to build machine learning 

models and deploy them on the cloud. By employing 

a cloud based machine learning tool, this paper 

facilitates the easy deployment of a model on the 

cloud as a web service for companies to use. Various 

metrics are used to evaluate the models, and their 

results are tabulated in this paper, for software 
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developers to use. We also offer suggestions on which 

model is best suited for a given scenario. 

This paper goes on to propose the use of machine 

learning as a service (MLaaS) to provide a viable 

solution to software developers for predicting the 

presence of bugs in written software, thereby 

providing Bug Prediction as a Service (BPaaS). 

This paper has been organized as: Section 2 

contains a literature review of research results that 

have been used in this paper and similar ongoing 

work. Section 3 discusses the method suggested by 

this paper to provide Bug Prediction as a Service 

(BPaaS) on the cloud. Section 4 details the software 

defect dataset used in this paper. Section 5 discusses 

the experiment performed and the results are in 

Section 6. Section 7 concludes this paper and 

describes the scope for this model.  

2 LITERATURE REVIEW 

Software companies around the world use predictive 

analysis to determine how many bugs will appear in 

the code or which part of the code is more prone to 

bugs. This has helped cut down losses due to 

commercial failure of software releases. However, 

the extent to which these measures reduce the cost of 

changing the code is yet to be explored. By looking at 

the cost of change curve (Boehm, 1976; Beck, 1999) 

for various software development methods it is 

evident that the earlier a bug is fixed, the less it will 

cost a company to rectify the bug. More recently, 

service oriented computing allows for software to be 

composed of reusable services, from various 

providers. Bug prediction methods can thus be 

provided as a reusable service with the help of 

machine learning on the cloud. 

2.1 Early Use of Machine Learning 

The use of machine learning to create an entirely 

automated method of deciding the action to be taken 

by a company when a bug is reported was first 

proposed by Čubranić and Murphy (2004). The 

method adopted uses text categorization to predict 

bug severity. This method works correctly on 30% of 

the bugs reported to developers. Sharma, Sharma and 

Gujral (2015) use feature selection to improve the 

accuracy of the bug prediction model. Info gain and 

Chi square selection methods are used to extract the 

best features to train a naive Bayes multinomial 

algorithm and a K-nearest neighbours algorithm. 

 

 

2.2 Bug Prediction 

The above mentioned methods work when the bug is 

directly reported, though they introduce the concept 

of machine learning for software defect classification. 

The following papers aim to predict the presence of a 

bug in the software release.  

Sivaji et al. (2015) envisions bug prediction 

methods being built into the development 

environment for maximum efficiency. This requires 

an exceptionally accurate model. They weigh the gain 

ratio of each feature and select the best features from 

the dataset to predict bugs in file level changes. They 

conclude that of the entire dataset, 4.1 to 12.52% of 

the total feature set yields the best result for file level 

bug prediction. Zimmermann, Premraj and Zeller 

(2007) address the important question – which 

component of a buggy software actually contains the 

defect. It analyses bug reports at the file and package 

level using logistic regression models. The use of 

linear regression to compute a bug proneness index is 

explored by Puranik, Deshpande and 

Chandrasekharan (2016). They perform both linear 

and multiple regression to find a globally well fitting 

curve for the dataset. This approach of using 

regression for bug prediction did not yield convincing 

results. In agreement with Challagulla et al. (2005), 

since one prediction model cannot be prescribed to all 

datasets, this paper documents the evaluation metrics 

of various prediction models. This paper too, did not 

find any significant advantage of using feature 

extraction and/or principle component analysis 

(PCA) on the dataset prescribed by D'Ambros, Lanza 

and Robbes (2010). 

2.3 Software Defect Dataset 

An extensive study of the various methods of 

predicting bugs in class level changes of six open 

source systems was conducted by (D'Ambros, Lanza 

and Robbes, 2010). The paper proposed a dataset that 

would best fit a prediction model for bug prediction 

in class level changes of the Eclipse IDE. This dataset 

has been used for bug prediction in this paper. 

According to previous findings (Nagappan and Ball, 

2005; Nagappan, Ball and Zeller, 2006) the dataset 

that was used to train the prediction model includes 

code churn as a major feature and is given due 

weightage. By including bug history data along with 

software metrics, in particular CK metrics in the 

dataset used for prediction, we hope to improve the 

prediction accuracy. In future we shall work towards 

overcoming the `lack of formal theory of program` in 
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bug prediction as specified by Fenton and Neil 

(1999). 

2.4 Software Analytics 

Menzies and Zimmerman (2013) provide insight on 

the potential of analysing and utilising data obtained 

from previous software releases to improve the 

efficiency of the software development process as a 

whole (software analytics). Bugs are an unavoidable 

part of every written software. The huge amount of 

software defect data available – both open source and 

otherwise, serves as an excellent input for predictive 

software analytics. Combining the existing methods 

of machine learning and big data analytics with 

modern software engineering can have a tremendous 

impact on the cost and efficiency of the entire 

development process. More importantly, by 

providing the analysis results in real time (actionable 

analytics), we can keep bug prediction systems up-to 

date and accurate. Yang et al. (2018) states that this is 

the only way to increase the ‘agility’ and ‘success’ of 

software development. 

3 BUG PREDICTION IN 

SOFTWARE DEVELOPMENT 

3.1 Importance of Bug Prediction 

A software defect may be an error in the code causing 

abnormal functionality of the software or a feature 

that does not conform to the requirements. Either 

way, the presence of a bug is undesirable in the 

commercial release of a software or a version thereof. 

The most common bugs occur during the coding and 

designing stages. The Software Fail Watch report- 5th 

edition (https://www.tricentis.com/software-fail-

watch, 2018) by a software company called Tricentis 

claimed that 606 reported software bugs had caused a 

loss of $1.7 trillion worldwide, in 2017. It is evident 

that an efficient means of predicting software defects 

will help cut down the loss due to software production 

globally.  

3.2 Current Bug Prediction in the 
Market 

The waterfall model of software development 

suggests testing for defects after integrating all of the 

components in the system. However, testing each unit 

or component after it has been developed increases 

the probability of finding a defect.  

The iterative model incorporates a testing phase 

for each smaller iteration of the complete software 

system. This leads to a greater chance of finding the 

bugs earlier in the development cycle.  

The V-model has intense testing and validation 

phases. Functional defects are hard to modify in this 

model, since it is hard to go back once a component 

is in the testing phase. The agile model also uses 

smaller iterations and a testing phase in each iteration.  

The various prototyping models too have testing 

methods for each prototype that is created. From this, 

we can see that the testing phase is always done later 

on in the development cycle. This will inevitably lead 

to larger costs of fixing the defect.  

The model that this paper proposes for bug 

prediction hopes to predict the presence of a bug at an 

earlier stage, by feeding back information gained 

throughout the development cycle of one version 

release to the beginning of the next version release 

(i.e.,) given information from previous bug reports 

and specifics of the current version release, the model 

will predict whether the software is buggy or not. A 

more sophisticated prediction model may even tell the 

developer which part of the code actually contains the 

bug. This may replace traditional methods of software 

testing like black box, white box, grey box, agile and 

ad hoc testing. 

3.3 Cost of Change 

Boehm (1976)’s cost of change curve is an 
exponential curve, implying that the cost of fixing a 
bug at a given stage will always be greater than the 
cost of fixing it at an earlier stage. This paper works 
on two models trained on two different datasets of 
bug reports form an Eclipse version release. One 
model predicts the presence of a bug based only on 
the types of bugs found in versions before this release. 
This model can be used to fix a bug at the earliest 
stage, with minimal cost. The second model uses a 
dataset of CK metrics and code attributes to predict a 
defect. Though the second model has a slightly better 
performance, the details in the dataset used to train 
the second model will only be available to the 
developer during design or (worst case) after the 
coding stage. 
This paper proposes two models – one based solely 
on previous version data and a second based on 
attributes of the class in the current version. If 
Ambler’s cost of change curve is followed (for the 
agile software development cycle), the first model is 
preferred, since it can predict buggy code at an earlier 
stage. However, if Kent Beck’s cost of change curve 
(Beck, 1999) for eXtreme Programming (XP) tend to 
flatten out. Here, the second model’s higher AUC 
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Figure 1: The feedback of defect knowledge gained can 

facilitate bug prediction.  

score (though only available at a later stage) might be 
more desirable, since the cost does not grow 
exponentially. Figure 1 shows the feedback of data 
after the gain of defect knowledge of previous 
versions to the requirements stage of the next version, 
to facilitate bug prediction. 

3.4 Bug Prediction as a Service 

 

Figure 2: Bug Prediction as a Service (BPaaS) Life Cycle 

diagram. 

Figure 2 shows the schematic flowchart of the process 

of bug prediction using machine learning. The bug 

reports from various development environments 

along with various software metrics are stored in a 

bug database. This database is used to train a suitable 

machine learning model. By deploying the machine 

learning model on the cloud, bug prediction can be 

provided as a cloud based service to software 

development companies across the world.  

4 SOFTWARE DEFECT 

DATASET 

The models that this paper proposes are based on two 

different datasets, both of which are freely available 

at http://bug.inf.usi.ch. For this paper, the “Change 

metrics (15) plus categorized (with severity and 

priority) post-release defects” dataset for model 1 and 

the “Churn of CK and other 11 object oriented metrics 

over 91 versions of the system” dataset for model 2 

have been used, but this method can easily be 

extended to any dataset required.  

4.1 Model 1 

The “Change metrics (15) plus categorized (with 

severity and priority) post-release defects” dataset 

used to train the first model is described: 

4.1.1 Description 

The features in the dataset are: 

1.  classname  

2.  numberOfVersionsUntil 

3.  numberOfFixesUntil 

4.  numberOfRefactoringsUntil   

5.  numberOfAuthorsUntil 

6.  linesAddedUntil   

7.  maxLinesAddedUntil   

8.  avgLinesAddedUntil   

9.  linesRemovedUntil   

10.  maxLinesRemovedUntil   

11.  avgLinesRemovedUntil   

12.  codeChurnUntil   

13.  maxCodeChurnUntil   

14.  avgCodeChurnUntil   

15.  ageWithRespectTo   

16.  weightedAgeWithRespectTo   

17.  bugs  

18.  nonTrivialBugs  

19.  majorBugs  

20.  criticalBugs  

21.  highPriorityBugs  

Since this paper aims to detect the presence or 

absence of bugs in a software release, we replace 

columns 17, 18, 19, 20 and 21 with a single column. 

Let the name of the column be ‘clean’; it will take the 

value 1 if there are no bugs in the code, and a value 0 

if at least one bug exists in the software. 

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

882



 

 

4.2 Model 2 

The “Churn of CK and other 11 object oriented 

metrics over 91 versions of the system” dataset used 

to train model 2 uses CK metrics to predict the 

presence of bugs in a software release.  

4.2.1 CK Metrics 

Code churn refers to the amount of change made to 

the code of a software system / component. This is 

used along with CK metrics in this dataset. The 

Chidamber and Kemerer metrics were first proposed 

in 1994, specifically for object oriented design of 

code. The CK metrics are explained in Table 1. 

 CBO (Coupling between Objects). CBO is 

the number of classes that a given class is coupled 

with. If a class uses variables of another class or calls 

methods of the other class, the classes are said to be 

coupled. The lower the CBO, the better, since the 

independence of classes decreases with increase in 

coupling.   

 DIT (Depth of Inheritance Tree). DIT is the 

number of classes that a given class inherits from. 

DIT should be maximal because a class is more 

reusable, if it inherits from many other classes. 

 LCOM (Lack of Cohesion of Methods). 

LCOM is the number of pairs of functions that access 

the same data (i.e.,) variables. A larger LCOM 

indicates more cohesion, which is more desirable. 

 NOC (Number of Children). NOC is the 

number of immediate subclasses to a class. NOC is 

directly proportional to the reusability, since 

inheritance is a form of reuse (Bieman and Zhao, 

1995). Hence, NOC should be large. 

 RFC (Response For Class). RFC is the sum 

of the number of methods in the class and the number 

of methods called by the class. A large RFC is usually 

the result of complex code, which is not desirable.  

 WMC (Weighted Methods for Class). WMC 

is a measure of the total complexity of all the 

functions in a class. WMC must be low for the code 

to be simple and straightforward to test and debug. 

4.2.2 Description 

The features in the dataset are: 

1. classname  

2.  cbo  

3.  dit  

4.  fanIn  

5.  fanOut  

6.  lcom  

7.  noc  

8.  numberOfAttributes  

9.  numberOfAttributesInherited  

10.  numberOfLinesOfCode  

11.  numberOfMethods  

12.  numberOfMethodsInherited  

13.  numberOfPrivateAttributes  

14.  numberOfPrivateMethods  

15.  numberOfPublicAttributes  

16.  numberOfPublicMethods  

17.  rfc  

18.  wmc  

19.  bugs  

20.  nonTrivialBugs  

21.  majorBugs  

22.  criticalBugs  

23.  highPriorityBugs  

Column 4 fanIn refers to the count of classes that 

access a particular class, while Column 5 fanOut is 

the number of classes that are accessed by the class 

under study. Here, accessing a class could mean 

calling a method or referencing a variable.  
Again, to detect the presence or absence of bugs 

in a software release, we replace columns 19, 20 and 

21, 22, 23 with a single column. Let the name of the 

column be ‘clean’; it will take the value 1 if there are 

no bugs in the code, and a value 0 if at least one bug 

exists in the software. 

 

5 EXPERIMENT 

5.1 MLaaS 

Machine Learning as a Service is a term used for the 

cloud services that provide auto mated machine 

learning models with in-built pre-processing, 

training, evaluation and prediction modules. Some of 

the forerunners in this domain are Amazon’s Machine 

Learning services, Microsoft’s Azure Machine 

Learning and Google’s Cloud AI, to name a few. 

MLaaS has a huge potential (Yao et al., 2010) and is 

also much easier to deploy as a web service, for 

software companies worldwide.  

for every entry i in the dataset: 
 clean =      1, if bugs  =0 
          0, otherwise 

for every entry i in the dataset: 
 clean =    1, if bugs  =0 
      0, otherwise 
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Figure 3: Schematic flowchart of the machine learning 

experiment in Azure.  

5.2 Microsoft Azure 

Azure is Microsoft’s cloud computing service which 

provides a wide variety of services globally. The 

Azure ML Studio is a component of the Cortana 

Intelligence Suite for predictive analysis and machine 

learning. It has a user friendly interface and allows for 

easy testing of a number of machine learning models 

provided by the studio. Azure provides an option to 

set up a web service, in turn allowing bug prediction 

to be provided as a service on the cloud. A schematic 

flowchart for the process is shown in Figure 3. 

5.3 Machine Learning Models 

The four categories of machine learning models 

offered by Microsoft Azure are Anomaly detection, 

Classification, Clustering and Regression.  Anomaly 

detection is usually used to detect rare, unusual data 

entries from a dataset. Classification is used to 

categorize data. Clustering groups the data into as 

many sets as it may hold, usually useful for 

discovering the structure of the dataset. Regression is 

used to predict a value in a specified range. Therefore, 

we use binomial classification for both the models to 

categorize our dataset into two classes – buggy or 

clean. 

 

6 RESULTS 

6.1 Metrics 

Each predicted outcome of the experiment (i.e.,) the 

code is clean or buggy can be classified under one of 

the following types: 

1. True Positive (TP)  

2. True Negatives (TN) 

3. False Positives (FP) 

4. False Negatives (FN) 

 

Figure 4: Classification of predicted outcomes. 

The definition of each type is given in Figure 4. 

The criteria used to evaluate the classification 

model are:  

 Accuracy: 

Accuracy is the ratio of correct predictions 

to the total number of predictions. 

             Accuracy = 

 
 Precision 

 Precision is the proportion of the 

positive predictions that are actually 

positive. 

     Precision = 

 
 Recall 

 Recall is the proportion of the positive 

observations that are predicted to be 

positive. 

Recall = 

 
 F1 Score 

F1 score is the harmonic average of the 

precision and the recall. It is not as intuitive as 
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Table 1: Results obtained from various classification models with training dataset 1. 

 

Table 2: Results obtained from various classification models with training dataset 2. 

 

the other metrics, however it is often a good measure 

of the efficiency of the model. F1 score is a good 

metric to follow if both false positives and false 

negatives have the same cost (or here, loss incurred 

by the company). 

F1 Score = 

 
 Area Under the Receiver Operating Curve 

 The AUC denotes the probability that a 

positive prediction chosen at random is 

ranked higher than a negative prediction 

chosen at random by the model. 

6.2 Obtained Results 

There are nine models offered by Azure ML Studio 

for binomial classification. They are logistic 

regression, decision forest, decision jungle, boosted 

decision tree, neural network, averaged perceptron, 

support vector machine, locally deep support vector 

machine and Bayes’ point machine. 

The results from training model 1 and model 2 on 

each of the nine models are tabulated in Table 1 and 

Table 2 respectively.  

The threshold is a measure of trade off between 

false positives and false negatives. Here, a false 

positive would be a clean software version being 

classified as buggy. This is of great burden on the 

developer who may spend hours searching for a bug 

that does not exist. A false negative would mean a bug 

in the release, which is a bother to the end user. 

Assuming the loss due to both these situations is the 

same, the threshold was set to 0.5.  

6.3 Interpretation 

From Table 1 and table 2, we conclude that a two 

class averaged perceptron model for the first dataset 

and a two class decision jungle for the second dataset 

are the best suited.  

The ROC curves for both the datasets are plotted 

in Figure 5 and Figure 7. The high area under the 
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Figure 5: The ROC curve for model 1. Figure 6: The Precision-Recall curve for model 1. 

  

Figure 7: The ROC curve for model 2. Figure 8: The Precision-Recall curve for model 2. 

ROC curve indicates a high chance that a positive 

prediction chosen at random will be ranked higher 

than a negative prediction chosen at random. 

The Precision-Recall curves are plotted in Figure 

6 and Figure 8. The area under the precision recall 

graph in very high in Figure 6 and reasonably high in 

Figure 8, denoting a high precision and a high recall. 

Since high precision corresponds to a low FP rate and 

high recall corresponds to a low FN rate, this denotes 

that this model is very accurate. These graphs are 

plotted by the Microsoft Azure ML Studio under the 

option ‘Evaluate model’. 

We have given equal weightage to all five 

evaluation metrics used in this paper, and have 

decided upon a suitable model. However, the metrics 

for various models have all been documented for 

comparison. A software tester may feel that a 

different evaluation metric describes his needs better, 

for instance when a false positive costs more than a 

false negative or vice versa. In such cases, the 

machine learning model can easily be switched for a 

more suitable machine learning model. This is the 

advantage of using machine learning as a service 

(MLaaS) on the cloud for bug prediction. 

7 CONCLUSION AND FUTURE 

WORK 

The model proposed by this paper has an F1 score of 

91.5% for model 1, which works with only previously 

known data, so as to predict the presence of a bug in 

the earliest possible stage of software development. 

This is more suitable for agile software development, 

where the F1 score combined with a reduced cost of 

rectifying the defect (according to Ambler’s cost of 

change curve) is profitable. The second model 

proposed uses a two class decision jungle model with 

an F1 score of 90.7%. This model uses details known 

at design and coding phase, to predict the presence of 

a bug and can be used in XP development due to the 

level increase in the cost of change curve. The 

accuracy and precision of the models in this paper are 

high enough for these models to be commercially 

used in software development companies. Moreover, 

the memory footprint of the two class decision jungle 

is lower than any other model. Future work may 

include increasing the accuracy of these models with 

commercial datasets (as opposed to the open-sourced 

datasets used in this experiment). The use of MLaaS 
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in this paper allows the bug prediction models to be 

deployed on the cloud, as a service. When these 

models are provided as a web service on the cloud, 

the proposed model of Bug Prediction as a Service 

becomes a viable option for software development 

companies.  

REFERENCES 

Boehm, B., 1976. ‘Software Engineering and Knowledge 

Engineering’, Proceedings of IEEE Transactions on 

Computers. IEEE, pp. 1226–1241. 

Scott W. Ambler. 2009. Why Agile Software Development 

Techniques work: Improved feedback. [ONLINE] 

Available at: http://www.ambysoft.com.  

Čubranić, D. & Murphy, G. C., 2004. ‘Automatic bug triage 

using text classification’, Proceedings of Software 

Engineering and Knowledge Engineering.  pp. 92–97. 

Sharma, G., Sharma, S. & Gujral, S., 2015. ‘A Novel Way 

of Assessing Software Bug Severity Using Dictionary 

of Critical Terms’, Procedia Computer Science, 70, 

pp.632–639. 

Shivaji, S. et al., 2009. Reducing Features to Improve Bug 

Prediction, Proceedings of IEEE/ACM International 

Conference on Automated Software Engineering. pp. 

600–604. 

D'Ambros, M., Lanza, M. & Robbes, R., 2010. An 

extensive comparison of bug prediction approaches. 

Proceedings of the 7th IEEE Working Conference on 

Mining Software Repositories (MSR). 

Puranik, S., Deshpande, P. & Chandrasekaran, K., 2016. A 

Novel Machine Learning Approach for Bug Prediction. 

Procedia Computer Science, pp.924–930. 

Zimmermann, T., Premraj, R. & Zeller, A., 2007. 

Predicting Defects for Eclipse. Proceedings of the 

Third International Workshop on Predictor Models in 

Software Engineering. p. 9. 

Fenton, N.E. & Neil, M., 1999. ‘A critique of software 

defect prediction models’, Proceedings of IEEE 

Transactions on Software Engineering, pp. 675–689. 

Challagulla, V. U. B., Bastani, F. B.; Yen, I-Ling, Paul, R. 

A., (2005). ‘Empirical assessment of machine learning 

based software defect prediction techniques’, 

Proceedings of the 10th IEEE International Workshop 

on Object-Oriented Real-Time Dependable Systems. 

pp. 263-270. 

Nagappan, N. & Ball, T., 2005. ‘Use of Relative Code 

Churn Measures to Predict System Defect Density’, 

Proceedings of the 27th international conference on 

Software engineering, St. Louis, pp. 284–292. 

Nagappan, N., Ball, T. & Zeller, A., 2006. ‘In Mining 

metrics to predict component failures’, Proceedings of 

the 28th international conference on Software 

engineering, Shanghai, pp. 452–461. 

Menzies, T. and Zimmermann, T., 2013. Software 

analytics: so what? IEEE Software, 30(4), pp.31-37. 

Yang, Y., Falessi, D., Menzies, T. and Hihn, J., 2018. 

Actionable analytics for software engineering. IEEE 

Software, 35(1), pp.51-53. 

Tricentis, 2018. Software Fail Watch: 5th Edition, 

Tricentis. Available at: https://www.tricentis.com/ 

software-fail-watch. 

Yao, Y et al., 2010. Complexity vs. performance: empirical 

analysis of machine learning as a service. Proceedings 

of the Internet Measurement Conference. pp. 384–397. 

Chidamber, S. R. and Kemerer, C. F., 1994, ‘A Metrics 

Suite for Object Oriented Design’, Proceedings of 

IEEE Transactions on Software Engineering, 20(6), pp. 

476-493. 

Hand, D.J. & Till, R.J., 2001. A Simple Generalisation of 

the Area Under the ROC Curve for Multiple Class 

Classification Problems. Machine Learning, 45(2), 

pp.171–186. 

Hassan, A.E. & Holt, R.C., 2005. ‘The top ten list: dynamic 

fault prediction’, Proceedings of the 21st IEEE 

International Conference on Software Maintenance, 

pp. 263–272. 

Beck, K., 1999. Extreme programming explained: embrace 

change, Boston, MA: Addison-Wesley Longman. 

Bieman, J. & Zhao, J.X., 1995. Reuse through inheritance: 

a quantitative study of C software. Proceedings of 

Symposium on Software reusability. pp. 47–52. 

Software Engineering Approach to Bug Prediction Models using Machine Learning as a Service (MLaaS)

887


