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Abstract: In this paper, we identify a set of multiple looks from symmetry that optimize the expected probability of 

detection in a mine hunting operation or in a search & rescue mission. We assume that the target exhibits 

mirror symmetry, i.e., that the left hand side of a target is the mirror image of the right hand side of the same 

target. In addition, it is assumed that the cross section is maximal at the interface between the left hand side 

and the right hand side and decreases monotonically as we move away from the interface. The optimal 

strategy consists of choosing aspect angles to inspect a target to ensure that the probability of detection is 

maximal. This is generally an NP-hard problem in the sense that to find the optimal angles in n   dimensions 

normally consumes a lot of computational power. Fortunately, in this problem, we are use a novel 

combination of variational calculus and symmetry principles to determine analytically the locally optimal 

angles. The solutions will help the operators plan for an effective strategy in a mine hunting operation or in 

a search and rescue mission. Such a strategy is robust as most targets of interest possess approximate mirror 

symmetry along one or more axes. For example, a human body or a canoe or a mine when cut in half yield 

approximately such symmetry. 

1 INTRODUCTION 

In this paper, we examine a problem where a 

searcher can observe a target from multiple look 

angles. This problem arises naturally in the context 

of search and detection, or mine countermeasure 

operations. We show that the angular dependence 

affects the overall probability of detection 

significantly even though this dependence is often 

overlooked in the open literature. 

Indeed, the formula for the probability of 

detecting a target in a random search is widely used, 

yet it assumes no angular dependence (Koopman 

1999). The importance of the look angle in 

perception of a target is not just intuitively evident, 

but has also been demonstrated both theoretically 

and experimentally. The ideas could be found for 

example in (Wettergren and Baylog 2010) & (Zerr, 

Bovio and Stage 2000) and many more such as (Ji 

and Liao 2005) or (Runkle et al. 1999). As the paper 

unfolds, it will be seen that our approach is different 

from the current literature in that we identify a set of 

all optimal angles. 

For completeness, we define the look angle as 

shown in Figure 1. Each look angle is associated 

with a look. For brevity, we call the look angle 

simply the angle. It is measured counter clockwise 

from the positive horizontal axis. The zero degree 

(zero radian) angle corresponds to the look on the 

long side of the target while the ninety degree ( / 2  

radian) angle corresponds to the look on the short 

side of the target. The look angle is periodic with 

period equal to 180 degrees (   radians). 

For a general class of single look angular 

probability of no detection, as shown in Figure 2, we 

provide a strategy to determine the locally optimal 

probability of detection based on n  observations at 

various angles, or simply n  looks. That is, if an 

observation is made once at an angle x  then the 

corresponding probability of no detection  g x  is 

the corresponding value shown in Figure 2. For 

illustration purposes, we assume that    
2

sing x x . 

Note that  g x  is symmetric around zero degrees 

(zero radians). 

There are many real life targets than can be 

approximated with this type of symmetry including 

canoes, ships, submarines, mines and human bodies. 

In this paper we call it the mirror symmetry; that is, 

the left hand side of a target is the mirror image of 
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the right hand side of that target. The difficulty of 

detecting such targets depends for example on the 

cross sections of the targets that are visible to the 

sensor. The probability of (no) detection is assumed 

to be proportional to the cross section of a 

cylindrical target. 

 

Figure 1: Look angle x . 

 

Figure 2: Probability of no detection as a function of 

angle. 

This problem is intractable using calculus since 

each look is independent of one another yielding a 

multi-dimensional problem. The explicit expression 

for the overall probability of detection is hopelessly 

complicated even when the single probability of 

detection is simple and the number of looks is small.  

(Press et al. 1999): “Don’t be fooled by the 

apparent notational similarity of (multi 

dimension   0F   ) and (one dimension   0F   ) 

(where are the roots to be determined). Simultaneous 

solution of equations in dimensions is much more 

difficult than finding roots in the one-dimensional 

case. The principal difference between one and 

many dimensions is that, in one dimension, it is 

possible to bracket or “trap” a root between 

bracketing values, and then hunt it down like a 

rabbit. In multidimensions, you can never be sure 

that the root is there at all until you have found it.” 

Furthermore, even if we can bracket the roots 

then the techniques available in (Press et al. 1999) 

only provide numerical solutions which vary from 

one model of angular probability to another and 

hence require extensive computations prior to a 

search. 

 (Torns and Zilinska 2007): “In general, the 

problem of finding the exact values x  that minimize 

a given objective function  f x

 
is computationally 

difficult (NP-hard); …Crudely speaking, NP 

hardness means that it is not possible to have an 

algorithm that solves all optimization problems in a 

reasonable time.” 

The problem that we consider has all the features 

and difficulties that are described above. We resolve 

these difficulties by making use of the symmetry of 

the single angular probability of detection function. 

This novel symmetry argument yields a number of 

simple and easy to use formulae for the optimal 

angles. In addition, these formulae hold true for the 

general class of single probability of detection 

curves shown in Figure 2. That is, the probability of 

no detection is an even and decreasing function of 

angle based on the definition of angle shown in 

Figure 1.  g x  can be convex, can be concave, and 

can be neither convex nor concave.  

Note that (Waterhouse, 1983): “That is, as soon 

as the symmetry of a problem is brought out, people 

are inclined to say that *by symmetry* the extreme 

value must occur when the variables are equal. But a 

bit of thought shows that there is no simple 

symmetry argument to this effect. Indeed, there 

cannot be, because such a symmetry conclusion is 

sometimes false (Bouniakovsky 1854)”. To avoid 

this pitfall, we will find all locally optimal roots. 

2 SEARCH EXPERIMENT 

In this Section, we provide a simple demonstration 

to qualitatively illustrate the dependence of the 

probability of detection as a function of angle. This 

experiment was also reported in (Nguyen and 

Mirshak, 2016). We put a pen on a Christmas tree 

and we take pictures of the tree (including the pen) 

as we rotate the observation angle by approximately 

30  degrees each time by rotating the tree.  

Angle 

Look 
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Figure 3: Pen observed at -90 degrees. 

This pen has approximately mirror symmetry and 

is approximately six inches in length. The tree is 

about one meter in height. The distance between the 

camera and the tree is approximately 1.5  meters. A 

cat is shown to give an idea of the scale. We used a 

Canon Power Shot A530 digital camera to take the 

pictures. It is difficult to identify the pen, from 

Figure 4 and Figure 8, when the angle is 60  

degrees. It is nearly impossible, from Figure 3 and 

Figure 9, when the angle is 90  degrees. However, 

it is easily identified when the angle is zero degrees 

(zero radians) or 30  degree. Zero degrees (zero 

radians) correspond to the look perpendicular to the 

long side of the pen.  

 

Figure 4: Pen observed at -60 degrees. 

 

Figure 5: Pen observed at -30 degrees. 

 

Figure 6: Pen observed at zero degrees. 

 

Figure 7: Pen observed at 30 degrees. 
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Figure 8: Pen observed at 60 degrees. 

 

Figure 9: Pen observed at 90 degrees. 

3 MODELLING THE LOOK 

ANGLE 

As shown in Section 2, the probability of detection 

of a target depends on the look angle in search and 

rescue operations. The effectiveness of such an 

operation depends on the performance of the sensor. 

There are two types: the probability of detection as a 

function of range and the probability of detection as 

a function of look angle. The probability of detection 

as a function of range is nearly a constant; hence we 

focus only on the angular dependence. For more 

details on the range dependence, we refer the reader 

to (Nguyen et al. 2008). 

The probability of detection as a function of 

range is primarily a characteristic of the sensor, 

while the probability of detection as a function of 

angle is primarily a characteristic of the target. All 

ranges and angles are measured on the two 

dimensional plane formed by the sensor beam and 

the direction of motion of the searcher carrying the 

sensor. Most targets of interest have approximate 

mirror symmetry; that is the left hand side of a target 

is the mirror image of the right hand side of the same 

target. Human bodies, canoes, ships and mines 

belong to this type of symmetry. Therefore, to build 

a robust search strategy, we assume that the target 

has (approximately) the mirror symmetry.  The look 

angle is defined as the counter clockwise angle 

between the sensor beam and the short axis of 

symmetry of a cylindrical (positive horizontal axis) 

target as shown in Figure 1. A look angle of zero 

degrees corresponds to the observation of the long 

side of the target. A look angle of ninety degrees 

corresponds to the observation of the short side of 

the target.  

The corresponding angular probability of no 

detection curve   g x  in Figure 2 shows that the 

detectability of a target reaches a maximum when its 

look angle is perpendicular to the sensor beam and 

this angular probability decreases symmetrically 

with respect to that perpendicular case where we use 

   
2

sing x x for illustration purposes. Such an 

expression for  g x  is similar to a specific case of 

target angular dependence, (Gilani et al. 2015). In 

addition,    
2

1 1 sing x x    is approximately 

equal to the normalized cross section of a cylindrical 

target. It is very clear from Figure 2 that the 

probability of detection is substantially degraded if 

the look angle differs from zero degrees (zero 

radians). 

The following assumptions are imposed on the 

function  g x : 

1.  g x  is periodic with period equal to   ; 

2.  g x is an even function i.e. 

   g x g x  ; 

3.  g x  is minimal at 0x   and 

4.  g x  is increasing between zero and / 2 . 

4 LOCAL OPTIMAL 

CONDITIONS 

In this Section, we determine the set of all angles 

that optimize the probability of detection. We 

assume that a target is observed n  times possibly at 

n distinct angles. The proof of Lemma 4A is 
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described in (Nguyen and Bourque, 2012a & 2012b) 

which make use of variational calculus (Gelfand and 

Fomin 1963). A different approach was made in 

(Bourque and Nguyen, 2011) based on inequalities 

of a quadratic equation. 

Let 
i

  be the look angle of the ith 

observation  0,..., 1i n  . We note that the 

probability of detection (at least one detection), 

 P   can be written as:  

   1P G     (1) 

where  G   is the probability of no detection 

defined as: 

     
/ 2

0 1

/ 2

...
n

dx
G g x g x





  






       (2) 

Eqn (2) assumes that the orientation of the target 

is randomly uniform. That is, the probability density 

function is equal to 1/ . The set of n  looks  

yields no detection when each look yields no 

detection. Therefore, the probability of no detection 

based on n  looks is the product of the probability of 

no detection of each look:    0 1
...

n
g x g x 


    . 

When this product is integrated over all angles x  

and weighted by the density distribution 1/ , we 

obtain the expected probability of no detection based 

on n  looks:  G  . 

Lemma 4A.  G   is locally optimal, i.e., 

  0G    if and only if    i i
f x f x   for 

1,..., 1i n   where 
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(3) 

and 

 
 

 
1

0

1 n

i j i

j

f x g x
g x

 




     (4) 

For example, 

     

   

   

 

0 1 1

1 1

1 1

0

...

...

...

n

n

n

f x g x g x

g x g x

g x g x

f x

 

 

 







    

    

      

 

 (5) 

Lemma 4A implies that 

   

   
1 1

1 1

...

...

n

n

g x g x

g x g x

 

 





   

    
 (6) 

Lemma 4B. The above holds when  1 1,.., n    

   
1 1
, ..., mod

n
  


    for , 1,..., 1i j n  .  

Proof of Lemma 4B. We can show this by induction. 

We have shown above that it is true for 1 1n  . 

Assume the contrary, i.e. there is no pair 

modi j     and  0 0g  , we can choose 

1x    so that the LHS of Eqn (6) is zero while the 

RHS is not zero. This is impossible. Hence, we can 

infer that 
1 1

mod     without loss of generality. 

Therefore, 

   

   
2 1

2 1

...

...

n

n

g x g x

g x g x

 

 





   

    
 (7) 

The above implies that by induction: 

   
2 1 2 1
, ..., , ..., mod

n n
    

 
    (8) 

Therefore, 

   
1 1 1 1
, ..., , ..., mod

n n
    

 
    (9) 

Lemma 4C. Assume that mod
i

i     for 

0,..., 1i n   then /k n    for 0,...,k n  or 

 ' / 1k n     for ' 0,..., 1k n  . 

Beside the roots in Lemma 4C, there are other roots 

satisfying Eqn (8) as shown below. 

First, we can set any root  0,..., 1
i

i n    to be 

zero. Second, the critical point must obey the 

following symmetry  2 2 mod 2      . The two 

criteria signify that there are two types of critical 

points as shown below. 
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Theorem 4A. Using the two criteria, we obtain 

two types of critical points.  

Type 1 critical points consist of roots that appear 

together from   0, / ,..., 1 /m m m    possibly 

more than once as well 

as       0, / 2 ,..., 2 1 / 2m m m       also possibly 

more than once where 1 ,2m m n   .  

Type 2 critical points consist of roots that differ 

by /m n   where 1,..., 1m n  . That is,    

  0, ,..., 1n   . 

Proof. We can infer from the second symmetry, 

the periodicity and the monotonicity of  g x that   

is composed of multiple sub cycles consisting 

of   0, / ,..., 1 /m m m   for 1 m n  . 

It is simple to show that the two types of critical 

points satisfy the two criteria above. To show 

completeness of the two types, we make use of 

contradiction. Specifically, we assume that   is 

comprised of either type in addition to at least 

another sub cycle 

  0, / ',..., ' 1 / 'm m m   where1 'm n   such 

that    / ' / , / 2 modm m m      

and  / ' modm    and show that  does not 

satisfy the two criteria. We will rotate all the roots 

of  such that / ' / ' / ' 0m m m     .  

For type 1 critical points,  

  

  

  

 

2 0, / , ..., 1 /

2 0 / ', / / ', ..., 1 / / '

2 0 / ', / / ', ..., 1 / / '

mod

a

a

a

m m m

m m m m m m

m m m m m m

 

    

    



  

      

       

and  

      

      

      

 

2 0, / 2 , ..., 2 1 / 2

2 0 / ', / 2 / ', ..., 2 1 / 2 / '

2 0 / ', / 2 / ', ..., 2 1 / 2 / '

mod

b

b

b

m m m

m m m m m m

m m m m m m

 

    

    



     

         

          

 

where a  and b  are the redundancies of the 

corresponding roots. It is shown above that the 

transformed roots no longer satisfy the second 

criteria. That is,  2 2 mod 2      . The proof is 

similar for type 2 critical points. 

Example 4B. For clarity, we provide below all 

the critical points for six looks  6n  : 

a.  0,0,0,0,0,0 ; 

b.  0,0,0,0,0, / 2 ; 

c.  0,0,0,0, / 2, / 2  ; 

d.  0,0,0, / 2, / 2, / 2   ; 

e.  0, / 2  and  0, / 4, / 2,3 / 4   ; 

f.  
2

0, / 3, 2 / 3   where the superscript 2  

means that the set  0, / 3, 2 / 3  is 

repeated twice and 

g.  0, / 6,2 / 6,3 / 6,4 / 6,5 / 6        .  

Technically there are also other critical points 

such as 0,0, / 2, / 2, / 2, / 2    . However, by the 

periodicity of  g x  we can shift these roots by / 2  

without changing the probability of detection i.e. 

 / 2, / 2,0,0,0,0   yields the same probability of 

detection as the one from  0,0, / 2, / 2, / 2, / 2    . 

Furthermore, the evenness of  g x allows us to infer 

that / 2, / 2,0,0,0,0  yield the same probability of 

detection as the one from 0,0, / 2, / 2, / 2, / 2    . 

5 GLOBALLY OPTIMAL ROOTS 

It turns out that the critical point consisting of 

  0, / ,..., 1 /n n n    yields the globally 

maximum probability of detection. We name this 

critical point the equidistant roots.  

Theorem 5A. If  g x  is logarithmically concave 

then the equidistant roots yield the globally 

maximum detection probability. 

Proof of Theorem 5A. In both types of critical 

points, the root that is equal to zero occurs at least 

twice except for the equidistant roots. We choose 

0   and infinitesimal then modify the two zero 

roots one by   and the other by  . This will 

generate a higher detection probability than the one 

with two zero roots. To show this, we 

define  ' , ,*     where the * represents all the 

remaining roots of a critical point  . We now 

determine the expected probability of detection of 

' : 

       
/ 2

/ 2

' **
dx

G g x g x





  




       (10) 

where  **  represents the product of gs  with the 

remaining roots of the critical point  . Since  is 
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infinitesimal, the first order expansion in  can be 

written as: 

 
 

      
 

 

2 2
/ 2

2

/ 2

3

' **
' ''

g xdx
G

g x g x g x

O














 
  

 



  
 
  


 (11) 

Logarithmic concavity means that 

     
2

' '' 0g x g x g x   . In the non-trivial case 

where      
2

' '' 0g x g x g x   , this implies that: 

   'G G   (12) 

Therefore, a critical point   with at least two 

zero roots cannot yield the globally maximum 

probability of detection. This eliminates all the 

critical points except for the equidistant roots. 

Hence, the equidistant roots must be the globally 

maximum probability of detection. 

We observe that there are many functions for a 

symmetric target that are logarithmically concave 

such as: 

a.     2
sing x x



  where 0  ; 

b.  
2

/ 2

x
g x





  
  
  

 where 0  ; 

c. the normal density distribution and 

d. the exponential density distribution. 

For the practical purpose of planning a search & 

detection operation, the types of  g x listed above 

are representative of most targets of interest. This is 

sufficient to guarantee the global optimality of the 

equidistant roots. 

We provide here examples when assuming 

   
2

sing x x . For convenience, we break the two 

types of critical points into the following four 

categories. For 0,..., 1i n  :  

1.  0
a

and / 2
b

 where a b n  ; 

2.   0, / , ..., 1 /
a

m m m    and 

      0, / 2 ,..., 2 1 / 2
b

m m m   such as 

 0, / 2
a

 and 0, / 4, 2 / 4,3 / 4
b

   where

m n  and 2a m b m n     ; 

3.   0, / ,..., 1 /
p

m m m   where m p n   

and 

4.   0, / ,..., 1 /n n n  . 

The results below make use of the following identity 

(Gradshteyn and Ryzhik 1980): 

 

   
1

sin sin ...

1
sin 1 sin

2
v

x x
v

x v v x
v






  

    

 
 
 

 
 
 

 (13) 

where v  is a positive integer. Using simple calculus, 

we get  G   as follows: 

1.  1 / 1 / 2, 1 / 2B a b    ; 

2.    2
1/ 4 1/ 2, 1/ 2

a b
B a b b


     for the 

case  0, / 2
a

 and 0, / 4, 2 / 4,3 / 4
b

   ; 

3.  1
1/ 2 4

n
  and 

4.    1/ 4 1/ 2,1/ 2
n p

B p


  . 

where  ,B x y  is the B  function (Zwillinger, 1996). 

We observe that all of the four results above can be 

rewritten using factorial of integers. However, for 

concision we express the results using the B  

function. 

For illustration, we assume 6n  . Table 1 

displays the set of all optimal roots for four looks 

and the corresponding probabilities of no detection. 

Clearly, we see that 

 0,0,0,0,0,0 231/1024 0.2256G    is the largest 

among the five optimal roots. While 

 0, / 6, / 3, / 2,2 / 3,5 / 6 1/ 2048 0.0004883G       

is the smallest implying that it provides the greatest 

probability of detection. 

It is also worth observing that the probability of 

detection for one look is equal to  0

1 1 / 2 4 1 / 2    

while the one for two looks with roots  0, / 2  is 

equal to  1 1 / 2 4 7 / 8   . Therefore, the probability 

of detection almost doubles when we go from one 

look to two (optimal) looks. Figure 10 shows two 

search patterns: one yielding one look and the other 

two looks. 

Table 1: Exhaustive set of optimal roots and their 

corresponding probabilities of no detection. 

   G   

 0, 0, 0, 0, 0, 0  231 / 1024  

 0, 0, 0, 0, 0, / 2  21 / 1024  

 0, 0, 0, 0, / 2, / 2   7 / 1024  

 0, 0, 0, / 2, / 2, / 2    5 / 1024  

   0, / 2 0, / 4, / 2, 3 / 4     1 / 1024  

 
2

0, / 3, 2 / 3   3 / 2048  

 0, / 6, / 3, / 2, 2 / 3, 5 / 6      1 / 2048  

A Set of Optimal Looks on a Symmetric Target

483



 

 

Figure 10: One (lhs) and two (rhs) optimal look search 

patterns. 

For comparison, we also compute the probability of 

no detection for two points that are not locally 

optimal. Namely 

 0, / 2, / 4, / 8, /16, / 32 0.02384G        and 

 0, 0, / 2, / 2, / 4, / 4 0.01074G      . Clearly 

they lie between  0,0,0,0,0,0 0.2256G   and 

 0, / 6, / 3, / 2,2 / 3,5 / 6 0.0004883G       . 

6 DISCUSSION 

In this paper, we show the significance of the look 

angle dependency. The probability of detection can 

improve substantially when we increase the number 

of looks in addition to choosing the optimal looks. 

As observed in Section 5, the probability of 

detection almost doubles when we go from one look 

to two optimal looks. 

We have derived the optimality condition using 

variational calculus that allows determining the 

optimal roots in a general way. That is, the single 

look no detection probability obeys a broad class of 

functions that requires only symmetry and 

monotonicity that is similar to    
2

sing x x . In 

addition, the results apply to general n  dimension 

which is normally NP hard even when we seek for 

numerical solutions. 

In the near future, we will provide a stronger 

proof showing the global optimality of the 

equidistant angles and the effect of repeated looks. 

Future work might also include the development 

of general search patterns that would make use of 

the optimal angles. There is already some evidence 

in the open literature such as (Bays et al. 2011) and 

(Nguyen et al. 2008) which assumes angular 

dependencies and which we will build upon to 

develop new concepts of search and rescue 

operations. 
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