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Abstract: Data processing methods allowing to query encrypted data, such as CryptDB (Popa et al., 2011a) utilize multi-
layered encryption and encryption adjustment in order to provide a reasonable trade-off between data security
protection and data processing efficiency. In this paper, we consider querying of encrypted graph databases
and propose a novel traversal-aware encryption adjustment scheme which trades efficiency for security. We
show that by dynamically adjusting encryption layers as query execution progresses, we can correctly execute
the query on the encrypted graph store revealing less information to the adversary than in the case of static
adjustment done prior to execution.

1 INTRODUCTION

Data processing methods allowing to query encryp-
ted data, such as CryptDB (Popa et al., 2011a) pro-
vide a powerful mechanism for security protection of
data against server based attacks. In order to pro-
vide a reasonable trade-off between data security pro-
tection and data processing efficiency CryptDB uti-
lizes multi-layered encryption and encryption adjus-
tment. Multi-layered encryption allows to control to
some extent the release of information about data ele-
ments required for a query execution. Highest le-
vel of protection can be achieved by the application
of random layer of encryption (RND), meaning that
even equal elements become different after encryp-
tion. However, if the query execution over encrypted
data requires equality checks this cannot be done at
random layer of encryption. In this case the encryp-
tion level should be adjusted prior to the query exe-
cution to the deterministic layer (DET) which allows
for equality checks, but reveal no more information.
In the original CryptDB approach several layers of
different types of encryption organized into encryp-
tion onions have been considered alongside of SQL-
aware encryption schemes, which revealed the neces-
sary information to execute the various types of SQL-
queries, still keeping data itself hidden. One particu-
lar challenge was to support join operations and that
required introduction of a new cryptographic primi-
tive.

In (Aburawi et al., 2018) a variant of CryptDB-
like mechanism for graph databases has been propo-
sed based on an original idea of relational CryptDB

(Popa et al., 2011a). Graph databases have recently
become very popular. The graph structures with no-
des representing entities and edges representing va-
rious connections between these entities constitute a
convenient data model allowing to model all kinds
of scenarios. Querying graph databases may also be
more efficient as compared with relational databases,
especially by data traversal queries. Several imple-
mentations of graph DBMS are available, including
GraphDB, Neo4j, OrientDB, to name a few (Finley,
2011). In a work reported here Neo4j has been used,
a Java-based open source implementation that provi-
des persistence and high performance (neo4j, 2015).
The query language that can be used to access data
in Neo4j is Cypher, which is a declarative language
capable to express the patterns of nodes and relati-
onships in the graph to be matched during the query
execution (Cypher, 2015).

The application of CryptDB principles in the con-
text of graph databases brings challenges with the en-
cryption layer adjustment similar to that of the origi-
nal CryptDB. The fundamental characteristic of en-
cryption adjustment is a selection of an appropriate
encryption layer that reveals an information about an
encrypted data that is needed for executing the query,
but it does not reveal more information about the data
than required. For example, for relational databases,
it has been noticed in (Popa et al., 2011a) that there
is a possibility to leak some unnecessary information
(cross-column equalities) when applying DET layer
during the execution of Join operator. A new Join-
aware encryption scheme has been proposed to solve
this issue (Popa et al., 2011a). In graph databases
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no need to perform join (Robinson et al., 2013) and
it is absent in the Cypher query language (Cypher,
2015). Nevertheless, as it was noticed in (Aburawi
et al., 2018) the issue of unnecessary leaks remains
for graph databases as well.

In this paper, we propose a novel encryption ad-
justment scheme which we call ”traversal-aware”.
This scheme, when applied to graph database que-
rying lead to demonstrably less unnecessary leaks of
information. The scheme is dynamic and the encryp-
tion layer adjustment happens not before the query
execution, but rather it gradually progresses alongs-
ide the execution.

This paper is organized as follows, in Section 2
the encryption layers and adjustment as proposed in
(Aburawi et al., 2018) is presented. Section 3 then ex-
plains the CryptGraphDB. The next section, Section
4, presents the proposed traversal-aware encryption
adjustment for graph database. Some conclusions and
some suggested areas for future work are drawn in the
final section.

2 ENCRYPTION LAYERS AND
ADJUSTMENT

In this section we outline briefly the concepts of en-
cryption layers and encryption adjustment in the con-
text of encrypted databases querying. Onion Layers
of Encryption considered in (Popa et al., 2011a; Abu-
rawi et al., 2018) allow to change data encryption le-
vels on demand in an efficient way. The main idea
is to encrypt each data item in one or more onions,
where each layer of each onion enables some kinds of
functionality as explained in (Popa et al., 2011a; Abu-
rawi et al., 2018). At the beginning, each data item in
the database is encrypted in all onions of encryption,
started with the most secure encryption scheme as ou-
termost layers. At this point, the server can know no-
thing about the data other than the number of nodes,
properties, and data size, whilst the inner layers such
as OPE and DET provide more functionality. De-
pending on the requirements of a particular query for
data access the level of encryption is adjusted before
query execution. Different cryptographic algorithms
are available to be cascaded into onion layers (as ori-
ginally mention in (Popa et al., 2011a)):

• Random (RND). RND is a probabilistic scheme
that provides the maximum security, when two
equal values are encrypted to different ciphertexts.
RND does not reveal any information on the plain
text and does not allow any computation over the
ciphertext.

• Homomorphic encryption (HOM). HOM is a
method of encryption that allows to perform cal-
culations on encrypted information without de-
crypting it first.

• Deterministic (DET). DET generates the same
ciphertext that correspond to the same plaintext,
DET was implemented to let the equality checks
to be performed.

• Order-preserving encryption (OPE). OPE is a
scheme that produces ciphertexts that preserve the
order of their plaintexts, and allows to perform
comparisons between data values based on their
encrypted versions.

• Word search (SEARCH). SEARCH allows to
execute searches on encrypted text.

3 CryptGraphDB

In (Aburawi et al., 2018) a proposed approach for
graph database inspired by CryptDB was reported
whereby executing a cypher query over an encrypted
graph database as if it was executed over a plain graph
database. Therefore, the typical processing of a query
in CryptGraphDB can be performed as follows:

1. The application issues a query, which is rewritten
and anonymizes each label, node, and relations-
hip name, and encrypts each constant in the query
with an encryption scheme that allows the requi-
red operation.

2. By using multi-layered encryption and encryp-
tion, adjust encryption layers before executing the
query if DBMS needs to do. If so, issues an UP-
DATE query to adjust the encryption layer of the
appropriate node, while the semantics of the query
are preserved.

3. The encrypted query is sent to the DBMS server to
be executed by using standard Cypher and return
the encrypted results.

4. The server returns the encrypted result of the
query, then the proxy decrypts and returns to the
application.

To illustrate how CryptGraphDB processes the
cypher query, consider an example scenario as can be
seen in Figure 1, consisting of a graph database la-
bel Person, which has ten nodes of interest: name
and age as properties. Initially, each property in this
graph database is adapted in onion of encryption with
RND as outermost layer. At this stage, the server (or
rather an attacker taken over the server, or curious ad-
ministrator) can recognize nothing about the data con-
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tent other than the number of nodes, properties, and
relationships.

To illustrate the adjustment of the onion layers the
following query is considered:
MATCH (A:person)-[:Knows]->(person)
WHERE A.name = "Tom"
RETURN person

In this query an adjustment for name is re-
quired to level DET. Accordingly, an update
query is needed to UPDATE Label:person to
person1 by decrypting the name property to
DET layer, UPDATE person1 SET P-Onion =
DECRYPT-RND( P-Onion). DBMS decrypts en-
tire name property to DET layer. Then, execute the
encrypted query:
MATCH (A:person1)-[:Knows1]->(person1)
WHERE A.name1 = "D1"
RETURN person1

Where D1 is an encryption of Tom. The outcome
of this query will be X77, X33, and X88 as the
encrypted RND of Smith, Smith, and Lee, re-
spectively. The encrypted results are returned to the
user; they can be decrypted in transit by a proxy.

In this way CryptGraphDB, similarly to CryptDB
could use various encryption schemes that support se-
veral operations, such as check the equality , order
comparisons and some arithmetic calculations. As en-
cryption layer adjustment concerned, in both, original
CryptDB and CryptGraphDB it happens before query
execution. It has noticeable consequences in the con-
text of CryptGraphDB. The required adjustment is
performed everywhere in the database instance. So,
for example, if the query requires access to equality
of values for any property, the encryption layers for
this property values are adjusted in all nodes where
the property is present. As we will see that may lead
to unnecessary information leaks. In the next section
we present an approach which allows to reveal less in-
formation when performing an encryption adjustment
at least for some types of queries.

4 TRAVERSAL-AWARE
ENCRYPTION ADJUSTMENT

The idea of traversal-aware encryption adjustment is
quite natural and simple. For some types of queries,
the processing can be naturally split in a well-defined
sequence of stages. That is true for example for path,
or traversal queries, like the following:
A. Bounded traversal
MATCH (a)-[:RELASIONSHIP*1..n]-(b)
WHERE a.name = ’Value’ AND ...
RETURN b

B. Unbounded traversal

MATCH (a)-[:RELASIONSHIP*]-(b)
WHERE a.name = ’Value’ AND ...
RETURN b

In both cases during the query execution the paths
starting with nodes with particular names values and
progressing alongside specified relationships are tra-
versed. The execution may perform additionally
checks of some properties of encountered nodes if re-
quired by conditions following AND in the above que-
ries.

When executing such queries over encrypted
graph database in the original CryptGraphDB, the en-
cryption layer adjustment may be required for the pro-
perties of all nodes which may be encountered during
traversal, if conditions checks are present in the query.
As before query execution it is not generally possible
to identify nodes that will be traversed, the encryption
adjustment will be done everywhere (all nodes) where
the properties required for checks are present.

We propose, instead of such oblivious and static
adjustment to perform dynamic traversal-aware adjus-
tment, following the simple principles:

• Encryption adjustments and traversal query exe-
cution are interlaced;

• The adjustments happen in between of traversal
steps;

• The adjustment is performed to enable one step
of traversal using all information accumulated to
this step, in particular the set of nodes traversed so
far.

Intuitively, it is plausible that following these prin-
ciples we have a chance to do more focused adjust-
ment, not everywhere, but just along the query execu-
tion path. We confirm this intuition in the following
subsection by considering a case study.

4.1 Case Study

For the case study we consider a particular graph da-
tabase instance presented in Figure 1. In this example
scenario we have nodes with the label Person, and
two properties of interest: name and age. Consider
the following Cypher query:

MATCH (x: person)-[:Knows]->(y)
WHERE x.name = "Tom" AND y.age = "22"
RETURN y

We consider the execution of this query in three
modes: 1) non-encrypted; 2) encrypted using origi-
nal CryptGraphDB adjustment; 3) encrypted using
traversal-aware adjustment.
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Name: 
Smith 

age: 22

Name: 
Tom 

age: 39

Name: 
Tom 

age: 29
Name: 
Smith 

age: 35

Name: 
Perry 

age: 38

Name: 
Tom 

age: 40

Name: 
Lee   

age: 18

Name: 
Perry 

age: 38

Name: 
Sara 

age: 20

Name: 
Jones 

age: 32

Knows

Knows

Knows

Knows

Knows

Knows
Knows

Knows

Figure 1: Data layout at the server of the graph database.

4.1.1 Non-encrypted Mode

WHERE clause consists of two conditions: initially,
WHERE name = "Tom", when this part is exe-
cuted it leads to have three nodes to be traversed/
checked: {Smith,22},{Smith,35},{Lee,18}
(these are reachable from {Tom,29} node in one
step via Knows relation). Then check the second part
of the query which is the age = 22, based on the
previous result, this execution showed that the final
result is: {Smith,22} node.

4.1.2 Original CryptGraphDB Adjustment

Initially, each property in the graph is dressed in
onion of encryption with RND as outermost layers.
At this point, the server can learn nothing about
the data content other than the number of nodes,
properties, and relationships. To execute the query
over encrypted store it is required to lower encryption
of name and age to level DET ( as we need equality
checks). In this case, an update query is required UP-
DATE Label SET P2 Onion1 = DECRYPT
RND, and then RETURN P1, P2, P3, etc.,
WHERE P1 = "D1" AND P2 = "G83", where
D1 and G83 are an encryption of Tom and 22,
respectively. The results are decrypted and return
them to the user.

More details on this follows. In step (1), proxy
sends to the DBMS: UPDATE Database, SET Pro-
perty1 = DECRYPT RND(Property). Because all
the database properties on RND layer, as illustrated
in Figure 2. DBMS decrypts entire name and
age properties to DET layer: Dec.P,Eq,RND
(X11) = D1, Dec.P,Eq,RND (G71) =
G68, Dec.P,Eq,RND (X77) = D6, and so
on. Proxy updates its internal state to log that entire
name and age properties are now at DET layer in
the DBMS, as can be seen in Figure 3. In step (2),

proxy encrypts Tom and 22, to their Equality onion,
DET layer encryption value of D1 and G83. Proxy
generates query and sends it to DBMS:
MATCH (x: person1)-[:Knows1]->(y)
WHERE x.name1 = "D1" AND y.age1 = "G83"
RETURN y

and in step (3), proxy sends decrypted result Smith
and 22 to the application.

We notice that with this encryption adjustment
procedure after the query execution the equality of
{name,age} for each node becomes apparent. This
information on equality is not related to the result of
the query and is not strictly necessary for computing
the result, as these nodes are not connected to node
Tom.

4.1.3 Traversal-aware Encryption Adjustment

Consider the example schema shown in Figure 1. Ini-
tially, each node and each property in the graph is
dressed in equality onion of encryption, with RND as
outermost layers, as shown in Figure 2. At this point,
the server can learn nothing about the data values. Re-
turn now to our running query example Q:
MATCH (x: person)-[:Knows]->(y)
WHERE x.name = "Tom" AND y.age = "22"
RETURN y

In order for this query to be executed one needs
first to adjust the encryption of name to layer DET. To
do so, the query UPDATE Label SET P1 On-
ion1 = DECRYPT RND is issued, where P1 cor-
responds to name. Then we execute the query Q1
performing the initial search for nodes when the path
required in the original query Q may start:
MATCH (x: person1)-[:Knows1]->(y)
WHERE x.name1 = "D1"
RETURN y AS result

Here result variable is used to store the result of
Q1, property name1 corresponds to name, and D1 is
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Name1
: X77 
Age1: 
G22

Name1
: X66 
Age1: 
G77

Name1
: X11 
Age1: 
G71

Name1
: X33 
Age1: 
G36

Name1
: X55 
Age1: 
G36

Name1
: X99 
Age1: 
G40

Name1
: X88 
Age1: 
G90

Name1
: X47 
Age1: 
G72

Name1
: X14 
Age1: 
G73

Name1
: X56 
Age1: 
G39

Knows1

Knows1

Knows1

Knows1

Knows1

Knows1
Knows1

Knows1

Figure 2: The nodes created at the DBMS server. The encryption is set at RND layer everywhere. Ciphertexts shown are not
full-length.

Name1
: D6 

Age1: 
G83

Name1
: D1 

Age1: 
G14

Name1
: D1 

Age1: 
G68

Name1
: D6 

Age1: 
G10

Name1
: D5 

Age1: 
G49

Name1
: D1 

Age1: 
G33

Name1
: D8 

Age1: 
G89

Name1
: D5 

Age1: 
G49

Name1
: D12 
Age1: 
G21

Name1
: D10 
Age1: 
G03

Knows1

Knows1

Knows1

Knows1

Knows1

Knows1
Knows1

Knows1

Figure 3: The encryption is adjusted to DET layer.

the encryption of Tom. The outcome shows that there
are only three nodes as the outgoing of Tom node.
Before processing the second part of the query Q, that
is WHERE y.age = "22", lowering encryption of
age property of nodes in result is needed to level
DET, as illustrated in Figure 4. Then we execute the
query Q2, implementing the next step of Q execution:
MATCH (x: person1)-[:Knows1]->(result)
WHERE result.age1 = "G83"
RETURN result

Finally, Proxy receives encrypted result D6 and
G83, decrypts them and sends decrypted result
Smith and 22 to the application.

Notice that unlike in the original encryption
adjustment procedure, the equality of age property
for both {Perry,38} nodes is not revealed here,
as it kept at RND layer at G36 and G72.

4.2 Discussion

The advantage of the proposed approach was that it
would not reveal the information that come from DET
layer more than necessary. To demonstrate this Figure
3 and Figure 4 show a significant difference in the re-
sults when apply both the original CryptGraphDB en-
cryption adjustment strategy and the traversal-aware
encryption adjustment strategy. We notice when ori-
ginal strategy is applied it reveals more information
than necessary, such as the age of other nodes that are
not connected to Tom. By contrast, when traversal-
aware encryption strategy is applied, it reveals only
the information that required to execute the query. We
observe from Figure 4 that not all age property va-
lues are adjusted to DET layer, but only required va-
lues are adjusted, while the rest are still at RND layer.
Our technique shows a clear advantage by dynami-
cally adjusting encryption layers as query execution
progresses. In this way less information is revealed
to the potential adversary overseeing the execution of
the query on the encrypted store.
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Figure 4: Traversal-aware encryption adjustment. Ciphertexts shown are not full-length.

5 RELATED WORK

In this section, we compare related work with our ap-
proach. Some of the mechanisms used in traversal-
aware encryption adjustment are built on prior work
from the cryptographic collection.

CryptDB is an approach (Popa et al., 2011a) that
has completely explored access control for SQL que-
ries on encrypted relational data. The CryptDB archi-
tecture supposes a proxy between the users and the
server. The basic idea is that by selecting an appro-
priate encryption scheme, at the server side no need
to decrypt the data that stored on the database server
in an encrypted form, not even during the execution
of the queries. One of the CryptDB advantages is that
no need to change the server software. All process
is implemented by intercepting users queries, rewri-
tes them and passes to the server for execution. In
(Popa et al., 2011a; Popa et al., 2011b) The issue of
information leaks during encryption adjustment in re-
lational databases is discussed and special Join-aware
encryption scheme to reduce the leaks is proposed.

In more recent work (Sarfraz et al., 2015) the idea
of CryptDB has been further developed to include fine
grained access control using advanced cryptographic
primitives. The proposed encryption adjustment pro-
cedure takes into account the data requirements of the
query as well as particular, users and groups of users
access rights.

In (Aburawi et al., 2018) the original CrypDB ap-
proach has been transferred to the context of graph
databases. The basic idea is the same as in relati-
onal CrypDB: the execution of the graph query is
achieved after translating the query into an encryp-
ted form, which later executed on a server without
decrypting any data. Each encrypted result then is
sent back to the user where they are finally decryp-

ted. The proposed design is implemented for Neo4j
graph DBMS and Cypher as a query language. It has
been confirmed that SQL-aware encryption schemes
can be smoothly reused as Cypher-aware encryption
schemes, together with keeping the benefit of the per-
formance of traversal graph queries over equivalent
relational ones. The mechanism presented in (Abu-
rawi et al., 2018) reported the efficiency of query im-
plementation for different types of queries on encryp-
ted and non-encrypted Neo4j graph databases. The
simple strategy of encryption adjustment prior to the
query execution has been proposed. While efficient
in execution it may reveal more information about the
data than necessary. In this paper we show how to
reveal less information using dynamic encryption ad-
justment.

6 CONCLUSION

In this paper, we proposed traversal-aware encryp-
tion adjustment for graph databases, a novel solution
that supports executing cypher queries over encrypted
graph databases. We have shown that when querying
encrypted graph databases, dynamic traversal-aware
encryption adjustment provides with better security
protection of database content, as compared with the
static adjustment performed before query execution.
Our current and future work includes implementing
traversal-aware encryption adjustment for CryptGrap-
hDB, and empirical evaluation of related trade-off be-
tween security and query execution efficiency.
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