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Abstract: Machine Learning model building is an important and complex task in Data Science but also a good target 

for automation as recently exploited by AutoML. In general, free and open-source packages offer a joint space 

of learning algorithms and their respective hyperparameter settings and an optimization method for model 

search and tuning. In this paper, Auto-WEKA’s performance has been tested by running it for short periods 

of time (5, 15 and 30 minutes) using a commodity machine and suitable datasets with a limited number of 

observations and features. Benchmarking was performed against the best human-generated solution available 

in OpenML for each selected dataset. We concluded that increasing the overall time budget available over the 

previous values didn’t improve significantly classifiers’ performance.

1 INTRODUCTION 

Machine Learning has been applied to solve complex 

business and research problems and is finding its way 

into every aspect of computing (Hurwitz and Kirsch, 

2018).  

Several successful business examples can be 

listed: customer churn prediction, credit risk 

modelling, recommendation systems and resource 

allocation (Almeida et al., 2015). There are also many 

challenges in research being approached by Machine 

Learning, for example: disease diagnosis, 

personalized treatment, and epidemic outbreak 

prediction. 

Data Science traditional pipeline is divided into 

four major steps: data acquisition, pre-processing, 

machine learning model building and deployment of 

ready-to-predict models. Data acquisition aims to 

identify all relevant and available datasets and 

depends upon the quality of data governance. Data 

cleaning, feature engineering and feature selection are 

the most common pre-processing steps. Machine 

learning model building involves selecting different 

algorithms from model families, hyperparameters 

tuning and training. 

Pre-processing is often domain-specific, whereas 

Machine Learning model building is abstracted away 

from those complexities, making it a good target for 

automation (Swearingen et al., 2017).  

Recently, a new research area within the Machine 

Learning community has emerged, called AutoML. It 

aims the automation of (at least) the Machine 

Learning model building step. 

In the free and open-source area, some solutions 

are: ATM, that stands for Auto-Tuned Models 

(Swearingen et al., 2017), Auto-WEKA (Kotthoff et 

al., 2017; Thornton et al., 2013) and AUTO-

SKLEARN (Feurer et al., 2015). Also, a growing 

number of commercial solutions are being offered. In 

general, AutoML packages offer a joint space of 

learning algorithms and their respective 

hyperparameter settings and an optimization method 

for model search and tuning. Swearingen et al. (2017) 

provide a comprehensive comparison of ATM, Auto-

WEKA and AUTO-SKLEARN. 

As far as we know, Auto-WEKA’s 2013 version 

was the first AutoML system. It is built around 

WEKA, under the push-button interface approach 

though it also allows command-line interface. No 

knowledge about the available learning algorithms or 

their hyperparameters is required. Besides the dataset, 

the user only needs to provide a memory bound, 1GB 

by default, and the overall time budget available, 15 

minutes by default although the developers 

recommend running Auto-WEKA with several hours 

to achieve better results (Kotthoff et al., 2017).  

In this study, Auto-WEKA’s performance has 

been tested by running it for short periods of time (5, 

15 and 30 minutes) using a commodity machine and 

suitable datasets with a limited number of 
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observations and features. It was hypothesized that it 

would be possible to improve on the so-called control 

classifier’s (Auto-WEKA’s with 5 minutes running 

time) performance by increasing the overall time 

budget available. Besides the running time of 15 and 

30 minutes, it was also included in this study a gold 

standard (defined in detailed in sub-section 2.3), 

theoretically related to huge computation time, for 

benchmarking purposes. 

The rest of this paper is structured as follows. 

Section 2 describes the methods used, and the results 

are shown in section 3. Section 4 provides the 

discussion and in section 5 conclusions and future 

work are presented.  

2 METHODS 

OpenML is a collaborative online (www.openml.org) 

environment for machine learning where users can 

upload and download datasets, tasks and run their 

models outside the platform. Task object definition 

ensures reproducible results and several evaluation 

measures of each run are publicly available 

(Vanschoren et al., 2013). OpenML was used both for 

datasets selection and benchmarking as detailed in the 

following sections. 

Shorts periods of Auto-WEKA’s running time 

were used following the same thoughts of its 

developers, “to accommodate impatient users” 

(Kotthoff et al., 2017) and also to confer validity on 

the 15 minutes time budget default. 

2.1 Datasets  

Datasets have been selected from the OpenML100 

benchmark study (OpenML Core Team, n.d.), a 

carefully curated machine learning benchmark suite 

of 100 classification datasets suitable for practical 

experimentation in commodity machines. 

In this paper, the focus is given to datasets that 

besides satisfying all the OpenML100 requirements 

are characterized by not having missing values and 

with a binary target feature. In the end, 37 datasets 

were available from which 18 were randomly 

selected. The characteristics of these datasets are 

described in Table 1. 

 

Table 1: Datasets Properties extracted from OpenML. 

 

Data.ID Observations Features Target classes Numeric features Nominal features 

2 3196 37 2 0 37 

37 768 9 2 8 1 

44 4601 58 2 57 1 

50 958 10 2 0 10 

151 45312 9 2 7 2 

312 2407 300 2 294 6 

333 556 7 2 0 7 

334 601 7 2 0 7 

335 554 7 2 0 7 

1038 3468 971 2 970 1 

1046 15545 6 2 5 1 

1049 1458 38 2 37 1 

1050 1463 38 2 37 1 

1063 522 22 2 21 1 

1067 2109 22 2 21 1 

1068 1109 22 2 21 1 

1461 45211 17 2 7 10 

1462 1372 5 2 4 1 
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The OpenML100 requirements are the following: 

 The number of observations is between 500 

and 100000 to focus on medium-sized 

datasets, that are not too small for proper 

training and not too big for practical 

experimentation;  

 The number of features does not exceed 

5000 features to keep the runtime of 

algorithms low;  

 The target feature has at least two classes;  

 The ratio of the minority class and the 

majority class is above 0.05 to eliminate 

highly imbalanced datasets that would 

obfuscate a clear analysis.  

The OpenML100 authors’ have also excluded 

datasets which: 

 Cannot be randomized via a 10-fold cross-

validation due to grouped samples;  

 Have an unknown origin or no clearly 

defined task;  

 Include sparse data (e.g., text mining 

datasets).  

These OpenML100 are a de facto standard used 

for benchmarking purposes with several thousands 

runs available in the platform. 

2.2 Auto-WEKA Setup 

The main objective of this benchmark study was to 

use a commodity machine that anyone could have 

access to. The two machines used have the following 

characteristics: 

Machine 1: 

 8GB of RAM; 

 Intel I5-6500 CPU 3.20 GHz; 

 250 GB SSD. 

 

Machine 2: 

 8GB of RAM; 

 Intel Pentium CPU G3260 3.30 GHz; 

 1 TB HDD. 

 

Notice that two machines were only used to 

accelerate the experiments because instead of one 

dataset we could run two at the same time, one in each 

machine. Both machines used Ubuntu 16.04 LTS 64 

Bit version as the Operating System. 

To find the best model for each dataset the same  

Auto-Weka configuration was used, as shown in 

Figure 1, except for the overall time budget available 

timeLimit that assumed different running times: 5, 15, 

and 30 minutes. 

The memory bound memLimit was changed to 

2GB, the default is 1GB. 

There are several metrics to determine the 

performance of classifiers. These are available under 

metric. The default is errorRate, the rate of 

incorrectly predicted examples in an unseen test 

dataset. The metric used was precision, because 

contrarily to errorRate metric, this option could be 

used directly for comparisons with OpenML results. 

Precision reflects the proportion of the examples 

which truly belong to a certain class among all those 

which were classified as belonging to that class 

(Almeida et al., 2016).  

The following command-line call for running 

Auto-WEKA on the training dataset mydata.arff 

would produce the same results as the selection in 

Figure 1. 

 

Figure 1: Graphical user interface for Auto-WEKA 

configuration options. 

java –cp autoweka.jar 

weka.classifiers.meta.AutoWEKAClassifier 

-memLimit 2048 -timeLimit 30 

-metric precision –t mydata.arff –no-cv  

Notice that by default WEKA performs and 

reports stratified cross-validation performance 

metrics. Setting the flag –no-cv forces WEKA to skip 

it because Auto-WEKA already performs a 

statistically rigorous evaluation internally (10 fold 

cross-validation) and doing it would not improve the 

quality of the result and cause Auto-WEKA to take 

much longer (Kotthoff et al., 2017). 

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

182



Figure 2: Result extraction through Auto-WEKA. 

In order to have access to stratified 10-fold cross-

validation performance, after each Auto-WEKA run, 

the best classifier and, if any, the features/attributes 

selection were included in a command-line call for 

running WEKA with a different seed, without the flag 
–no-cv. 

Figure 2 illustrates the pipeline followed to 

extract the results shown in section 3 of this 

benchmark study. Auto-WEKA uses predictive 

models to determine which algorithms and 

hyperparameter configurations are evaluated 

(Thornton et al., 2013) and for each trains and test it 

using 10-fold cross-validation on the entire dataset. 

For each configuration, it compares the precision 

result with the best model saved, if it is better this 

model is replaced with the new one. After the set time 

limit, the best model is exported alongside with the 

best hyperparameters. An independent CV is done 

afterwards with the best configuration using the entire 

dataset to compute the final cross-validation score. 

Notice that the best configuration used as an input for 

this last step comprises the optimal hyperparameters 

and algorithm but not any information about the 

optimal model parameters.   

The command-line below illustrates this 

procedure, by extracting the relevant information 

from Figure 3. 

java -cp weka.jar 

weka.classifiers.meta.AttributeSelec

tedClassifier -c 7 -x 10 -s 7 -t 

mydata.arff -S ".GreedyStepwise -B -

R" -E ".CfsSubsetEval -M -L " -W 

.Bagging -- -P 92 -I 52 -S 1 -W 

weka.classifiers.rules.PART -- -M 8.  

 

Figure 3: Example of Auto-WEKA result. 

In the command the flags have the following 

meaning: 

 -c: target class index; 

 -x: number of cross-validation folds.; 

 -s: seed number.; 

Auto-WEKA result: 

best classifier: 

weka.classifiers.meta.Bagging 

arguments: [-P, 92, -I, 52, -S, 1, -W, 

weka.classifiers.rules.PART, --, -M, 8] 

attribute search: 

weka.attributeSelection.GreedyStepwise 

attribute search arguments: [-B, -R] 

attribute evaluation: 

weka.attributeSelection.CfsSubsetEval 

attribute evaluation arguments: [-M, -L] 

metric: precision 

estimated precision: 0.8866995073891626 

training time on evaluation dataset: 

1.293 seconds 

Dataset 

Dataset 
 

Dataset 
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 -t: path to dataset; 

 -S: attribute search algorithm and 

parameters; 

 -E: attribute evaluation algorithm and 

parameters; 

 -W: Weka classifier and parameters. 

 

The following pre-tests were made to guarantee 

that Auto-WEKA would generate results without 

using any cache or temporary files: 

 3 times 30 minutes runs with reset between 

the runs; 

 3 times 5 minutes runs without reset between 

runs. 

In both cases, it was verified that for the same 

dataset results were the same so we concluded that 

Auto-WEKA gives the same results anytime we re-

run it. 

2.3 Auto-WEKA Benchmarking 

The best human-generated solution available in 

OpenML for each of the 18 selected datasets were 

access and their precision recorded. These precisions 

are the top submissions of thousands of runs and thus 

considered as the gold standard, these values are 

shown in the last column of Table 2. Also, one can 

argue, at least from a theoretical point of view, that 

these are related to huge computation time (all runs 

summed up) and rely on the best machine learning 

model building “tool” that’s available nowadays, the 

human Data Scientist. 

In order to test the hypothesis that there is a 

significant improvement on control classifier’s 

performance by increasing the overall time budget 

available (5min., 15 min., 30 min. and the gold 

standard) it was used the Friedman test, a non-

parametric equivalent of the repeated-measures 

ANOVA. Also, Bonferroni post-hoc test would be 

used for comparison of each approach with the 

control classifier if Friedman test rejects its related 

null hypothesis. Demsar (2006) provides a 

comprehensive review of these classical statistical 

procedures applied to the comparison of machine 

learning classifiers over multiple datasets.  

3 RESULTS 

Table 2 shows the 10-fold Cross-Validation precision 

results for Auto-WEKA with the overall time budget 

set to 5, 15, and 30 minutes for each dataset. The 

fourth column shows the gold standard precision as 

achieved by OpenML best human-generated 

solutions. Notice that latter precision was also 

calculated using 10-fold Cross-Validation as defined 

in the respective OpenML tasks. The last row in Table 

2 shows the average rank across all datasets as 

computed for the Friedman test: for each dataset 

precisions are ranked starting from the best 

performing approach, assigning a rank between 1 and 

4.  

Table 2 suggests that the best performance is 

achieved by the best human-generated solution 

available in OpenML, while Auto-WEKA’s shows no 

major average difference when computed with 5, 15 

or 30 minutes. 

Table 2: 10-fold Cross-Validation precision results for 

Auto-WEKA and OpenML best human-generated and 

average ranks. 

 Auto-WEKA 
Human-

Generated 

Data.ID 5 min 15 min 30 min OpenML 

3 0,943 0,943 0,943 0,998 

37 0,729 0,729 0,729 0,784 

44 0,934 0,934 0,940 0,963 

50 0,819 0,997 0,819 1,000 

151 0,782 0,782 0,782 0,950 

312 0,915 0,963 0,962 0,990 

333 0,774 0,774 0,774 1,000 

334 0,876 0,526 0,499 1,000 

335 0,989 0,907 0,987 0,989 

1038 0,888 0,888 0,888 0,963 

1046 0,946 0,946 0,946 0,963 

1049 0,905 0,905 0,905 0,921 

1050 0,870 0,856 0,870 0,909 

1063 0,824 0,822 0,846 0,862 

1067 0,821 0,845 0,845 0,873 

1068 0,917 0,919 0,917 0,943 

1461 0,864 0,864 0,864 0,902 

1462 0,935 0,935 0,935 1,000 

Average 

Rank 
3,111 2,889 3,000 1,000 

According to Friedman’s test, there’s statistical 

evidence to support the claim that there’s a significant 

improvement on control classifier’s performance by 

increasing the overall time budget available 

(Friedman chi-squared=42.04; df=3; p-value<0.00; 

p-value less than 0.05 means that the difference 

between the average ranks is significant). However, 
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Bonferroni post-hoc test confirms that only the best 

human-generated solution available in OpenML 

performs significantly better than Auto-WEKA with 

5 min running time. This means that there’s no 

evidence arising from this experiment that confirms 

that increasing the running time from 5 minutes to 15 

or 30 minutes will improve the precision of the 

results. 

4 DISCUSSION OF RESULTS 

Auto-WEKA’s default values, memory bound of 

1GB and 15 minutes of overall time budget available, 

suggests that a classification task running in a 

commodity machine would achieve a reasonable 

performance for suitable datasets. Experiments were 

conducted using 18 datasets with a limited number of 

observations and features. 

The results show that even for such classification 

tasks, Auto-WEKA with low computing time 

performs poorly when compared to the best human-

generated solution available in OpenML. Also, 

running times up to 30 min seem to achieve the same 

performance. Either the selected classification tasks 

are harder than expected or Auto-WEKA’s default 

values should be revised so that the user is not misled. 

However, from another point of view, one can 

argue that the difference between the best human-

generated solution available in OpenML and Auto-

WEKA is less than 6 percentage points for 66% of the 

datasets. That might be a good result for such a little 

computation time, at least for a baseline precision. 

5 CONCLUSIONS AND FUTURE 

WORK 

Auto-WEKA is a powerful tool that allows anyone to 

fit a model to a dataset, giving, not only the best 

model for a giving time budget but also an 

attribute/feature selection approach. It is user-friendly 

and multi-platform, both must have characteristics for 

nowadays apps. While looking for a tool that can 

provide a model without spending too much time, 

Auto-WEKA may be the solution, despite the 

precision of the chosen model may not be the best of 

the best, it can give a solid start. 

The results were promising, and one can 

obviously expect Auto-WEKA to find a better model 

using High-Performance Computers (HPC) clusters. 

As far as we know there are no other studies on 

the performance on Auto-WEKA in a commodity 

machine using the default values. Increasing the 

overall time budget available from 5 to 15 and 30 

minutes didn’t improve significantly classifiers’ 

performance. Therefore, increasing only by a few 

minutes doesn’t seem to have an impact on Auto-

WEKA’s performance. Thus, Auto-WEKA’s default 

values (15 minutes and 1GB) might be misleading for 

the user as there is no evidence that a good 

classification performance is achieved with such low 

running times and memory limit.   

In this study, only the best human-generated 

solution available in OpenML, that is related to huge 

accumulated computation time performed signify-

cantly better than Auto-WEKA’s 5 minutes run. 

There are some questions that we intend to 

explore in the future. For each dataset how many 

algorithms and hyperparameter configurations were 

evaluated in the provided time budget. Which 

characteristics of the dataset affect Auto-WEKA's 

performance. What’s the effect of increasing running 

time to more than 30 minutes. 

As future work, we plan to run several 

experiments in parallel using a HPC cluster. We 

intend to understand how much running time is 

needed for Auto-WEKA to converge to the best 

human-generated solution. 
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