
Benchmarking Auto-WEKA on a Commodity Machine

João Freitas1, Nuno Lavado1 and Jorge Bernardino1,2
1Coimbra Polytechnic – ISEC, Rua Pedro Nunes, 3030-199 Coimbra, Portugal

2CISUC - Centre of Informatics and Systems of University of Coimbra, DEI, Polo 2, 3030-290 Coimbra, Portugal

Keywords: Data Science, Machine Learning, AutoML, Auto-WEKA, OpenML, Benchmarking.

Abstract: Machine Learning model building is an important and complex task in Data Science but also a good target

for automation as recently exploited by AutoML. In general, free and open-source packages offer a joint space

of learning algorithms and their respective hyperparameter settings and an optimization method for model

search and tuning. In this paper, Auto-WEKA’s performance has been tested by running it for short periods

of time (5, 15 and 30 minutes) using a commodity machine and suitable datasets with a limited number of

observations and features. Benchmarking was performed against the best human-generated solution available

in OpenML for each selected dataset. We concluded that increasing the overall time budget available over the

previous values didn’t improve significantly classifiers’ performance.

1 INTRODUCTION

Machine Learning has been applied to solve complex

business and research problems and is finding its way

into every aspect of computing (Hurwitz and Kirsch,

2018).

Several successful business examples can be

listed: customer churn prediction, credit risk

modelling, recommendation systems and resource

allocation (Almeida et al., 2015). There are also many

challenges in research being approached by Machine

Learning, for example: disease diagnosis,

personalized treatment, and epidemic outbreak

prediction.

Data Science traditional pipeline is divided into

four major steps: data acquisition, pre-processing,

machine learning model building and deployment of

ready-to-predict models. Data acquisition aims to

identify all relevant and available datasets and

depends upon the quality of data governance. Data

cleaning, feature engineering and feature selection are

the most common pre-processing steps. Machine

learning model building involves selecting different

algorithms from model families, hyperparameters

tuning and training.

Pre-processing is often domain-specific, whereas

Machine Learning model building is abstracted away

from those complexities, making it a good target for

automation (Swearingen et al., 2017).

Recently, a new research area within the Machine

Learning community has emerged, called AutoML. It

aims the automation of (at least) the Machine

Learning model building step.

In the free and open-source area, some solutions

are: ATM, that stands for Auto-Tuned Models

(Swearingen et al., 2017), Auto-WEKA (Kotthoff et

al., 2017; Thornton et al., 2013) and AUTO-

SKLEARN (Feurer et al., 2015). Also, a growing

number of commercial solutions are being offered. In

general, AutoML packages offer a joint space of

learning algorithms and their respective

hyperparameter settings and an optimization method

for model search and tuning. Swearingen et al. (2017)

provide a comprehensive comparison of ATM, Auto-

WEKA and AUTO-SKLEARN.

As far as we know, Auto-WEKA’s 2013 version

was the first AutoML system. It is built around

WEKA, under the push-button interface approach

though it also allows command-line interface. No

knowledge about the available learning algorithms or

their hyperparameters is required. Besides the dataset,

the user only needs to provide a memory bound, 1GB

by default, and the overall time budget available, 15

minutes by default although the developers

recommend running Auto-WEKA with several hours

to achieve better results (Kotthoff et al., 2017).

In this study, Auto-WEKA’s performance has

been tested by running it for short periods of time (5,

15 and 30 minutes) using a commodity machine and

suitable datasets with a limited number of

180
Freitas, J., Lavado, N. and Bernardino, J.
Benchmarking Auto-WEKA on a Commodity Machine.
DOI: 10.5220/0006914801800186
In Proceedings of the 7th International Conference on Data Science, Technology and Applications (DATA 2018), pages 180-186
ISBN: 978-989-758-318-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

observations and features. It was hypothesized that it

would be possible to improve on the so-called control

classifier’s (Auto-WEKA’s with 5 minutes running

time) performance by increasing the overall time

budget available. Besides the running time of 15 and

30 minutes, it was also included in this study a gold

standard (defined in detailed in sub-section 2.3),

theoretically related to huge computation time, for

benchmarking purposes.

The rest of this paper is structured as follows.

Section 2 describes the methods used, and the results

are shown in section 3. Section 4 provides the

discussion and in section 5 conclusions and future

work are presented.

2 METHODS

OpenML is a collaborative online (www.openml.org)

environment for machine learning where users can

upload and download datasets, tasks and run their

models outside the platform. Task object definition

ensures reproducible results and several evaluation

measures of each run are publicly available

(Vanschoren et al., 2013). OpenML was used both for

datasets selection and benchmarking as detailed in the

following sections.

Shorts periods of Auto-WEKA’s running time

were used following the same thoughts of its

developers, “to accommodate impatient users”

(Kotthoff et al., 2017) and also to confer validity on

the 15 minutes time budget default.

2.1 Datasets

Datasets have been selected from the OpenML100

benchmark study (OpenML Core Team, n.d.), a

carefully curated machine learning benchmark suite

of 100 classification datasets suitable for practical

experimentation in commodity machines.

In this paper, the focus is given to datasets that

besides satisfying all the OpenML100 requirements

are characterized by not having missing values and

with a binary target feature. In the end, 37 datasets

were available from which 18 were randomly

selected. The characteristics of these datasets are

described in Table 1.

Table 1: Datasets Properties extracted from OpenML.

Data.ID Observations Features Target classes Numeric features Nominal features

2 3196 37 2 0 37

37 768 9 2 8 1

44 4601 58 2 57 1

50 958 10 2 0 10

151 45312 9 2 7 2

312 2407 300 2 294 6

333 556 7 2 0 7

334 601 7 2 0 7

335 554 7 2 0 7

1038 3468 971 2 970 1

1046 15545 6 2 5 1

1049 1458 38 2 37 1

1050 1463 38 2 37 1

1063 522 22 2 21 1

1067 2109 22 2 21 1

1068 1109 22 2 21 1

1461 45211 17 2 7 10

1462 1372 5 2 4 1

Benchmarking Auto-WEKA on a Commodity Machine

181

The OpenML100 requirements are the following:

 The number of observations is between 500

and 100000 to focus on medium-sized

datasets, that are not too small for proper

training and not too big for practical

experimentation;

 The number of features does not exceed

5000 features to keep the runtime of

algorithms low;

 The target feature has at least two classes;

 The ratio of the minority class and the

majority class is above 0.05 to eliminate

highly imbalanced datasets that would

obfuscate a clear analysis.

The OpenML100 authors’ have also excluded

datasets which:

 Cannot be randomized via a 10-fold cross-

validation due to grouped samples;

 Have an unknown origin or no clearly

defined task;

 Include sparse data (e.g., text mining

datasets).

These OpenML100 are a de facto standard used

for benchmarking purposes with several thousands

runs available in the platform.

2.2 Auto-WEKA Setup

The main objective of this benchmark study was to

use a commodity machine that anyone could have

access to. The two machines used have the following

characteristics:

Machine 1:

 8GB of RAM;

 Intel I5-6500 CPU 3.20 GHz;

 250 GB SSD.

Machine 2:

 8GB of RAM;

 Intel Pentium CPU G3260 3.30 GHz;

 1 TB HDD.

Notice that two machines were only used to

accelerate the experiments because instead of one

dataset we could run two at the same time, one in each

machine. Both machines used Ubuntu 16.04 LTS 64

Bit version as the Operating System.

To find the best model for each dataset the same

Auto-Weka configuration was used, as shown in

Figure 1, except for the overall time budget available

timeLimit that assumed different running times: 5, 15,

and 30 minutes.

The memory bound memLimit was changed to

2GB, the default is 1GB.

There are several metrics to determine the

performance of classifiers. These are available under

metric. The default is errorRate, the rate of

incorrectly predicted examples in an unseen test

dataset. The metric used was precision, because

contrarily to errorRate metric, this option could be

used directly for comparisons with OpenML results.

Precision reflects the proportion of the examples

which truly belong to a certain class among all those

which were classified as belonging to that class

(Almeida et al., 2016).

The following command-line call for running

Auto-WEKA on the training dataset mydata.arff

would produce the same results as the selection in

Figure 1.

Figure 1: Graphical user interface for Auto-WEKA

configuration options.

java –cp autoweka.jar

weka.classifiers.meta.AutoWEKAClassifier

-memLimit 2048 -timeLimit 30

-metric precision –t mydata.arff –no-cv

Notice that by default WEKA performs and

reports stratified cross-validation performance

metrics. Setting the flag –no-cv forces WEKA to skip

it because Auto-WEKA already performs a

statistically rigorous evaluation internally (10 fold

cross-validation) and doing it would not improve the

quality of the result and cause Auto-WEKA to take

much longer (Kotthoff et al., 2017).

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

182

Figure 2: Result extraction through Auto-WEKA.

In order to have access to stratified 10-fold cross-

validation performance, after each Auto-WEKA run,

the best classifier and, if any, the features/attributes

selection were included in a command-line call for

running WEKA with a different seed, without the flag
–no-cv.

Figure 2 illustrates the pipeline followed to

extract the results shown in section 3 of this

benchmark study. Auto-WEKA uses predictive

models to determine which algorithms and

hyperparameter configurations are evaluated

(Thornton et al., 2013) and for each trains and test it

using 10-fold cross-validation on the entire dataset.

For each configuration, it compares the precision

result with the best model saved, if it is better this

model is replaced with the new one. After the set time

limit, the best model is exported alongside with the

best hyperparameters. An independent CV is done

afterwards with the best configuration using the entire

dataset to compute the final cross-validation score.

Notice that the best configuration used as an input for

this last step comprises the optimal hyperparameters

and algorithm but not any information about the

optimal model parameters.

The command-line below illustrates this

procedure, by extracting the relevant information

from Figure 3.

java -cp weka.jar

weka.classifiers.meta.AttributeSelec

tedClassifier -c 7 -x 10 -s 7 -t

mydata.arff -S ".GreedyStepwise -B -

R" -E ".CfsSubsetEval -M -L " -W

.Bagging -- -P 92 -I 52 -S 1 -W

weka.classifiers.rules.PART -- -M 8.

Figure 3: Example of Auto-WEKA result.

In the command the flags have the following

meaning:

 -c: target class index;

 -x: number of cross-validation folds.;

 -s: seed number.;

Auto-WEKA result:

best classifier:

weka.classifiers.meta.Bagging

arguments: [-P, 92, -I, 52, -S, 1, -W,

weka.classifiers.rules.PART, --, -M, 8]

attribute search:

weka.attributeSelection.GreedyStepwise

attribute search arguments: [-B, -R]

attribute evaluation:

weka.attributeSelection.CfsSubsetEval

attribute evaluation arguments: [-M, -L]

metric: precision

estimated precision: 0.8866995073891626

training time on evaluation dataset:

1.293 seconds

Dataset

Dataset

Dataset

Benchmarking Auto-WEKA on a Commodity Machine

183

 -t: path to dataset;

 -S: attribute search algorithm and

parameters;

 -E: attribute evaluation algorithm and

parameters;

 -W: Weka classifier and parameters.

The following pre-tests were made to guarantee

that Auto-WEKA would generate results without

using any cache or temporary files:

 3 times 30 minutes runs with reset between

the runs;

 3 times 5 minutes runs without reset between

runs.

In both cases, it was verified that for the same

dataset results were the same so we concluded that

Auto-WEKA gives the same results anytime we re-

run it.

2.3 Auto-WEKA Benchmarking

The best human-generated solution available in

OpenML for each of the 18 selected datasets were

access and their precision recorded. These precisions

are the top submissions of thousands of runs and thus

considered as the gold standard, these values are

shown in the last column of Table 2. Also, one can

argue, at least from a theoretical point of view, that

these are related to huge computation time (all runs

summed up) and rely on the best machine learning

model building “tool” that’s available nowadays, the

human Data Scientist.

In order to test the hypothesis that there is a

significant improvement on control classifier’s

performance by increasing the overall time budget

available (5min., 15 min., 30 min. and the gold

standard) it was used the Friedman test, a non-

parametric equivalent of the repeated-measures

ANOVA. Also, Bonferroni post-hoc test would be

used for comparison of each approach with the

control classifier if Friedman test rejects its related

null hypothesis. Demsar (2006) provides a

comprehensive review of these classical statistical

procedures applied to the comparison of machine

learning classifiers over multiple datasets.

3 RESULTS

Table 2 shows the 10-fold Cross-Validation precision

results for Auto-WEKA with the overall time budget

set to 5, 15, and 30 minutes for each dataset. The

fourth column shows the gold standard precision as

achieved by OpenML best human-generated

solutions. Notice that latter precision was also

calculated using 10-fold Cross-Validation as defined

in the respective OpenML tasks. The last row in Table

2 shows the average rank across all datasets as

computed for the Friedman test: for each dataset

precisions are ranked starting from the best

performing approach, assigning a rank between 1 and

4.

Table 2 suggests that the best performance is

achieved by the best human-generated solution

available in OpenML, while Auto-WEKA’s shows no

major average difference when computed with 5, 15

or 30 minutes.

Table 2: 10-fold Cross-Validation precision results for

Auto-WEKA and OpenML best human-generated and

average ranks.

 Auto-WEKA
Human-

Generated

Data.ID 5 min 15 min 30 min OpenML

3 0,943 0,943 0,943 0,998

37 0,729 0,729 0,729 0,784

44 0,934 0,934 0,940 0,963

50 0,819 0,997 0,819 1,000

151 0,782 0,782 0,782 0,950

312 0,915 0,963 0,962 0,990

333 0,774 0,774 0,774 1,000

334 0,876 0,526 0,499 1,000

335 0,989 0,907 0,987 0,989

1038 0,888 0,888 0,888 0,963

1046 0,946 0,946 0,946 0,963

1049 0,905 0,905 0,905 0,921

1050 0,870 0,856 0,870 0,909

1063 0,824 0,822 0,846 0,862

1067 0,821 0,845 0,845 0,873

1068 0,917 0,919 0,917 0,943

1461 0,864 0,864 0,864 0,902

1462 0,935 0,935 0,935 1,000

Average

Rank
3,111 2,889 3,000 1,000

According to Friedman’s test, there’s statistical

evidence to support the claim that there’s a significant

improvement on control classifier’s performance by

increasing the overall time budget available

(Friedman chi-squared=42.04; df=3; p-value<0.00;

p-value less than 0.05 means that the difference

between the average ranks is significant). However,

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

184

Bonferroni post-hoc test confirms that only the best

human-generated solution available in OpenML

performs significantly better than Auto-WEKA with

5 min running time. This means that there’s no

evidence arising from this experiment that confirms

that increasing the running time from 5 minutes to 15

or 30 minutes will improve the precision of the

results.

4 DISCUSSION OF RESULTS

Auto-WEKA’s default values, memory bound of

1GB and 15 minutes of overall time budget available,

suggests that a classification task running in a

commodity machine would achieve a reasonable

performance for suitable datasets. Experiments were

conducted using 18 datasets with a limited number of

observations and features.

The results show that even for such classification

tasks, Auto-WEKA with low computing time

performs poorly when compared to the best human-

generated solution available in OpenML. Also,

running times up to 30 min seem to achieve the same

performance. Either the selected classification tasks

are harder than expected or Auto-WEKA’s default

values should be revised so that the user is not misled.

However, from another point of view, one can

argue that the difference between the best human-

generated solution available in OpenML and Auto-

WEKA is less than 6 percentage points for 66% of the

datasets. That might be a good result for such a little

computation time, at least for a baseline precision.

5 CONCLUSIONS AND FUTURE

WORK

Auto-WEKA is a powerful tool that allows anyone to

fit a model to a dataset, giving, not only the best

model for a giving time budget but also an

attribute/feature selection approach. It is user-friendly

and multi-platform, both must have characteristics for

nowadays apps. While looking for a tool that can

provide a model without spending too much time,

Auto-WEKA may be the solution, despite the

precision of the chosen model may not be the best of

the best, it can give a solid start.

The results were promising, and one can

obviously expect Auto-WEKA to find a better model

using High-Performance Computers (HPC) clusters.

As far as we know there are no other studies on

the performance on Auto-WEKA in a commodity

machine using the default values. Increasing the

overall time budget available from 5 to 15 and 30

minutes didn’t improve significantly classifiers’

performance. Therefore, increasing only by a few

minutes doesn’t seem to have an impact on Auto-

WEKA’s performance. Thus, Auto-WEKA’s default

values (15 minutes and 1GB) might be misleading for

the user as there is no evidence that a good

classification performance is achieved with such low

running times and memory limit.

In this study, only the best human-generated

solution available in OpenML, that is related to huge

accumulated computation time performed signify-

cantly better than Auto-WEKA’s 5 minutes run.

There are some questions that we intend to

explore in the future. For each dataset how many

algorithms and hyperparameter configurations were

evaluated in the provided time budget. Which

characteristics of the dataset affect Auto-WEKA's

performance. What’s the effect of increasing running

time to more than 30 minutes.

As future work, we plan to run several

experiments in parallel using a HPC cluster. We

intend to understand how much running time is

needed for Auto-WEKA to converge to the best

human-generated solution.

ACKNOWLEDGEMENTS

This work was supported by Coimbra Polytechnic –

ISEC, Coimbra, Portugal. The authors are also

grateful to the reviewers who kindly suggested

improvements on the present paper.

REFERENCES

Almeida P., Gruenwald L. and Bernardino J. 2016.

Evaluating Open Source Data Mining Tools for

Business.In Proceedings of the 5th International

Conference on Data Management Technologies and

Applications - Volume 1: DATA, ISBN 978-989-758-

193-9, pages 87-94. DOI: 10.5220/0005939900870094

Almeida P., and Bernardino J., 2015. A Comprehensive

Overview of Open Source Big Data Platforms and

Frameworks. International Journal of Big Data, Vol. 2,

No. 3, pp. 1-19.

Demsar, J., 2006. Statistical Comparisons of Classifiers

over Multiple Data Sets. Journal of Machine Learning

Research, 7: 1-30.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.,

Blum, M., Hutter, F., 2015. Efficient and Robust

Automated Machine Learning. In Advances in Neural

Benchmarking Auto-WEKA on a Commodity Machine

185

Information Processing Systems 28-NIPS2015. Curran

Associates, Inc., pp. 2962-2970.

Hurwitz, J., Kirsch, D., 2018. Machine Learning for

Dummies, IBM Limited Edition, John Wiley & Sons,

Inc. New Jersey, 1st edition.

Kotthoff, L., Thornton, C., Hoos, H., Hutter, F., Leyton-

Brown, K., 2017. Auto-WEKA 2.0: Automatic model

selection and hyperparameter optimization in WEKA.

Journal of Machine Learning Research, 18: 1-5.

OpenML Core Team, n.d. Benchmarking. Retrieved from

https://docs.openml.org/benchmark/

Swearingen, T., Drevo, W., Cyphers, B., Cuesta-Infante,

A., Ross, A., Veeramachaneni, K., 2017. ATM: A

distributed, collaborative, scalable system for

automated machine learning. In 2017 IEEE

International Conference on Big Data (Big Data).

Boston, MA, pp.151-162.

Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.,

2013. Auto-WEKA: Combined Selection and

Hyperparameter Optimization of Classification

Algorithms. In Proceedings of the 19th ACM SIGKDD

International Conference on KDD. Chicago, IL,

pp.847-855.

Vanschoren, J., Rijn, J., Bischl, B., Torgo, L., 2013.

Openml: Networked science in machine learning.

SIGKDD Explorations, vol. 15, 2, pp. 49-60.

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

186

