
Graph Databases Comparison: AllegroGraph, ArangoDB,
InfiniteGraph, Neo4J, and OrientDB

Diogo Fernandes1 and Jorge Bernardino1,2
1Polytechnic of Coimbra - ISEC, Rua Pedro Nunes, Coimbra, Portugal

2CISUC – Centre for Informatics and Systems of the University of Coimbra, Portugal

Keywords: Graph databases, NoSQL databases, AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, OrientDB.

Abstract: Graph databases are a very powerful solution for storing and searching for data designed for data rich in
relationships, such as Facebook and Twitter. With data multiplication and data type diversity there has been
a need to create new storage and analysis platforms that structure irregular data with a flexible schema,
maintaining a high level of performance and ensuring data scalability effectively, which is a problem that
relational databases cannot handle. In this paper, we analyse the most popular graph databases:
AllegroGraph, ArangoDB, InfiniteGraph, Neo4J and OrientDB. We study the most important features for a
complete and effective application, such as flexible schema, query language, sharding and scalability.

1 INTRODUCTION

Nowadays, data volume is growing exponentially in
social networks, such as Facebook and Twitter,
which store and process massive amounts of data
daily, where this data reaches petabytes of storage.
Current relational databases are predominant in the
market, but their adaptability is poor in processing
connected data. Actual platforms must deal with
huge amounts of data and related information. For
this reason, a special type of databases designated by
graph databases have appeared.

A graph database is a non-relational database
that provides an effective and efficient solution for
the storage of information in current scenarios,
where data is increasingly interconnected. The
storage mechanisms of graph databases are
optimized for graphing, for the way they store
adjacent records linked by direct references. In this
adjacency list, each vertex maintains references to
their adjacent vertices, forming an index species for
the vertices on neighbourhood. This property is
known as index-free adjacency (Robinson et al.,
2015). Interest in graph models has been increasing
in recent years due to their applications in areas like
Semantic Web and Social Network Analysis
(Dietrich et al., 2008). This type of database is easy
to understand because its concept is based on the
theory of graphs. This theory is basically based on
graphs, which are mathematical structures used to

model relationships between objects. In this context,
a graph is basically a structure, which is represented
by nodes, or also called vertices (the entities), by
edges (the relations) that are the lines that connect
the various nodes and by properties (attributes).
Therefore, the graph databases can simply be
described as a way of representing and storing data,
using their structures: nodes, edges, and properties.
For that reason, graph databases are optimized for
storing and querying graphs.

The problem with graph databases is that they
are not particularly efficient in all desired operations
such as in the representation of data that are derived
from relational models. Therefore, they do not
replace relational databases but are in fact an
efficient solution when dealing with huge volumes
of data that contain many related data.

The focus of this paper is the study of the main
characteristics, advantages and use cases of graph
databases. We study five of the most popular graph
databases: AllegroGraph, ArangoDB, InfiniteGraph,
Neo4J and OrientDB.

The rest of this paper is structured as follows.
Section 2 describes the advantages and uses of graph
databases. Sections 3 to 7 describe AllegroGraph,
ArangoDB, Infinite Graph, Neo4J and OrientDB,
respectively. Section 8 presents the comparison of
the five graph databases. Finally, Section 9 presents
the main conclusions and future work.

Fernandes, D. and Bernardino, J.
Graph Databases Comparison: AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB.
DOI: 10.5220/0006910203730380
In Proceedings of the 7th International Conference on Data Science, Technology and Applications (DATA 2018), pages 373-380
ISBN: 978-989-758-318-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

373

2 MAIN ADVANTAGES AND
USES OF GRAPH DATABASES

Graph databases are getting popular as data
increases in scalability and relationships become the
first choice over the relational databases. Ironically,
legacy relational database management systems
(RDBMS) are poor at handling relationships
between data points. Their tabular data models and
rigid schemas make it difficult to add new or
different kinds of connections. Graphs are the future.
Not only do graph databases effectively store the
relationships between data points, but they are also
flexible in adding new kinds of relationships or
adapting a data model to new business requirements
(Webber et al, 2015). Graph databases did not see a
greater advantage over relational databases until
recent years, when frequent schema changes,
managing enormous volume of data, real-time query
response time and more intelligent data activation
requirements, make people realize the advantages of
the graph model.

This technology is disrupting many areas, such
as supply chain management, e-commerce
recommendations, security, fraud detection and
many other areas in advanced data analytics.

The main advantages of a graph database are the
following (Guia et al., 2017) and (Neo4J, 2018):

 Better optimization on gathering information
than relational databases;

 ACID rules support;
 Support of the data storage in the order of

petabytes (1015);
 Allow for new types of data;
 Easily expandable due to its structural model -

graph model;
 Suitable for complex and irregular data,

normally involved in real world;
 Excellent for data mining operations;
 A high performance while querying deep data

when compared to relational databases;
 There is no need to declare the data type for the

nodes or edges, unlike relational model;
 They are very agile in development, since they

can be easily adapted over time;
 Combination of multiple dimensions to manage

big data, including time series, geo-dimensions,
and hierarchies on different dimensions.

In short, the three key advantages are:
performance, flexibility, and agility.

Performance, because with traditional databases
relationship queries will come to a grinding halt as
the number and depth of relationships increase. In

contrast, graph database performance stays constant
even as our data grows year after year.

Flexibility, because IT and data architect teams
move at the speed of business because the structure
and schema of a graph model adjusts itself as
applications and industries change. Rather than
exhaustively modeling a domain ahead of time, data
teams can add to the existing graph structure without
endangering current functionality.

Finally, agility because developing with graph
databases aligns perfectly with today’s agile, test-
driven development practices, allowing graph
database to evolve in step with the rest of the
application and any changing business requirements.

However, as any new technology replacing old
technology, there are still obstacles in adopting
graph databases. One is that there are fewer qualified
developers in the job market than the SQL
developers. Another is the non-standardization of the
graph database query language (Wu, 2017).

In the next sections, we analyze five of the most
popular graph databases.

3 AllegroGraph

AllegroGraph is a modern, consistent and persistent
Resource Description Framework (RDF) graph
database with high performance that is currently in
use in open source, commercial, and US Department
of Defense projects. AllegroGraph is characterized
by the efficient use of memory by combining disk
storage, making it possible to scale up to one billion
nodes, always maintaining top performance.
Basically, it provides services including vision
building, rapid prototyping and proof-of-concept
development, complete enterprise technology
solution stack, and best practices to maximize value
from semantic technologies.

AllegroGraph provides an architecture through
the REST protocol, which is an architectural style
that consists of a coordinated set of constraints
applied to components, connectors, and data
elements within a distributed system. Developers
have developed adapters for the various supported
languages, Sesame Java, Sesame Jena, Python, using
proprietary Sesame and Lisp signatures.

AllegroGraph’s competitive advantages are the
following (Ranking of Graph DBMS, 2018):

 Suited to support adhoc queries through
SPARQL, Prolog and languages like
JavaScript;

 Sorted quintuple indices that will index every
primary and non-primary field so users never

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

374

have to worry about whether a certain field is
indexed or not;

 It is possible to mix Geospatial, Temporal,
Social Network Analytics, and Reasoning, all
in the same query (SPARQL or Prolog);

 Triple Level Security with Security Filters;
 Gruff - Graph Visualization, Generate

SPARQL and Prolog queries visually;
 Full and Fast Recoverability;
 Online Backups, Point-in-Time Recovery,

Replication, Warm Standby;
 SOLR and MongoDB Integration;
 All clients based on REST Protocol;
 Cloud-Hosted AllegroGraph - Amazon EC2.

One of AllegroGraph limitations is it focuses on
geo-temporal reasoning and social network analysis.

Figure 1 shows an example of Allegro Graph
interface. In the middle, we have a graph database
and on the left we have subtitles for the nodes and
edges colours.

Figure 1: AllegroGraph interface. (AllegroGraph interface,
no date).

4 ArangoDB

ArangoDB is a multi-model database system
developed by triAGENS GmbH. The data can be
stored as key or value pairs, documents or graphs
and all of this can be accessed by just one query
language (AQL - ArangoDB Query Language).
ArangoDB uses the same core and same query
language for all the data models. If a new product is
being developed and then new ideas are generated,
the model requires necessary changes frequently and
ArangoDB provides the opportunity of keeping the
product updated. Combining different data models in
one query makes data less complicated. This multi-
model makes sense because it has simplified
performance scaling, increased flexibility, fault

tolerance, huge amount of storage memory and
lower cost than other databases. This software has
two versions: Community and Enterprise editions.

The ArangoDB cluster architecture is a master /
master CP (Consistent and Partition) (Mehra, 2017)
model without a single point of failure. With "CP",
we mean that in the presence of a network partition,
ArangoDB prefers to maintain its internal
consistency instead of availability. Clients will have
the same view of the database regardless of the node
to which they connect, and the cluster continues to
fulfil requests even when a machine fails. In this
way, ArangoDB was designed as a distributed multi-
model database (ArangoDB, no date).

The most important advantages and features of
ArangoDB are:

 Management of multiple data models with a
single core and query language (AQL);

 HTTP API to manage database;
 Multi architecture – unique instance, cluster or

mixed services;
 JavaScript Foxx Framework integration;
 Sharding;
 Cloud ready on Azure Cloud;
 Consolidation - minimizes the components,

reducing the complexity of the technology
stack. This means a lower total cost of
ownership, increasing flexibility and
consolidating technical needs;

 Simplified Performance Scaling - can easily
react to growing performance and storage
needs by independently scaling with different
data models. ArangoDB scales both vertically
and horizontally, and if our performance needs
decrease, we can easily scale down the back-
end system to save on hardware and
operational requirements;

 Reduced Operational Complexity - Polyglot
Persistence concept is about choosing the right
data model for the right job. A native multi-
model database allows to have polyglot data
without the complexity, but with data
consistency on a fault tolerant system;

 Strong Data Consistency - a single back-end
manages different data models with support for
ACID transactions. It provides strong
consistency on a single instance and atomic
operations when operating in cluster mode;

 Fault Tolerance – it uses a multi-model
database and a consolidated technology stack.
By design, ArangoDB enables modular
architectures with different data models
running and works for cluster usage as well.

Graph Databases Comparison: AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB

375

It was created in 2012, but the community is still
small. Also, the software complexity may require an
experienced user on database operations despite all
available documentation.

ArangoDB has a web interface as illustrated in
Figure 2. It shows an example of a graph database
with the node labels on the top right corner. On the
left there is a menu with options like cluster
statistics, graph databases collections, query editor,
user information and application services.

Figure 2: ArangoDB interface. (source: docs.arangodb.
com)

5 InfiniteGraph

InfiniteGraph is a distributed graph database
implemented in Java with core in C++ developed by
Objectivity. InfiniteGraph is unique in their massive
scalability, distributed ingest and processing
capabilities and has cloud storage, among other
features. It only offers physical disk storage.
InfiniteGraph has grown at a tremendous pace, and
can be found in areas such as network management
and telecommunications, healthcare, cyber security,
crime prevention, predictive analytics and fraud
detection, bioinformatics, genomics, scientific
research, finance, social CRM applications
supporting enterprise sales and marketing, and social
networking (InfiniteGraph, no date). The physical
model is object-oriented, so two classes are used to
store the vertices and nodes of a base, BaseVertex
and BaseEdge, respectively.

InfiniteGraph is built on a highly scalable,
distributed database where data and processing are
distributed. A single graph database can be
partitioned and distributed across multiple disks and
multiple machines with the ability to query data
between these frontiers. The same database can
access the graph database locally or over a network.
The lock server handles the locking requirements

through database applications, allowing for
simultaneous reading and writing access to the graph
database. Access to the database is not controlled
when a database instance is created, but rather at the
transaction level. Data servers handle remote
databases and application requests for distributed
grid databases and nodes. Although the REST
interface facilitates interactive access to a database
from a browser, it is not suitable for high-
performance access because it deals with many large
graphs.

Following, InfiniteGraph key features and
advantages are described:

 API/Protocols: Java (core C++);
 Multi-property-graph model;
 Online backups;
 Multi-threading processing;
 Cloud enabled;
 Friendly graph visualization tool;
 Parallel query support;
 Export data models to JSON and GraphML;
 Distributed - scalable graph database solution

that distributes the processing load in the most
efficient way for applications;

 Cost Effective - reduces the total cost of
ownership by reducing the need for data
movement and transformations.

InfiniteGraph also has some limitations. It does
not support sharding and does not have a free
version.

In Figure 3, we have an example of the
InfiniteGraph interface.

Figure 3: InfiniteGraph interface.

6 Neo4J

Neo4J is an open-source graph database implement-
ed in Java. The developers describe Neo4J as a fully
transactional database and a persistent Java engine
where we can store structures in the form of graphs
instead of tables. There are many connections inside

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

376

a big data and Neo4J helps find the intertwining
links between them with the help of its visually
interactive graphs. Neo4J uses natives graph storage
which provides the freedom to manage and store
data in a highly disciplined manner. Neo4J is
considered the most popular and used graph
database worldwide, used in areas such as health,
government, automotive production, military area
and others, being a major reference in this area.

This software was created in 2007 and is divided
into three broad versions: a Community Edition that
is a free version, an Enterprise Edition, where there
is a possibility to test a more complete version for 30
days, and there is still a Government Edition, which
is like an upgrade to Enterprise version. This version
is highly focused for government services. The main
differences between the two major versions of Neo4j
are: an existence of online backups, high cache
memory performance, detailed monitoring of the
system, strong management of database locks, and
greater scalability of the database, among other
benefits of the Enterprise Edition (Neo4J, no date).

Neo4J typical application scenarios are real-time
recommendations, identity and access management,
network and IT operations, fraud detection, anti-
money laundering / tax evasion, knowledge graphs,
graph analytics and algorithms, graph-powered
artificial intelligence, smart homes and IoT.

Currently most databases run through a server,
which can be accessed through a client library. The
Neo4j can run in the embedded mode, as well as in
server mode. Embedded mode must be understood
as an instance that stores all the information on the
disk, and not as an in-memory database, that works
exclusively with the internal memory of the
machine. The embedded Neo4j is ideal for hardware
devices, desktop applications, and for embedded
applications in servers. Running Neo4j in server
mode guarantees a more common way to implement
a database, which is what is most used today. On
each server there is an embedded instance of Neo4j.

Neo4J has many competitive advantages, which
makes this software one of the most used ones in
this area. Following, we describe the major features
of Neo4J:

 Flexible schema;
 Follows property graph data model;
 Scalability and reliability;
 Cypher query language;
 HTTP API to manage the database;
 Index support using Apache Lucence;
 Drivers support like Java, Spring, Scala,

JavaScript;
 Online backups;

 Cloud enabled;
 Exporting of query data to JSON and XLS

format;
 Most active graph community in the world;
 High performance thanks to native graph

storage and processing;
 Easy to learn and to use;
 Easy to load data into the software;
 Whiteboard-friendly data modelling to

simplify the development cycle.

Neo4J doesn’t support sharding and the
Community version, being a free version, it has
some limitations on the number of nodes,
relationships and properties.

In Figure 4 we can see an example of the Neo4J
interface running on a web browser. The sidebar on
the left shows database information, node labels,
relationship types and property keys. In the centre
we have an example of a graph with multiple nodes
(vertices), the relationships (edges) and attributes
names, and on top we have text section where we
can query data in Cypher language.

Figure 4: Neo4J interface.

7 OrientDB

OrientDB is a multi-model open source NoSQL
database management system that supports data
models in documents, graphs, key/value, and
objects.

It was launched commercially in 2011 by
OrienTechnologies and implemented in Java. It is
transactional and supports distributed architecture
with replication. The manipulation of the database
can be done in Java, SQL or with Gremlin. Physical
data storage can be done in memory and on disk.

Like all systems, it uses the free adjacency list to
enable native query processing, but unlike the

Graph Databases Comparison: AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB

377

others, it uses document database and object-
orientation capabilities to store physical vertices.
OrientDB supports schema less, full and mixed
modes including SQL as one of the languages used
and replication and sharding that can be used in most
complex use cases. OrientDB provides safety in all
confidential data that is present with the use of
authentication, password and data-at-rest encryption.

It has a Community Edition version that is free
(Apache 2 License) but does not support features
such as horizontal scalability, fault tolerance,
clustering, sharding and replication. Enterprise
Edition is an extension and supports features such as
query profiles, distributed cluster configuration,
metric record, live monitoring, a migration tool and
alert configuration. OrientDB use cases are fraud
detection, network/IT operations, graph search,
recommendation engines, master data management,
identity management and forensic analysis.

The OrientDB architecture occurs in distributed
mode. This can be distributed across different
servers and used in diverse ways to achieve
maximum performance, scalability and robustness.

OrientDB uses the Hazelcast Open Source
project for automatic node discovery, storing run-
time cluster configuration, and synchronizing certain
operations between nodes.

Following, we present the key features and
advantages of OrientDB:

 Supports SQL language;
 Web technologies support – HTTP, RESTful

protocol, JSON libraries;
 Distributed – multi-master replication support;
 Cloud ready;
 Database manipulation using Java;
 It can embed documents like any other

document database but also supports
relationships;

 Multi-master plus sharded architecture,
providing horizontal scalability and reliability;

 Fast installation;
 Free version using Apache Licence 2.

OrientDB have some limitations such as not
having an import tool. Sometimes the documentation
is outdated and some users have experienced some
bugs with the graph editor.

OrientDB also provide a web interface. Figure 5
shows an example of a graph database with a sidebar
bar, which shows nodes and edges properties, and
some edition functions like add vertices or clear
canvas on top right corner.

Figure 5: OrientDB interface. (OrientDB, no date).

8 COMPARISON OF FEATURES

After analysing the five graph databases and once
the functionalities are the most important properties
when choosing a graph database, a summary was
made to represent the quality of each feature in each
graph database. Based on (Buerli, 2012) and (Cox,
2017) we select the most important features that a
graph database should have:

 Flexible schema - While relational databases
require new tables or alterations in the existing
ones to add new types of data, in a graph
database we can add new type of vertices and
edges without alterations in the previously
stored data;

 Query language – Relational databases use SQL
query language to manipulate the database, but
graph databases needed a more powerful query
language. There are many different query
languages to manipulate specific graph
databases like Cypher on Neo4J or AQL on
ArangoDB, and we will study to see which one
suits best the needs of querying data;

 Sharding - One of the key elements to being
able to scale NOSQL databases is sharding,
where a large dataset can be broken up and
distributed across a number of (typically
replicated) shards;

 Backups – Graph databases should provide
functions for planning, performing and
restoring a database backup. A full backup
contains all data files and information required
to restore a repository to the state it was in at
the time of the backup;

 Multi-model – A multi-model graph database
provides a database with unstructured data, and
we can visualize relationships with data like in
the form of graphs, key-value pairs, documents
or tables;

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

378

 Multi-architecture - When planning a graph
database solution, there are several structural
decisions to make. These decisions may vary
slightly, depending on which database product
you choose. We will analyse which graph
databases give the best options for the
architecture to be implemented;

 Scalability - As hardware continues to innovate
at a rapid pace (mass storage devices, CPU and
networks), this in turn leads to increased
capacity for existing database software,
enabling growth in the number of transactions
per second. There are two approaches to
scaling a database: Vertical (Scale Up) and
Horizontal (Scale Out). Vertical scaling
involves adding more physical or virtual
resources to the underlying server hosting the
database – more CPU, more memory or more
storage. Horizontal scaling involves adding
more instances/nodes of the database to deal
with increased workload;

 Cloud ready – A graph database implemented
on cloud is a great feature because it solves
scalability problems and provides real-time
management.

Table 1 summarizes our study, where each row
represents the most important features to take into
consideration when choosing a graph database.

In this comparison a five Likert scale from 0 to 4
was used. The grade 4 means that the feature is well
implemented in the software and 1 means that the
feature is not well implemented and should be
improved. 0 (zero) is assigned if the feature is not
supported by the software. The grades are assigned
according to our experience and literature review.
Following, we present the legend for comparison:
Great: 4 points; Good: 3 points; Average/Normal: 2
points; Bad: 1 point; Does not support: 0 points.

Table 1: Graph databases features comparison.

The analysis of AllegroGraph demonstrates that
this software has good features. However,
comparing to the other graph databases, some
features are worst implemented on AllegroGraph. It

also has a architecture supported by REST protocol
and a query language named SPARQL. It is a
language designed for querying RDF graphs but
does not seem to be widely adopted on "SQL of
Graphs". It is used more widely for querying larger
data sets than closed local datasets. One of the main
weaknesses is that the cloud support is still in beta
version and does not provide a flexible schema.

ArangoDB has more functionalities than
AllegroGraph. It provides the user the chance to use
a flexible schema or not; on the other hand it is a
schema-free database and thus allows flexible
storage. All documents in a collection can have the
same or totally different structures. ArangoDB
exploit the similarities in document structures to
save storage space. It will detect identical document
schemas and will only save each unique schema
once. This process is called shaping in ArangoDB.
ArangoDB has a SQL like, powerful and modern
language named AQL that enables really impressive
complicated queries and processes to be pushed to
the backend, which makes this a big strength. It also
has functionalities like sharding, scalability, which is
a multi-model database, and runs in the AzureCloud.
The information available on ArangoDB backups is
a bit confusing, with the community asking many
questions, so it’s a feature that they should improve.

Next, we have InfiniteGraph with functionalities
like flexible schema, cloud ready, a well
implemented backup tool, and it uses Gremlin
language for querying data, a popular language for
people working with graph databases. On the other
hand, this software does not support sharding and
uses only graph data models.

Neo4J is one of the best options when choosing a
graph database and this study shows that this
software has the most important features like
flexible schema, a powerful query language named
Cypher, a tool for planning, performing and
restoring backups, two types of architecture (server
mode and embedded mode), scalability and cloud
prepared. Neo4J does not support sharding, and that
is the main weakness of this software.

Finally, we have OrientDB. This software can
work in a schema-less mode but also supports both
schema-full and schema-hybrid solutions. OrientDB
uses Java, SQL and Gremlin to manipulate data,
supports sharding, can be implement in the cloud
and has great scalability once it uses the distributed
architecture. We could not find clear information on
how the backups work.

After this analysis, we can conclude that Neo4J
and ArangoDB stand out for their functionalities
with 26 points, and is the best graph databases

Graph Databases Comparison: AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB

379

option nowadays. We can use Neo4J that is
optimized for graph databases and ArangoDB and
OrientDB for databases with different data models
(graphs, documents, key-value). However, we
recommend that Neo4J is a better software with
enhanced implemented features over ArangoDB.

Some websites like db-engines (Ranking of
Graph DBMS, 2018), that study databases ranking
according to their popularity, and Predictive
Analytics Today (Top Graph Databases, 2017), that
study trending graph databases, also have in their
analysis Neo4J, ArangoDB and OrientDB on the top
of their charts with Neo4J as the first choice in both.
This makes this graph database the most used one in
the world.

9 CONCLUSIONS AND FUTURE
WORK

Graph databases provide more performance,
flexibility and agility than non-relational databases.
In this work, we analysed five of the most
commonly used graph databases: AllegroGraph,
ArangoDB, InfiniteGraph, Neo4J and OrientDB.

We conclude that although they all have the
same purpose, which is storing large volumes of data
with many relationships between them, they are very
different in the functionalities they offer. For
example, Neo4J can be implemented in embedded
mode or server mode, and the OrientDB can only be
implemented in distributed mode. These five graph
databases have some distinct advantages and
features, but since the purpose of the software is the
same, there are also many similarities.

When choosing a software to serve specific
needs, we will have to see what each software offers,
and graph databases are no exception. The
functionalities that each one offers is what makes
one better than the other and so an analysis was
made for the features of these graph databases.

We conclude that Neo4J and ArangoDB offer the
best functionalities to implement a graph database
with Neo4J for standing out for its simplicity and
due to its powerful query language named Cypher
despite the need to have previous knowledge of it to
manipulate the database. It also offers two
architecture options, an intuitive interface and a
flexible schema that allows the user to access very
specific information very fast. ArangoDB is also a
powerful tool, has an easy-to-learn and powerful
query language (AQL), and a flexible schema.
Furthermore, since it is a multi-model graph

database, it provides a lot of flexibility and supports
sharding. These are two advantages over Neo4J and
this is why it is also a good choice.

As future work, we intend to analyse the two best
graph databases of this study - Neo4J and
ArangoDB - in a real environment, using a
benchmark to evaluate performance.

REFERENCES

AllegroGraph interface, http://franz.com/ps/newsletter-
archive/32.png

AllegroGraph, https://franz.com/agraph/allegrograph/
ArangoDB, https://www.arangodb.com/
Buerli, M., 2012, “The Current State of Graph Databases”,

Department of Computer Science, Cal Poly San Luis
Obispo, California.

Cox, G., 2017, “Introduction to Graph Databases”,
https://www.compose.com/articles/introduction-to-
graph-databases/

Dietrich, J., Jones, N. and Wright, J., 2008, “Using social
networking and semantic web technology in software
engineering – Use cases, patterns and a case study”,
Massey University Institute of Information Sciences
and Technology, Palmerson North, New Zeland,
January 2008.

Guia, J., Soares, V. and Bernardino, J., 2017, “Graph
Databases: Neo4J Analysys”, 19th International
Conference on Enterprise Information Systems.

InfiniteGraph interface, http://image.slidesharecdn.com/
igoverviewdbtaaug2011-110830134434-phpapp02/95/
webinar-an-introduction-to-infinitegraph-and-connect
ing-the-dots-in-big-data-17-728.jpg?cb=1314711996

InfiniteGraph, http://www.objectivity.com/products/infini
tegraph/

Mehra, A., 2017, “Understanding the CAP Theorem”,
https://dzone.com/articles/understanding-the-cap-
theorem

Neo4J, “Why Graph Databases?”, https://neo4j.com/why-
graph-databases/, (Accessed: 2 of March of 2018)

Neo4J, www.neo4j.com
OrientDB, https://orientdb.com/
Ranking of Graph DBMS, 2018, db-engines,

https://db-engines.com/en/ranking/graph+dbms
Robinson, I., Webber, J. and Eifrem, E., 2015, Graph

Databases, 2nd Edition, O‟Reilly Media Inc.,
California

Top Graph Databases, 2017, Predictive Analytics Today,
https://www.predictiveanalyticstoday.com/top-graph-
databases/

Wu, M., 2017, “What Are the Major Advantages of Using
a Graph Database?”, https://dzone.com/articles/what-
are-the-pros-and-cons-of-using-a-graph-databa

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

380

