
Sensor-based Database with SensLog: A Case Study of SQL to NoSQL
Migration

Prasoon Dadhich1, Andrey Sadovykh1, Alessandra Bagnato1, Michal Kepka2, Ondřej Kaas2

and Karel Charvát3
1Softeam Group, Paris, France

2University of West Bohemia, Plzeň, Czech Republic
3Lesprojekt-služby Ltd., Martinov, Czech Republic

Keywords: NoSQL, Performance Testing, Modeling, Data Migration, Benchmarking, Sensor-based Database, Cloud
Computing, Virtualization, Scaling, Data Architecture and Analysis.

Abstract: Sensors gained a significant role in the Internet of Things (IoT) applications in various industry sectors. The
information retrieved from the sensors are generally stored in the database for post-processing and analysis.
This sensor database could grow rapidly when the data is frequently collected by several sensors altogether. It
is thus often required to scale databases as the volume of data increases dramatically. Cloud computing and
new database technologies has become key technologies to solve these problems. Traditionally relational SQL
databases are widely used and have proved reliable over time. However, the scalability of SQL databases at
large scale has always been an issue. With the ever-growing data volumes, various new database technologies
have appeared which proposes performance and scalability gains under severe conditions. They have often
named as NoSQL databases as opposed to SQL databases. One of the challenges that have arisen is knowing
how and when to migrate existing relational databases to NoSQL databases for performance and scalability.
In the current paper, we present a work in progress with the DataBio project for the SensLog application case
study with some initial success. We will report on the ideas and the migration approach of SensLog platform
and the performance benchmarking.

1 INTRODUCTION

The growth of the IoT domain has increased impor-
tance for processing a large amount of sensor data.
Sensor-based databases are a particular type of da-
tabase with a constant predictable data flow(Kepka
et al., 2017) in a fixed interval of time. The data flow
is generally fixed with the sensors which are then atta-
ched to the units. These units are physical entities, for
instance: a tractor in the field, field node with several
connected sensors or a smart-phone (Řeznı́k et al.,
2016),(Kepka M., 2012). Sensor networks are widely
used in several surveillance applications. These appli-
cations help us get the useful data for post-processing
and analysis.

1.1 SensLog Case Study

SensLog is web-based sensor data management sy-
stem suitable to process data both from static and

mobile sensors. The SensLog application consists
of server-side part and database part. Raw measu-
rements from sensors are taken to gateways(Kepka
et al., 2017). These gateways send the flow of measu-
rements to the database with the SensLog API. Sens-
Log database schema was designed and developed
during recent years with features respecting standard
ISO 19156 (Probst, 2008). With the help of Sens-
Log team, we have observed SensLog sensor-based
data model and storage (Kepka et al., 2013), which,
as in traditional data-intensive applications, relies on
the relational database. The current implementation
of SensLog data model in PostgreSQL database sy-
stem (Pos, 2018) seems to be still effective. However,
SensLog in future needs a much larger deployment
and thus preparing for the infrastructure capable of
dealing with big data. Therefore, this study will in-
vestigate the applicability of document-oriented data-
bases for the future growth of SensLog.

Dadhich, P., Sadovykh, A., Bagnato, A., Kepka, M., Kaas, O. and Charvát, K.
Sensor-based Database with SensLog: A Case Study of SQL to NoSQL Migration.
DOI: 10.5220/0006909202390244
In Proceedings of the 7th International Conference on Data Science, Technology and Applications (DATA 2018), pages 239-244
ISBN: 978-989-758-318-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

239



1.2 Objectives

Over the past years, Softeam research team has con-
ducted several studies on the methods for model-
driven design of data-intensive applications (Mar,
2018; da Silva et al., 2014; Aurélio Almeida da Silva
and Sadovykh, 2014). Part of this work is the migra-
tion problem to help the architects and software engi-
neers to move easier from one data storage techno-
logy to another with automated tools. In the con-
text of the DataBio project(Dat, 2018) which focuses
on data-driven bioeconomy, we develop the model-
driven NoSQL migration tools in Modelio (Mod,
2018). Our major hypothesis is that the migration
process should start with analysis and denormaliza-
tion of relational structures (Mar, 2018). The next
steps are the transformation to NoSQL (e.g. Mon-
goDB) meta-model and deployment. Finally, an ex-
tensive testing should prove the benefits of the migra-
tion process comparing to the legacy application.

In this paper, we manually proceed with the
above-mentioned process for our case study with
SensLog. We concentrate on the performance testing
part in order to prove the promised benefits which jus-
tifies further development of our methods in Modelio
modeling tool.

2 BACKGROUND

In the world of software engineering, we have seen
continuous changes in languages, platforms, and ar-
chitectures. However throughout relational database
has been the default choice for serious data storage in
the industry context. With the growing data volumes,
the need to integrate data from multiple sources and
continuous strive for scale, there came new challen-
ges in data storage. Thus, new database technologies
such as MongoDB (Mon, 2018b), Cassandra (Cas,
2018), Neo4j(Neo, 2018) and Azure table storage
(Azu, 2018) came into existence. NoSQL databases
provided the advantage of building systems (Pokorny,
2013) that were more performing, scaled much better
and were easier to program for.

Various proof of concepts and surveys have shown
benefits to apply NoSQL databases(Pokorny, 2013).
It has been proven particularly advantageous for the
databases which do not rely much on the relati-
ons and/or could be denormalized with some measu-
res(Pokorny, 2013; Dhanachandran, 2012). One of
the promising cases in this respect could be the sen-
sor industry.

Working with SensLog team who specializes in
their tool for processing sensor queries, we furt-

Figure 1: SensLog relational Schema observed with Mo-
delio SQL designer.

hermore explore the idea of processing sensor que-
ries with the warehousing approach that relies on
a document-oriented NoSQL database(Balazinska
et al., 2007). In this approach, we principally have
a data lake and an analytics database. The data lake
is populated by the sensor gateway, which stores the
sensor data in a predefined way for all the insertions.
Then, this data could be transformed into a form that
is easier for analytics application. The analytics data-
base is usually smaller, centrally stored for faster read
access with SELECT queries on specific indicators. In
the meantime, the data lake containing the historical
data can still be accessed with extraction mechanisms
that may take longer time for the query. This approach
enables acceptable response time for analytics data,
while still allowing for complex query processing if
needed through the data lake.

3 MIGRATION

The current SensLog application is implemented with
a PostgreSQL database. The SensLog application en-
counters certain performance limitations and our goal
was to understand the bottlenecks and propose a more
efficient architecture utilizing NoSQL concepts. The-
refore, to start developing proof of concept, we had
to explore the existing relational schema of the cur-
rent SensLog application. We chose to translate the
SQL schema into a data model using Modelio SQL
Designer (SQL, 2018).

Our working hypothesis is denormalizing the data
model in order to map it to NoSQL (Mar, 2018). The-
refore, after observing complex relations among the

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

240



tables in the SensLog data model, we investigated cer-
tain methods for denormalizing those tables towards
getting to the MongoDB(Mon, 2018b) database. The
main idea is to achieve a state where tables can be
transformed into related documents and mapped to
MongoDB. The denormalization methods are discus-
sed in (Mar, 2018).

We applied methods starting with changing the
connections to IDs to substitute relations among
the MongoDB collections. In the second itera-
tion, we substituted joints by embedding certain ta-
bles(Kanade et al., 2014). This method should be ap-
plied strategically depending on the amount of data to
be duplicated. The good indication is the complexity
of joint relations that can be observed with Modelio
SQL Designer.

Figure 2: MongoDB migrated database snapshot from
Robo3T interface.

Once deciding to migrate we used a specific
Mongify tool (Mon, 2018a) where we could script
these denormalization rules and translate the relatio-
nal schema to a MongoDB database structure. That
way, we could instrument the methods for ID repla-
cement and embedding tables (Jadhav, 2017). The
figure 2 gives a snapshot of tables achieved after
migration as seen in the Robo3T.

4 EVALUATING RESULTS

Once both systems, the legacy one and migrated
one, were ready, we could proceed with the perfor-
mance testing and compare both database systems.
To achieve this we needed to set up a testbed con-
sisting of two identical cloud machines hosting Post-
greSQL and MongoDB. On both machines, we set up
the SensLog data models and deployed the historical
data.

With these two machines we organized the test
plans that included the following scenarios:

• Throughput on insertion query.

• Response Time on insertion query.

• Throughput and Response Time with varying
number of users varying from 10 to 30 as discus-
sed with the SensLog team.

• Throughput and Response Time with specific que-
ries.

• Throughput and Response Time with specific
schema set.
Considering the limits of infrastructure, we con-

centrated our experiments with micro cloud machi-
nes. Choosing micro machines with small capacity of
storage instead of bigger ones helped to demonstrate
and learn the physical limits of stressing. That way,
we could observe the behavior of the data insertion
under stress conditions.

4.1 Testbed

In order to compare the results on the PostgreSQL and
the MongoDB NoSQL SensLog data models, we de-
ployed two identical Amazon instance machines with
MongoDB and PostgreSQL schema respectively. We
used two identical t2.micro Ubuntu machines with the
following specifications:

Table 1: Amazon instance characteristics.
Amazon instance type t2.micro
#Cores 1
#Threads 1
Instance storage EBS Only
Operating System Ubuntu 14.0

The first machine is deployed with the Post-
greSQL version 9.6 with the initial schema received
from SensLog team. The second machine is deployed
with the MongoDB version 3.2 with the data model
that we obtained in the migration process using Mo-
delio SQL Designer and Mongify tool.

4.2 Performance Testing

The graphs below illustrate the results achieved with
JMeter(Jme, 2018) performance testing tool. Those
graphs compare the behavior of both PostgreSQL-
based and MongoDB-base SensLog applications.

In this first set of experiments, we have concentra-
ted on insertion testing (DataStax, 2018). We stres-
sed both the machines by a test case involving a large
number of users (i.e. sensors) to insert data each se-
cond in order to determine the maximum number of
users to be served with a stable Response Time. We
chose the most critical part of the data model in order
to demonstrate the impact of the insertions on the sy-
stem. In our context, the SensLog application heavily

Sensor-based Database with SensLog: A Case Study of SQL to NoSQL Migration

241



relies on the Observation table where all measure-
ments are stored. Hence, we concentrated insertion
queries on this table.

SensLog team targets that application is capable to
handle 30 sensor data insertions per second in a typi-
cal scenario. Thus, in the first part of our experiments,
we measured the Response Time in this typical scena-
rio on our testbed. We run test suite on both machines
simultaneously and observed the difference. The re-
sults are shown in the snapshots below.

Figure 3: Observations Comparison Response Time Graph
PostgreSQL.

Figure 4: Observations Comparison Response Time Graph
MongoDB.

We observe in the figure 3 that it is going to-
wards exponential curve whereas in figure 4 we get
linear performance stability in the NoSQL MongoDB
insertions. In terms of throughput during insertion,
we observed MongoDB performing three times more
than the PostgreSQL machine.

In the second iteration, we decided to investigate
in more details the MongoDB behavior by fine-tuning
different parameters such as the number of users and
the ramp-up time.

In the figure 5 we observed a consistent Re-
sponse Time when MongoDB was stressed with 15
users for ramp-up time of 1 minute. There was a
big jump after several insertions which is most likely
because of the memory shortage in the small Ama-
zon machine we have utilized in our proof of concept.
From this lap, we can also see the behavior of Mon-
goDB machine when it is near to getting full. That is
a very appreciable behavior of a little jump in a still
consistent way comparing to completely breaking up
as in the PostgreSQL case.

In the next experiment, we did the same for 30
users and observed similar behavior. Thus, with our
experiments, we proved our hypothesis on linear con-
sistency when using MongoDB.

The data insertions are done with the help of
scripts in the JMeter tool (Jme, 2018) by generating
relevant fake data as below.

PostgreSQL:
INSERT INTO public.observations(observation_id, gid,

time_stamp, observed_value, sensor_id, unit_id,

time_received)

VALUES (

${count_value},

${count_value},

${__Random(2000,2017)}-${__Random(10,12)}

-01 00:00:00,

${__Random(0,100000)},

${__Random(1000,10000)},

${count_value},

${__Random(2000,2017)}-${__Random(10,12)}

-01 00:00:00));

MongoDB:
db.observations.insert(

{

"observation_id" : ${count_value},

"gid" : ${count_value},

"time_stamp" : ISODate("${__Random(2000,2017)}-

${__Random(10,12)}-01T00:00:00Z"),

"observed_value" : ${__Random(0,100000)},

"sensor_id" : ${__Random(1000,10000)} ,

"unit_id" : ${count_value} ,

"time_received" : ISODate("2014-10-01T00:00:00Z")

}

)

5 CONCLUSION AND FUTURE
WORK

The major point with the sensor database is the con-
stant flow of data from the sensor networks. This flow

Figure 5: Observations Response Time Graph while Stres-
sing with 15 users MongoDB.

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

242



if decoupled from the relational-based database, using
the technique of data warehousing(Balazinska et al.,
2007) can benefit the organization of the insertion in
the database with respect to the Response Time. In
SensLog database, we also observe the existing Post-
greSQL heavily utilizing SELECT queries. MongoDB
lacks support in SELECT queries and hence we weigh
on preserving a part of the original architecture which
will still have a centralized database operating with
PostgreSQL.

From our tests, we observed SensLog Response
Time graph in MongoDB to be growing linear com-
pared to the equivalent PostgreSQL relational data-
base. Therefore, we consider that a data warehouse
on MongoDB will be a good solution for SensLog da-
tabase, while still keeping the centralized database for
the reporting system.

If there is any architecture decision to be taken
for SensLog application, we would point to deploying
MongoDB servers in the front receipting part to get
direct data from the Sensors. We can later strate-
gically utilize this database as a data pool for post-
processing. Thus, our experimentations on the basis
of proved concept with MongoDB sensor data model,
we expect a performance optimization of threefold at
the optimistic level in this architecture system.

This study is an important step forward for justi-
fying our efforts for further research in the direction
of automated tools for model-driven SQL to NoSQL
migration with Modelio.

FUNDING ACKNOWLEDGEMENT

This work is under European research project Data-
Bio (Dat, 2018) funded from European Union’s Ho-
rizon 2020 research and innovative programme under
grant agreement No. 732064.

REFERENCES

(2018). Azure. https://azure.microsoft.com/en-us/servi
ces/storage/tables/. A NoSQL key-value store for ra-
pid development using massive semi-structured data-
sets.

(2018). Cassandra. http://cassandra.apache.org/. Cassandra
is an open-source distributed NoSQL database mana-
gement system designed to handle large amounts of
data across many commodity servers.

(2018). Databio. https://www.databio.eu/en/summary/. Da-
taBio : Project to show the benefits of Big Data
technologies in the raw material production from agri-
culture, forestry and fishery/aquaculture for the bioe-

conomy industry to produce food, energy and bioma-
terials responsibly and sustainably.

(2018). Jmeter. https://jmeter.apache.org/usermanual/i
ndex.html. The Apache JMeter application is open
source software, a pure Java application designed
to load test functional behavior and measure perfor-
mance.

(2018). Modelio. https://www.modelio.org/. The open
source modeling tool environment.

(2018a). Mongify. http://mongify.com/. Mongify is a data
translator system for moving your SQL data to Mon-
goDB.

(2018b). Mongodb. https://www.mongodb.com/what-is-
mongodb. Information about MongoDB.

(2018). Neo4j. https://neo4j.com/. Neo4j is a graph data-
base management system developed by Neo4j.

(2018). Postgres. https://www.postgresql.org/. The imple-
mentation of PostgreSQL.

(2018). Sql to nosql migration. https://www.modelio.org/.
An assessment of the migration from a relational da-
tabase to a NoSQL store.

(2018). Sqldesigner. http://store.modelio.org/resource/modul
es/sql-designer.html. A module in Modelio for Data-
base modeling.

Aurélio Almeida da Silva, M. and Sadovykh, A. (2014).
Multi-cloud and multi-data stores. In Proceedings of
the 4th International Conference on Cloud Computing
and Services Science, CLOSER 2014, pages 703–713,
Portugal. SCITEPRESS - Science and Technology Pu-
blications, Lda.

Balazinska, M., Deshpande, A., Franklin, M. J., Gibbons,
P. B., Gray, J., Hansen, M., Liebhold, M., Nath, S.,
Szalay, A., and Tao, V. (2007). Data management in
the worldwide sensor web. IEEE Pervasive Compu-
ting, 6(2):30–40.

da Silva, M. A. A., Sadovykh, A., Bagnato, A., Cheptsov,
A., and Adam, L. (2014). Juniper: Towards modeling
approach enabling efficient platform for heterogene-
ous big data analysis. In Proceedings of the 10th
Central and Eastern European Software Engineering
Conference in Russia, CEE-SECR ’14, pages 12:1–
12:7, New York, NY, USA. ACM.

DataStax (2018). Benchmarking top nosql databases: Apa-
che cassandra, couchbase, hbase, and mongodb.

Dhanachandran, S. (2012). Dynamic real time distributed
sensor network based database management system
using xml, java and php technologies. 4:9–20.

Jadhav, B. (2017). Gui for data migration and query con-
version. International Journal of Advanced Research
in Computer Science and Software Engineering.

Kanade, A., Gopal, A., and Kanade, S. (2014). A study of
normalization and embedding in mongodb.

Kepka, M., Charvát, K., Šplı́chal, M., Křivánek, Z., Musil,
M., Leitgeb, Š., Kožuch, D., and Bērziņš, R. (2017).
The senslog platform – a solution for sensors and ci-
tizen observatories. In Hřebı́ček, J., Denzer, R., Schi-
mak, G., and Pitner, T., editors, Environmental Soft-
ware Systems. Computer Science for Environmental
Protection, pages 372–382, Cham. Springer Interna-
tional Publishing.

Sensor-based Database with SensLog: A Case Study of SQL to NoSQL Migration

243



Kepka, M., Ježek, J., Charvat, K., and Musil, M. (2013).
Complex solution for sensor network in precision far-
ming.

Kepka M., J. J. (2012). Server-side solution for sensor data.
Pokorny, J. (2013). Nosql databases: a step to database

scalability in web environment. International Journal
of Web Information Systems, 9(1):69–82.

Probst, F. (2008). Observations, measurements and seman-
tic reference spaces. Appl. Ontol., 3(1-2):63–89.

Řeznı́k, T., Kepka, M., Charvat, K., Horakova, S., and Lu-
kas, V. (2016). Challenges of agricultural monitoring:
integration of the open farm management information
system into geoss and digital earth. 34:012031.

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

244


