
A Software Product Line Approach for

Feature Modeling and Design of Secure Connectors

Michael Shin1, Hassan Gomaa2 and Don Pathirage1
1Department of Computer Science, Texas Tech University, Lubbock, TX, U.S.A.

2Department of Computer Science, George Mason University, Fairfax, VA, U.S.A.

Keywords: Software Product Line, Feature Model, Secure Connector, Secure Software Architecture, Component-based

Software Architecture, Secure Software Design, Message Communication Patterns, Security Patterns,

Model-based Design, UML.

Abstract: This paper describes a software product line approach to modeling the variability of secure software

connectors by means of a feature model, which consists of security pattern and communication pattern

features used in the design of secure component-based software architectures for concurrent and distributed

software applications. Applying separation of concerns, these features are designed as security and

communication pattern components. Each secure connector is designed as a composite component that

encapsulates both security pattern and communication pattern components. Integration of these components

within a secure connector is enabled by a security coordinator. This paper describes the feature model,

design of secure connectors, how applications are built using secure connectors, and the validation of the

approach.

1 INTRODUCTION

Secure component-based software architectures for

concurrent and distributed software applications are

composed of components and connectors in which

connectors encapsulate the details of communication

between components. Although connectors are

typically used in software architecture (Medvidovic

and Taylor, 2010) to encapsulate communication

mechanisms between components, security concerns

can also be encapsulated in software connectors,

which are referred to as secure connectors (Shin et

al., 2012, 2016a, 2016b, 2017) separately from

application components that contain application

logic. However, to facilitate reusing secure

connectors in different applications, it is necessary

to design secure connectors that are both modular

and reusable.

Each secure connector is designed as a

composite component using component concepts by

reusing security pattern components and

communication pattern components, which are

designed separately from each other. Each security

pattern component encapsulates a security pattern,

such as symmetric encryption or digital signature.

Each communication pattern component

encapsulates the communication pattern between

application components, such as synchronous or

asynchronous message communication. A secure

connector is then constructed by composing security

pattern components and communication pattern

components. Integration of security patterns and

communication patterns within a secure connector is

provided by a security coordinator. Once a secure

connector is constructed, it can then be reused in

different applications.

This paper describes modeling secure connectors

by means of a software product line (SPL) approach.

Our previous papers (Shin et al., 2007, 2012, 2016a,

2016b, 2017) have focused on designing single

reusable secure connectors in an ad hoc way. This

paper investigates how applying SPL concepts can

lead to a more systematic approach that addresses

the inherent variability in the design of secure

connectors that separately encapsulate both the

security and communication concerns.

This paper is organized as follows. Section 2

describes existing approaches to modeling and

designing security concerns in software applications.

Section 3 describes a software product line approach

for secure connectors, followed by the feature model

506
Shin, M., Gomaa, H. and Pathirage, D.
A Software Product Line Approach for Feature Modeling and Design of Secure Connectors.
DOI: 10.5220/0006904805060517
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 506-517
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

for secure connectors in section 4. Section 5

describes communication and security features

components. Section 6 describes security coordina-

tor components. Section 7 describes a secure

connector derived from a software product line for

secure connectors. Section 8 describes the validation

of reusable secure connectors. Section 9 describes

conclusion of this paper with future research.

2 RELATED WORK

Related work focuses on approaches to designing

software architectures for secure applications,

patterns for distributed communication and

component-based software product lines. The

authors in (Lodderstedt et al., 2002) proposed

SecureUML, which is a new modeling language

based on UML for the model-driven development of

secure systems. Work has also been proposed to

provide an extension of UML called UMLsec

(Jürjens, 2002) that helps with the expression of

security-relevant information within design

diagrams. In model-driven security (Basin et al.,

2011), a system is modeled with its security

requirements and security infrastructures are

generated using the models.

Using connectors as the central construct, a

distributed CBSA in (Gomaa et al., 2001, 2011) is

composed of a set of components and a set of

connectors that can be used to connect the

components. In (Ren et al., 2005), a connector

centric approach is used to model, capture, and

enforce security. The security characteristics of a

CBSA are described and enforced using software

connectors. Methods in (Al-Azzani and Bahsoon,

2012) propose SecArch to evaluate architectures

with significant security concerns.

Security patterns in (Fernandez-Buglioni, 2013;

Schumacher et al., 2006) address the broad range of

security issues that should be taken into account in

the stages of software development lifecycle. The

authors describe the problem, context, solution, and

implementation of security patterns in a structured

way with a template so that the presentations are

consistent. The security patterns can help developers

to construct secure systems, even though the

developers may not have security expertise.

A software product line (SPL) (Gomaa, 2005) is

a family of software systems that have some

common functionality and some variable

functionality. The functionality of a SPL can be

modeled by means of features, which are designed

with kernel, optional, and variant components. Each

component has ports with provided and required

interfaces. The authors in (Gomaa and Shin, 2004,

2007, 2008, 2010) addressed multiple-view

modeling and meta-modeling of software product

lines. A co-author in (Abu--Matar and Gomaa, 2011;

Fant et al., 2015; Tzeremes and Gomaa, 2018)

investigated the design of the software product line

architecture for service-oriented systems, space

flight systems, and smart spaces.

In recent work by the authors (Shin et al., 2012)

described secure asynchronous and synchronous

connectors for modeling the software architectures

for distributed applications and the design of

reusable secure connectors that are structured into

reusable security components and communication

components. The authors in (Shin et al., 2016a,

2016b, 2017) address the design of secure

connectors in terms of maintainability and evolution,

which are used in the design of secure software

architectures. A co-author in (Gomaa et al., 2010;

Albassam et al., 2016) has also investigated

designing dynamically adaptable and recoverable

connectors.

3 SPL FOR SECURE

CONNECTORS

A security service (Farahmandian and Hoang, 2017;

Taha et al., 2017) is software functionality for

realizing a security goal, such as authentication,

authorization, confidentiality, integrity, availability

or non-repudiation, which can be implemented by

means of different security techniques. A security

service can be realized by means of different

security patterns (Fernandez-Buglioni, 2013;

Schumacher et al., 2006), each of which addresses a

specific security technique that realizes a security

service. For instance, a confidentiality security

service can be realized by means of a symmetric

encryption security pattern (Fernandez-Buglioni,

2013) or an asymmetric encryption security pattern

(Fernandez-Buglioni, 2013).

Although there are other types of

communications between distributed components,

typical message communication patterns between

the components are synchronous message

communication with reply, synchronous message

communication without reply, asynchronous

message communication, and bidirectional

asynchronous message communication (Gomaa,

2011). Communication patterns (Schneider, 2005)

are frequently used protocols by which distributed

A Software Product Line Approach for Feature Modeling and Design of Secure Connectors

507

components communicate with each other. Each

communication pattern is designed with a sender

communication pattern component (CPC) and a

receiver communication pattern component (CPC),

which are encapsulated in a secure sender connector

and a secure receiver connector respectively.

A secure connector is designed by separately

considering the message communication pattern and

the security patterns required by application

components. A secure connector is a distributed

connector, which consists of a secure sender

connector and a secure receiver connector that

communicate with each other. A secure sender or

receiver connector consists of a security coordinator,

one or more security objects, and a communication

object (Shin et al., 2016b). A secure connector can be

reused for different applications once it is constructed.

In this paper, the reusability of secure connectors

is enabled by applying SPL concepts to model the

variability of secure connectors and to design

reusable secure connectors in a systematic way. The

SPL approach provides a capability of modeling the

variability of secure connectors in terms of security

patterns and communication patterns. Applying SPL

concepts enables us to create variants of secure

connectors based on the variability of security and

communication patterns.

In the SPL for secure connectors, security and

communication patterns are modeled as features in a

feature model. The security pattern and

communication patterns features for secure

connectors are modeled in the feature model by

means of the optional attribute of software product

line. Also, the relationships between the security and

communication pattern features are modeled by

means of the dependencies between the features. In

addition, a feature/component table is used to

determine which communication and security

components are needed to realize each feature. To

derive a given secure connector from the feature

model, the appropriate features are selected, the

components that realize those features are then

selected and integrated as described next.

4 FEATURE MODEL FOR

SECURE CONNECTORS

The feature model (Fig. 1) for secure connectors is

developed to describe the variability of secure

connectors in terms of communication pattern (CP)

and security pattern (SP) features and the

dependency relationships between the features. The

feature model consists of two at-least-one-of-feature

groups, Communication Patterns and Security

Patterns, which means that one or more features

need to be selected from each group. The

Communication Patterns at-least-one-of-feature

group is composed of three further feature groups:

the Unidirectional feature group, which consists of

three optional one-way message communication

pattern features (CPFs), the SMC (synchronous

message communication) without Reply, Broadcast

and AMC (asynchronous message communication)

features; the Bidirectional feature group, which

consists of two two-way optional message

communication pattern features, Bidirectional AMC

and Subscription/Notification features; and Message

with Single Reply feature group, which consists of

two optional message communication features, AMC

with Callback and SMC with Reply features. The

optional communication pattern features (Fig.1) are:

 In SMC with Reply feature, a sender

component sends a message to a receiver

component and waits for a response from the

receiver. When a response arrives from the

receiver, the sender can continue to work and

send the next message to the receiver (Gomaa,

2011; Schneider, 2005).

 In SMC without Reply feature, a receiver

component acknowledges a sender component

when it receives a message from the sender.

As the sender is acknowledged by the

receiver, it can continue to work and send the

next message to the receiver (Gomaa, 2011;

Schneider, 2005).

 In AMC feature, an asynchronous message is

sent from a sender component to a receiver

component and is stored in a queue if the

receiver is busy. The sender component can

continue to send the next message to the

receiver component as long as the queue is not

full (Gomaa, 2011; Schneider, 2005).

 Bidirectional AMC feature uses asynchronous

message communication pattern feature in

both directions between the sender and

receiver components, with the receiver

component sending responses to the sender

component asynchronously. Responses are

sent to a queue from which the sender

component retrieves each response (Gomaa,

2011; Schneider, 2005).

 In AMC with Callback feature, a sender

component sends a service request message to

a server component, which includes the client

operation (callback) handle. The client com-

ponent does not wait for reply. After a

ICSOFT 2018 - 13th International Conference on Software Technologies

508

receiver component services the client request,

it uses the handle to call the client operation

remotely (the callback) (Gomaa, 2011;

Schneider, 2005).

 Subscription/Notification feature uses SMC

with Reply communication pattern and asyn-

chronous message communication pattern.

Client components subscribe to receive messa-

ges of a given type from a server component

via SMC with Reply communication pattern.

When a server component receives message of

this type, it notifies all client components that

have subscribed to it through AMC pattern

(Gomaa, 2011; Schneider, 2005).

 In Broadcast feature, a server component

sends a message to all client components,

regardless of whether clients want the

message or not. The client component decides

whether it wants to process the message or

just discard the message (Gomaa, 2011;

Schneider, 2005).

The security pattern features (SPFs) that

constitute the Security Patterns at-least-one-of-

feature group (Fig. 1) are Authenticator,

Authorization, Hashing, Digital Signature and

Symmetric Encryption, as follows:

 Symmetric Encryption feature prevents secret

information from being disclosed to any

unauthorized party. A message sent by a

sender to a receiver is encrypted using a secret

key, and the encrypted message is decrypted

by the receiver (Fernandez-Buglioni, 2013).

 Hashing feature protects against unauthorized

changes to secret information. A hash value

for a message is generated by a sender and the

message with the hash value is sent to a

receiver, which verifies the integrity of the

message using the hash value (Fernandez-

Buglioni, 2013).

 Digital Signature feature protects against one

party to a transaction later falsely denying that

the transaction occurred. A message is signed

by a sender using the sender’s private key and

the signed message is verified by a receiver to

check if the sender has signed the message

(Fernandez-Buglioni, 2013).

 Authenticator feature allows an entity (a user or

system) to identify itself positively to another

entity. This can be achieved using a password,

personal-identification number or challenge

response (Fernandez-Buglioni, 2013).

 Authorization feature protects against

unauthorized access to valuable resources.

Authorization may be implemented using

mandatory access control, discretionary access

control, role-based access control or attribute-

based access control (Fernandez-Buglioni,

2013; Ren et al., 2005).

requires

«secure connector»

Secure

Connector

«at least one of feature

group»

«communication pattern»

Communication Patterns

«at-least-one-of feature

group»

«security pattern»

Security Patterns

«optional»

«communication

pattern»

Broadcast

«optional»

«security pattern»

Authenticator

«optional»

«security pattern»

Authorization

«optional»

«security pattern»

Symmetric

Encryption

«optional»

«security

pattern»

Hashing

«optional»

«security pattern»

Digital Signature

«feature group»

«communication

pattern»

Unidirectional

«feature group»

«communication

pattern»

Bidirectional

«optional»

«communication

pattern»

AMC

«optional»

«communication

pattern»

SMC Without Reply
«optional»

«communication pattern»

SMC With Reply

«optional»

«communication pattern»

AMC With Callback

«optional»

«communication pattern»

Bidirectional AMC

«optional»

«communication pattern»

Subscription/Notification

requires

requires

requires

requires

requires

requires

«at least one of feature group»

«communication pattern»

Message with Single Reply

Figure 1: Feature Model for Secure Connectors.

A Software Product Line Approach for Feature Modeling and Design of Secure Connectors

509

Authenticator feature and Authorization feature

each require Symmetric Encryption feature because

a sender’s credentials for authentication and sender’s

parameter for requesting permission should be

encrypted to prevent unauthorized access. Both

Authenticator feature and Authorization feature also

require Message with Single Reply feature due to

their need for a response to the original request. In

Authenticator feature, a sender requests authentica-

tion from a server and the server needs to reply the

authentication result. Similarly, in Authorization

feature, a sender requests permission from a receiver

and the receiver needs to send back the approval or

denial to the sender.

5 COMMUNICATION AND

SECURITY COMPONENTS

Each feature in the feature model for secure

connectors is designed using components, which can

be encapsulated into a secure connector that is

designed as a composite component. A security

pattern feature is designed as security pattern com-

ponents, whereas a communication pattern feature is

designed as communication pattern components.

Integration of security pattern and communication

pattern components within a secure connector is

enabled by means of a security coordinator.

Table 1 shows each feature in the feature model

and their components. The SMC with Reply feature

is designed as a SMC with Reply Sender component

for sending messages to the receiver, a SMC with

Reply Receiver component for receiving messages

from the sender, and SMC with Reply Security

Sender Coordinator and Receiver Coordinator

Components for sequencing the interactions with

one or more security components and with SMC

with Reply components. Similarly, the Broadcast,

AMC, Bidirectional AMC and SMC without Reply

features are designed as sender and receiver

components respectively. Because the Bidirectional

AMC feature depends on the AMC feature, it is

designed to use components from the AMC feature.

Also, Subscription/Notification feature is designed

to use components from both AMC and SMC with

Reply features due to its dependency on these

features. The Authenticator feature is designed as

Authenticator component whereas Authorization

feature is designed with the Authorization com-

ponent. Each of the Symmetric Encryption, Digital

Signature, and Hashing features is designed as two

components for sender and receiver components.

Table 1: Feature and their Components.

Feature Components Reuse Stereotype

SMC Without

Reply Feature

SMC Without Reply Sender Component

SMC Without Reply Receiver Component

SMC Without Reply Security Sender

Coordinator Component

SMC Without Reply Security Receiver

Coordinator Component

Optional

Optional

Optional (Variant)

Optional (Variant)

Broadcast

Feature

Broadcast Sender Component

Broadcast Receiver Component

Broadcast Security Sender Coordinator

Component

Broadcast Security Receiver Coordinator

Component

Optional

Optional

Optional (Variant)

Optional (Variant)

AMC Feature AMC Sender Component

AMC Receiver Component

AMC Security Sender Coordinator Component

AMC Security Receiver Coordinator

Component

Optional

Optional

Optional (Variant)

Optional (Variant)

Bidirectional

AMC Feature

Components from AMC Feature

Subscription/

Notification

Feature

Components from AMC Feature

Components from SMC Feature

SMC With

Reply Feature

SMC With Reply Sender Component

SMC With Reply Receiver Component

SMC With Reply Security Sender Coordinator

Component

SMC With Reply Security Receiver Coordinator

Component

Optional

Optional

Optional (Variant)

Optional (Variant)

AMC With

Callback

Feature

AMC With Callback Sender Component

AMC With Callback Receiver Component

AMC With Callback Security Sender

Coordinator Component

AMC With Callback Security Receiver

Coordinator Component

Optional

Optional

Optional (Variant)

Optional (Variant)

Authenticator

Feature

Authenticator Component Optional

Authorization

Feature

Authorization Component Optional

Symmetric

Encryption

Feature

Symmetric Encryption Encryptor Component

Symmetric Encryption Decryptor Component

Optional

Optional

Digital

Signature

Feature

Digital Signature Signer Component

Digital Signature Verifier Component

Optional

Optional

Hashing

Feature

Hashing Signer Component

Hashing Verifier Component

Optional

Optional

Public Key

Infrastructure

Feature

Public Key Repository Component Optional

A security pattern feature (SPF) is designed

using one or two security pattern components

(SPCs), as depicted in Fig. 2. The Symmetric

Encryption SPF (Fig. 2a) is composed of the

symmetric encryption encryptor and decryptor SPCs

(Fernandez-Buglioni, 2013). The Digital Signature

SPF (Fig. 2b) is designed with the digital signature

signer SPC (Fig. 2b) and digital signature verifier

SPC (Fig. 2b) (Fernandez-Buglioni, 2013). Each

port of a component is defined in terms of provided

and/or required interfaces (Gomaa, 2011). Each

security pattern component (Fig. 2) has a provided

port through which the component provides security

services to other components. Fig. 3 depicts the inter-

faces provided by the ports of the SPCs in Fig. 2.

ICSOFT 2018 - 13th International Conference on Software Technologies

510

«optional»
«security pattern»

Symmetric
Encryption Encryptor

ISEEncryptor

PSEEncryptor

ISEDecryptor

PSEDecryptor

«optional»
«security pattern»

Digital
SignatureSigner

IDSSigner

PDSSigner

«optional»
«security pattern»

Digital
SignatureVerifier

IDSVerifier

PDSVerifier

a) Symmetric Encryption Security Pattern

b) Digital Signature Security Pattern

«optional»
«security pattern»

Symmetric
EncryptionDecryptor

Figure 2: Security Pattern Components.

«interface»

ISEEncryptor

encrypt (in message, in key, out

encryptedMessage)

«interface»

ISEDecryptor

decrypt (in encryptedMessage, in key,

out message)

«interface»

IDSSigner

sign (in message, in key, out signature)

«interface»

IDSVerifier

verify (in message&signature, in key,

out result)

Figure 3: Interfaces of Security Pattern Components.

Each communication pattern is designed with a

sender communication pattern component (CPC)

and a receiver communication pattern component

(CPC), which are encapsulated in a secure sender

connector and a secure receiver connector

respectively. Fig. 4a depicts the AMC Sender CPC

and AMC Receiver CPC for the secure AMC

connector. The AMC Sender CPC (Fig. 4a) has the

provided PAsyncMCSenderService port through

which the Security Sender Coordinator component

(Fig. 7a) sends to the AMC Sender CPC a message

being sent to the receiver component, whereas it

requests a service from the AMC Receiver CPC via

the required RNetwork port. Similarly, the AMC

Receiver CPC (Fig. 4a) has the required

RSecurityService port and provided PNetwork port.

Fig. 4b depicts the interfaces provided by each port

of the AMC Sender and Receiver CPCs.

6 SECURITY COORDINATOR

COMPONENTS

A security sender coordinator component receives

messages from a sender component, and a security

receiver coordinator component delivers messages to

a receiver component. The security sender and

receiver coordinator components are variant optional

components (Table 1), optional because they are

needed for each optional communication pattern,

and variant because the design of each coordinator

component needs to be customized for each secure

connector based on one or more selected security

features. Templates for the high-level security

sender and receiver coordinator components are

designed for each communication pattern. A

communication pattern needs one template for the

high-level security sender coordinator component

(see Fig. 5) and another template for the receiver

coordinator component (Fig, 6). The templates are

customized for each secure connector based on the

security features selected.

INetwork

RNetwork«optional»

«communication pattern»

AsynchronousMC

Sender

PAsyncMCSenderService

IAsyncMCSenderService

ISecurityService

RSecurityService

PNetwork

INetwork

«optional»

«communication pattern»

AsynchronousMC

Receiver

a) Asynchronous Message Communication Sender and Receiver
Communication Pattern Components

b) Interfaces of Asynchronous Message Communication Sender and
Receiver Communication Pattern Components

«interface»

IAsyncMCSenderService

sendSecAsync (in messageName, in

messageContent)

«interface»

ISecurityService

sendSecAsync (in messageName, in

messageContent)

«interface»

INetwork

sendSecAsync (in messageName, in

messageContent)

Figure 4: Asynchronous Message Communication Sender

and Receiver Communication Pattern Components and

their Interfaces.

loop

-- Wait for message from sender component;

receive (SenderComponentMessageQ, message);

Extract MessageName, MessageContent and

SenderSecurityPatternAttribute from message;

-- Apply security patterns to message content;

while SecurityPatternsRequiredByMessageContent do

Apply security pattern to message content;

end while;

-- Send message to AMC Sender CPC;

AsynchronousMCSender.sendSecAsync (in MessageName, in

MessageContent);

end loop;

Figure 5: Pseudocode template for Security Sender

Coordinator in Secure AMC Connector.

The pseudocode template for the security sender

coordinator is depicted in Fig. 5 in which the

security related code (in italics) is replaced by the

pseudocode for the security patterns selected for a

secure AMC connector, as described in Section 7

depicted in Fig. 7a. Similarly, the pseudocode

template for the Security Receiver Coordinator is

specified in Fig. 6 in which the interfaces of security

receiver coordinator component are depicted in Fig.

A Software Product Line Approach for Feature Modeling and Design of Secure Connectors

511

7b. The pseudocode templates for security sender

coordinator component (Fig. 5) and security receiver

coordinator component (Fig. 6) are customized for a

secure AMC connector that encapsulates Symmetric

Encryption and Digital Signature SCPs, as described

in Section 7 and depicted in Figs. 8 and 9.

Loop

-- Wait for message from AMC Receiver CPC;

receive (AMCReceiverMessageQ, message);

Extract MessageName and MessageContent from message;

-- Apply security patterns to message content;

while SecurityPatternsRequiredByMessageContent do

Apply security pattern to message content;

end while;

-- Send message name and message content to receiver component;

if MessageContent is secure

then

ReceiverComponent.sendSecAsync (in MessageName, in

MessageContent);

end if;

end loop;

Figure 6: Pseudocode template for Security Receiver

Coordinator in Secure AMC Connector.

7 EXAMPLE OF SECURE

CONNECTOR

This section describes an example of a secure

connector that can be derived from the SPL for

secure connectors if an application requires AMC

CPF with Symmetric Encryption and Digital

Signature SPFs. This needs the selection of the one

communication pattern (AMC) and two security

patterns, namely Symmetric Encryption and Digital

Signature features (Fig. 1). The corresponding

components (from Table 1) are the AMC Sender and

Receiver components, Symmetric Encryption

Encryptor and Decryptor components, and Digital

Signature Signer and Verifier components (Table 1).

This secure AMC connector is composed of a secure

AMC sender connector (Fig. 10) and a secure AMC

receiver connector (Fig. 10). The secure AMC

sender connector (Fig. 10) is designed as a

composite component in which the Security Sender

Coordinator component (Fig. 7a) integrates the

Symmetric Encryption Encryptor and Digital

Signature Signer SPCs (Fig. 2) for the Symmetric

Encryption and Digital Signature SPFs with the

AMC Sender CPC (Fig. 4) for the AMC CPF.

a) Security Sender Coordinator and its Interface

ISEEncryptor
«security

coordinator»

SecuritySender

Coordinator

RAsyncMCSenderService

IAsyncMCSenderService

PSecAsync

SenderService

ISecAsync

SenderService

RSEEncryptor

IDSSigner

RDSSigner

b) Security Receiver Coordinator and its Interface

ISEDecryptor

ISecurityService

PSecurityService «security

coordinator»

SecurityReceiver

Coordinator IDSVerifier

RSecAsyncReceiverService

ISecAsyncReceiverService

RSEDecryptor

RDSVerifier

RPKRepository

IPKRepository

«interface»

IPKRepository

retrievePublicKey (in ID, out

publicKey)

«interface»

ISecurityService

sendSecAsync (in messageName, in

messageContent)

retrieveSecretKey (out secretKey)

«interface»

ISecAsyncSenderService

sendSecAsync (in messageName,

in messageContent,

in senderSecurityPatternAttribute)

Figure 7: Security Sender and Receiver Coordinators and

their interfaces for Secure AMC Connector with

Symmetric Encryption and Digital Signature security

pattern features.

Fig. 7a depicts the interface provided by the

security sender coordinator for a secure AMC

connector. The senderSecurityPatternAttribute

parameter in sendSecAsync() specifies the private

key or secret key that is needed by security pattern

components to apply security services to a

message. For integrating the components, the

Security Sender Coordinator component (Fig. 7a)

has a required RSEEncryptor port to communicate

with a provided PSEEncryptor port of the

Symmetric Encryption Encryptor SPC, which

encrypts messages using the sender’s secret key,

and it also has a required RDSSigner port to

communicate with a provided PDSSigner port of

the Digital Signature Signer SPC, which signs a

message using the sender’s private key. The signed

and encrypted messages are sent to the receiver

component. The pseudocode for the Secure Sender

Coordinator component is depicted in Fig. 8.

Similarly, the AMC Receiver Connector (Fig. 10)

is designed as a composite component that

encapsulates the Security Receiver Coordinator

component (Fig. 7b), Symmetric Encryption

Decryptor SPC (Fig. 2), Digital Signature Verifier

SPC (Fig. 2), and AMC Receiver CPC (Fig. 4). The

pseudocode for the Secure Receiver Coordinator

component is depicted in Fig. 10.

Fig. 10 depicts the structural view of the secure

AMC connector with Symmetric Encryption

security pattern and Digital Signature security

pattern, which can be applied for confirming a

shipment in a business to business (B2B) electronic

commerce application. When a Supplier component

sends a shipment confirmation to a Delivery Order

Server, the shipment confirmation is signed by the

Digital Signature Signer SPC in the secure AMC

ICSOFT 2018 - 13th International Conference on Software Technologies

512

loop

-- Wait for message from sender component;

receive (SenderComponentMessageQ, message);

Extract MessageName, MessageContent, PrivateKey, and

SecretKey from message;

-- Apply security patterns to message content;

if MessageContent requires non-repudiation

then

DigitalSignatureSigner.sign (in MessageContent,

in PrivateKey, out SignedMessageContent);

MessageContent = SignedMessageContent;

end if;

if MessageContent requires confidentiality

then

SymmetricEncryptionEncryptor.encrypt (

in MessageContent, in SecretKey,

out EncryptedMessageContent);

Message Content = EncryptedMessageContent;

end if;

-- Send message to AMC Sender CPC;

AsynchronousMCSender.sendSecAsync (in MessageName,

in MessageContent);

end loop;

Figure 8: Pseudocode of Security Sender Coordinator for

Secure AMC Connector with Symmetric Encryption and

Digital Signature Security Pattern features.

loop

-- Wait for message from AMC Receiver CPC;

receive (AMCReceiverMessageQ, message);

Extract MessageName and MessageContent from message;

-- Apply security patterns to message content;

if MessageContent requires confidentiality

then

ReceiverComponent.retrieveSecretKey (out SecretKey);

SymmetricEncryptionDecryptor.decrypt (in

EncryptedMessageContent&Signature,

in SecretKey, out MessageContent&Signature);

end if;

if MessageContent requires non-repudiation

then

PublicKeyRepository.retrievePublicKey (in SenderID,

out SenderPublicKey);

DigitalSignatureVerifier.verify (in MessageContent&Signature,

in Key, out Result);

end if;

-- Send message name and message content to receiver component;

if Signature is verified

then

ReceiverComponent.sendSecAsync (in MessageName,

in MessageContent);

end if;

Figure 9: Pseudocode of Security Receiver Coordinator

for Secure AMC Connector with Symmetric Encryption

and Digital Signature Security Pattern features.

sender connector assuming the Digital Signature

security pattern feature is selected for Supplier

component. The shipment confirmation and

signature is then encrypted by the Symmetric

Encryption Encryptor SPC in the secure AMC

sender connector assuming the Symmetric

Encryption security pattern feature is also selected

for Supplier component. The encrypted shipment

confirmation and signature are decrypted by the

Symmetric Encryption Decryptor SPC, and then

sent to the Delivery Order Server via the secure

AMC receiver connector, which requests the sender

component’s public key from the Public Key

Repository SPC (Table 1) that is designed for a

certificate authority in the public key infrastructure

feature (Table 1). The signature is verified by the

secure AMC receiver connector with the sender’s

public key. The behavioral view of a secure AMC

connector can be depicted using UML

communication or sequence diagrams. An example

is described in (Shin et al., 2016a) for

confidentiality and non-repudiation security

services.

«security pattern»
SymmetricEncryption

Encryptor

«security coordinator»

SecuritySender

Coordinator

«secure connector»
SecureAsynchronousMC

SenderConnector
«communication

pattern»

AMCSender

«security pattern»

DigitalSignature

Signer

PSecAsync

SenderService
PSecAsync

SenderService

PSEEncryptor

RSEEncryptor

PDSSigner

RDSSigner

RNetwork

RNetwork
PAsyncMC

SenderService

RAsyncMCSenderService

«communication

pattern»

AMCReceiver

«security pattern»
SymmetricEncryption

Decryptor

«security coordinator»

SecurityReceiver

Coordinator

«secure connector»

SecureAsynchronousMC

ReceiverConnector

«security pattern»

DigitalSignature

Verifier

PSEDecryptor

RSEDecryptor

PDSVerifier

RDSVerifier

PNetwork

PNetwork

RSecurityService

PSecurityService

RSecAsyncReceiverService

RPKRepository

RPKRepository

«application

component»

Supplier

RSecAsync
Sender
Service

«application

component»

Delivery

Order

RSecAsyncReceiverService

PSecAsyncReceiverService

PPKRepository

«security

pattern»

PublicKey

Repository

Figure 10: Secure AMC Connector with Symmetric

Encryption and Digital Signature security pattern features

in B2B application.

8 VALIDATION

The secure connectors derived from the software

product line were validated from the perspectives of

implementation and performance analysis of secure

connectors.

A Software Product Line Approach for Feature Modeling and Design of Secure Connectors

513

8.1 Implementation of Secure
Connectors

The secure connectors designed using the software

product line approach were implemented in Java.

The implementation environment used is as follows:

Eclipse 4.4.2 version on a Windows 7, 64-bit-based

computer with 4GB of memory and 2.20 GHz quad

core i7 processor. All secure message communi-

cations between application components were

implemented in a local machine.

The secure asynchronous message communica-

tion connector (Fig. 10) was implemented using

asynchronous message communication CPF and

both symmetric encryption and digital signature

CPFs. The connector was implemented using two

algorithms for security pattern features, DSA to

sign/verify the message in digital signature SPF and

DES to encrypt/ decrypt the message in symmetric

encryption SPF. The shipment confirmation using

the secure asynchronous message communication

connector in B2B application (Fig. 10) was

implemented with 7 threads for each of supplier

component security sender coordinator component,

AMC sender CPC, security receiver coordinator

component, AMC receiver CPC, public key

repository SPC, and delivery order component. Also,

a message queue was implemented and placed

between threads (for example, a message queue

between the supplier application component thread

and security sender coordinator component thread,

and a message queue between the security sender

coordinator component thread and the AMC sender

CPC thread).

In addition, another secure connector constructed

with secure synchronous message communication

with reply CPF and authenticator and symmetric

encryption SPFs in B2B application was

implemented for the validation. Encryption and

decryption SPCs for the symmetric encryption SP

were implemented using the data encryption

standard (DES) algorithm, which is a block cipher

that operates on plain text blocks of a given size (64-

bits) and returns cipher text blocks of the same size.

The DES works by using the same a 56-bit key to

encrypt and decrypt a message. The encrypted

Payment Order is sent to the Payment Order

application component, the receiver connector of

which decrypts the message using the DES

algorithm with the same secret key. Authenticator

SPC uses MySQL database to store customer’s

credentials and authenticate them. The size of the

MySQL database affects the execution time for the

authenticator SPC if the database contains a large

amount of customer credentials. The payment order

using the secure SMC with reply connector was

implemented with 7 threads and 5 separate message

buffers. These threads were implemented with

customer component, security sender coordinator

component, SMC with reply sender CPC, SMC with

reply receiver CPC, security receiver coordinator,

authenticator SPC, and payment order component.

Message buffers were implemented and placed

between threads.

8.2 Performance Analysis of Secure

Connectors

This section describes the performance analysis of

secure applications using the secure connectors

derived from the software product line and

compares them with secure applications executing

the same message communication patterns but

using other approaches for providing or not

providing security. The three approaches compared

in this section are the (1) with secure connector

approach, for secure applications that use the

approach described in this paper; (2) without

security service approach, for applications that do

not provide any security services; (3) without

secure connector approach, for secure applications

in which security services are mingled with the

application logic. In the with secure connector

approach, security services are encapsulated in

secure connectors separately from application

logic. The application functionality implemented in

each approach is all the same. However, the

underlying difference between with secure

connector approach and without secure connector

approach is that the security services in without

secure connector approach are implemented within

application components along with application

business logic, whereas with secure connector

approach separated the security services from

application components and implemented them as

secure connectors. Also, the difference between

with secure connector approach and without

security service approach is that with secure

connector approach provides security services

encapsulated in secure connectors with application

components, whereas without security service

approach implements only business application

logic without any security services.

For each communication pattern described in

this paper, namely (a) synchronous message

communication with Authenticator and Symmetric

Encryption security patterns and (b) asynchronous

message communication with Symmetric

ICSOFT 2018 - 13th International Conference on Software Technologies

514

Encryption and Digital Signature security patterns,

the performance of the with secure connector

approach was evaluated by measuring the average

time of message communication between sender

and receiver components via a secure connector.

Each message communication implemented in

section 8.1 was run 20 times to calculate the

average communication time so that the

performance evaluation would not be dependent on

a few exceptional communication times. Message

communication time (MCT) is measured by

observing the overall run time from start to finish

for each message communication pattern. For

synchronous communication, MCT measures

sending a message and receiving a response. For

asynchronous communication, MCT measures the

time to send a message from sender to receiver.

Table 2 shows the average time of multiple

message communication and a comparison of the

with secure connector approach, without security

service approach, and without secure connector

approach for the first pattern. For the with secure

connector approach, the second column of Table 2

(top section) shows that the average MCT is 44.6

milliseconds (ms) for the sender connector of

SMCWR with Authenticator and Symmetric

Encryption security patterns, 0.02 milliseconds for

the network connection, and 296.8 milliseconds for

the receiver connector. Thus the overall MCT for

the SMCWR with Authenticator and Symmetric

Encryption security pattern is 341.4 milliseconds.

For the second pattern the with secure connector

approach (bottom section of second column) shows

the MCT is 44.8 milliseconds for the sender

connector of AMC with Symmetric Encryption and

Digital Signature security patterns, 0.01

milliseconds for the network connection, 48.9

milliseconds for the receiver connector, giving a

total of 93.7 milliseconds for the overall of AMC

with Symmetric Encryption and Digital Signature

security patterns (Fig. 10).

The without security service approach (top

section in the third column of Table 2) shows that

the average MCT for SMCWR with Authenticator

and Symmetric Encryption security patterns is 2.9

ms, 0.02 ms and 8.0 ms for each portion, while the

overall average time is 10.9 ms. The bottom section

of the without security service approach shows that

AMC with Symmetric Encryption and Digital

Signature security patterns (Fig. 10) has 5.0 ms,

0.01 ms and 4.3 ms for each portion. AMC with

Symmetric Encryption and Digital Signature

security patterns has a total MCT of 9.3 ms for the

without security service approach.

The without secure connector approach (fourth

column of Table 2) shows that the average MCT

for SMCWR with Authenticator and Symmetric

Encryption security patterns is 41.7 ms, 0.02 ms,

295.9 ms for each portion, giving an overall MCT

of 340.0 ms. The bottom section of the same

column shows that the AMC with Symmetric

Encryption and Digital Signature security patterns

(Fig. 10) has MCT of 44.3 ms, 0.01ms and 47.4 ms

for each portion. The overall average MCT for

AMC with Symmetric Encryption and Digital

Signature security patterns is 91.7 ms.

The fifth column of Table 2 indicates that the

time difference between the with secure connector

approach and the without security service

approach is highly significant. This is because with

secure connector approach provides application

components with security services such as

confidentiality and non-repudiation. The security

services in the with secure connector approach

consume processing time for encrypting/decrypting

messages, authenticating messages and/or

signing/verifying digital signature, whereas the

without security service approach is much faster

due to it providing no security services. It is also

important to note that use of authenticator pattern

increases the run time of the program due to the

time taken to do database retrievals. Thus, the

additional processing time taken by the with secure

connector approach is to make applications secure

in comparison to insecure applications developed

using the without security service approach.

Comparing the performance without secure

connector approach and with secure connector

approach shows that there is no significant

difference in the runtime performance of the

communication patterns. The time difference

between the two approaches (sixth column in Table

2) ranges from 1.4 ms to 2.0 ms. Both approaches

provide applications with security services;

however, the with secure connector approach has

the advantage of separating security services from

application logic, which leads to secure software

architectures that are more maintainable and

evolvable than the without secure connector

approach.

A Software Product Line Approach for Feature Modeling and Design of Secure Connectors

515

Table 2: Average time of message communication and comparison of the with secure connector approach, without security

service approach, and without secure connector approach.

Communication pattern

With secure

connector

approach

Without

security

service

approach

Without secure

connector

approach

Time difference

between with

secure connector

approach and

without security

service approach

Time difference

between without

secure connector

approach and with

secure connector

approach

Secure SMCWR Connector with Authenticator and Symmetric Encryption security patterns

● Secure Synchronous

MC with reply Sender
44.6 ms 2.9 ms 41.7 ms 41.7 ms 2.9 ms

● Network connection 0.02 ms 0.02 ms 0.02 ms 0.00 ms 0.00 ms

● Secure Synchronous

MC with reply Receiver
296.8 ms 8.0 ms 295.9 ms 288.8 ms 0.9 ms

● Full SMCWR with

Symmetric Encryption

& Authenticator

341.4 ms 10.9 ms 340.0 ms 330.5 ms 1.4 ms

Secure AMC Connector with Symmetric Encryption and Digital Signature security patterns (Fig. 10)

● Secure Asynchronous

MC Sender (Fig. 8)
44.8 ms 5.0 ms 44.3 ms 39.8 ms 0.5 ms

● Network connection

(Fig. 8)
0.01 ms 0.01 ms 0.01 ms 0.00 ms 0.00 ms

● Secure Asynchronous

MC Receiver (Fig. 8)
48.9 ms 4.3 ms 47.4 ms 44.6 ms 1.5 ms

● Full AMC with

Symmetric Encryption

& Digital Signature

(Fig. 8)

93.7 ms 9.3 ms 91.7 ms 84.4 ms 2.0 ms

9 CONCLUSIONS

This paper has described a software product line

approach to model the variability of secure

connectors in terms of security patterns and

communication patterns, which makes it possible to

design secure software architectures for concurrent

and distributed software applications. The feature

model for secure connectors captures various

security pattern and communication pattern features,

and describes the relationships between features.

The security and communication pattern features are

designed as security and communication pattern

components that are encapsulated into secure

connectors. Each secure connector is derived from

the software product line for secure connectors,

which is designed as a composite component that

encapsulates both security pattern and communica-

tion pattern components. A security coordinator

enables security pattern and communication pattern

components to be integrated within a secure

connector. This paper has also described a secure

AMC connector, which is designed with the security

pattern and communication pattern features selected

for the applications.

This paragraph describes future research for

secure connectors. The code of a security

coordinator could be generated automatically from a

code template of a high-level security coordinator.

As security and communication pattern features are

selected for an application, the template could be

automatically filled with calls to the appropriate

methods of the corresponding pattern components. A

prototype tool could also be developed to

automatically generate the code for security

coordinators within secure connectors. In addition,

we might need to investigate how multiple

communication pattern components could be

encapsulated within a secure connector when sender

and receiver application components communicate

with each other via different types of communication

patterns.

ACKNOWLEDGEMENTS

This work was partially supported by the AFOSR

grant FA9550-16-1-0030.

ICSOFT 2018 - 13th International Conference on Software Technologies

516

REFERENCES

Abu-Matar, M. and Gomaa, H., 2011, August. Variability

modeling for service oriented product line

architectures. In Software Product Line Conference

(SPLC), 2011 15th International (pp. 110-119). IEEE.

Al-Azzani, S. and Bahsoon, R., 2012, August. SecArch:

Architecture-level evaluation and testing for security.

In Software Architecture (WICSA) and European

Conference on Software Architecture (ECSA), 2012

Joint Working IEEE/IFIP Conference on (pp. 51-60).

Albassam, E., Gomaa, H. and Menascé, D.A., 2016, July.

Model-based Recovery Connectors for Self-adaptation

and Self-healing. In ICSOFT-EA (pp. 79-90).

Basin, D., Clavel, M. and Egea, M., 2011, June. A decade

of model-driven security. In Proceedings of the 16th

ACM symposium on Access control models and

technologies (pp. 1-10). ACM.

Farahmandian, S. and Hoang, D.B., 2017, October. SDS2:

A novel software-defined security service for

protecting cloud computing infrastructure. In Network

Computing and Applications (NCA), 2017 IEEE 16th

International Symposium on (pp. 1-8). IEEE.

Fant, J.S., Gomaa, H. and Pettit, R.G., 2015, July.

Integrating and applying architectural design patterns

in space flight software product lines. In Software

Technologies (ICSOFT), 2015 10th International Joint

Conference on (Vol. 1, pp. 1-11). IEEE.

Fernandez-Buglioni, E., 2013. Security patterns in

practice: designing secure architectures using

software patterns. John Wiley & Sons.

Gomaa, H., Menascé, D.A. & Shin, M.E., 2001. Reusable

component interconnection patterns for distributed

software architectures. Proceedings of the 2001

symposium on Software reusability putting software

reuse in context - SSR 01.

Gomaa, H. and Shin, M.E., 2004, July. A multiple-view

meta-modeling approach for variability management

in software product lines. In International Conference

on Software Reuse (pp. 274-285). Springer, Berlin,

Heidelberg.

Gomaa, H., 2005. Designing software product lines with

UML: from use cases to pattern-based software

architectures, Boston: Addison-Wesley.

Gomaa, H. and Shin, M.E., 2007, January. Automated

software product line engineering and product

derivation. In System Sciences, 2007. HICSS 2007.

40th Annual Hawaii International Conference on (pp.

285a-285a). IEEE.

Gomaa, H. and Shin, M.E., 2008. Multiple-view

modelling and meta-modelling of software product

lines. IET software, 2(2), pp.94-122.

Gomaa, H., Hashimoto, K., Kim, M., Malek, S. and

Menascé, D.A., 2010, March. Software adaptation

patterns for service-oriented architectures.

In Proceedings of the 2010 ACM Symposium on

Applied Computing (pp. 462-469). ACM.

Gomaa, H. and Shin, M.E., 2010. Variability modeling in

model-driven software product line engineering. In

Proceedings of the 2nd International Workshop on

Model Driven Product Line Engineering (MDPLE

2010) (p. 65).

Gomaa, H., 2011. Software modeling and design: UML,

use cases, patterns, and software architectures.

Cambridge University Press.

Jürjens, J., 2002, September. UMLsec: Extending UML

for secure systems development. In International

Conference on The Unified Modeling Language (pp.

412-425). Springer, Berlin, Heidelberg.

Lodderstedt, T., Basin, D. and Doser, J., 2002, September.

SecureUML: A UML-based modeling language for

model-driven security. In International Conference on

the Unified Modeling Language (pp. 426-441).

Springer, Berlin, Heidelberg.

Medvidovic, N. and Taylor, R.N., 2010, May. Software

architecture: foundations, theory, and practice.

In Software Engineering, 2010 ACM/IEEE 32nd

International Conference on (Vol. 2, pp. 471-472).

IEEE.

Ren, J., Taylor, R., Dourish, P. and Redmiles, D., 2005,

May. Towards an architectural treatment of software

security: a connector-centric approach. In ACM

SIGSOFT Software Engineering Notes (Vol. 30, No. 4,

pp. 1-7). ACM.

Schneider, R., 2005. Designing Software Product Lines

with UML: From Use Cases to Pattern-Based

Software Architectures. Software Quality

Professional, 7(4), p.46.

Schumacher, M., Fernandez, E.B., Hybertson, D.,

Buschmann, F. and Sommerlad, P., 2006. Security

Patterns, J.

Shin, M.E. and Gomaa, H., 2007. Software modeling of

evolution to a secure application: From requirements

model to software architecture. Sci. Comput.

Program, 66(1), pp.60-70.

Shin, M.E., Malhotra, B., Gomaa, H. and Kang, T., 2012,

July. Connectors for Secure Software Architectures.

In SEKE (pp. 394-399).

Shin, M.E., Gomaa, H., Pathirage, D., Baker, C. and

Malhotra, B., 2016. Design of Secure Software

Architectures with Secure Connectors. International

Journal of Software Engineering and Knowledge

Engineering, 26(05), pp.769-805.

Shin, M., Gomaa, H. and Pathirage, D., 2016, June.

Reusable Secure Connectors for Secure Software

Architecture. In International Conference on Software

Reuse (pp. 181-196). Springer, Cham.

Shin, M., Gomaa, H. and Pathirage, D., 2017. Model-

based Design of Reusable Secure Connectors. In 4st

International Workshop on Interplay of Model-Driven

and Component-Based Software Engineering

(ModComp) 2017 Workshop Pre-proceedings (p. 6).

Taha, A., Trapero, R., Luna, J. and Suri, N., 2017, June. A

Framework for Ranking Cloud Security Services.

In Services Computing (SCC), 2017 IEEE

International Conference on (pp. 322-329). IEEE.

Tzeremes, V. and Gomaa, H., 2018, January. Applying

End User Software Product Line Engineering for

Smart Spaces. In Proceedings of the 51st Hawaii

International Conference on System Sciences.

A Software Product Line Approach for Feature Modeling and Design of Secure Connectors

517

