
Attribute Based Signatures: The Case for Automation

Lalitha Muthu Subramanian and Roopa Vishwanathan
Department of Computer Science, New Mexico State University, Las Cruces, New Mexico, U.S.A.

Keywords: Attribute-based Signatures, Groth-Sahai Proofs, Computer-aided Cryptography.

Abstract: Attribute-based signatures (ABS) allow a signer to sign boolean predicates using certain attributes that are
accepted by signing policies and are associated with signing keys. Ideally, the verifier of the signature must
not obtain any other information except that a signer possessing the right attributes produced the signature.
The goal of an attribute-based signature is to preserve the anonymity of the signer and the signers’ attributes,
while ensuring that a signature will only pass verification if the signer possesses enough valid attributes to
satisfy the given predicate. In this paper, we explore the question of what would it take to automate the
construction and proofs of complex cryptographic protocols such as attribute-based signatures. We posit that,
at the minimum, it would require: (1) creating new data types to support attribute-based cryptography, and
more generally, pairing-based cryptography (2) creating new function templates to operate on the data types
(3) creating libraries for credential bundles, which are commonly used to tie in a set of attributes to a single
user (4) automating Groth-Sahai witness-indistinguishable proofs, and (5) automated functional support for
constructing a general framework for attribute-based signatures.

1 INTRODUCTION

Attribute based Signatures (Escala et al., 2011;
El Kaafarani et al., 2014; Maji et al., 2011) have at-
tracted significant interest primarily due to the fine-
grained privacy control options they offer when com-
pared to other well-used techniques, such as tradi-
tional digital signatures, ring and mesh signatures.
Attribute Based signatures (ABS) allows a signer
owning a set of attributes to anonymously sign a mes-
sage, without revealing the attributes that were used
to generate a valid signature. Thus, in ABS, the re-
cipient of a signature is convinced that someone with
a set of right attributes has signed a predicate rep-
resenting a signing policy, and indeed authenticated
a given message, but the recipient neither learns the
signer’s identity nor the attributes used to satisfy the
predicate. Hence, attribute based signatures offer the
signer a privacy-preserving environment where valid
signatures can only be produced by users who hold
a subset of valid attributes that satisfy some signing
policy.

2 RELATED WORK

Halevi (Halevi, 2005), first proposed the idea of cre-
ating automated tools for cryptographic proof verifi-
cation. His vision was to automate the tools that help
with commonly used argument techniques, i.e., tools
that help with canonical, standard parts of the proof,
and leave the more subtle, idiosyncratic parts of the
proof to the prover to be proved manually. Halevi’s
paper stressed the need for such tools to be designed
to work with existing proof frameworks, i.e., frame-
works that cryptographers understand and are famil-
iar with, as opposed to proposing new proof frame-
works, and to work in the widely-used computational
model of cryptography, as opposed to the symbolic
model of Dolev and Yao (Dolev and Yao, 1983). As
motivational examples, Halevi presented two case-
studies, in which two manually-written proofs, one
for a new block cipher encryption mode, and the other
for the Cramer-Shoup encryption system, are ana-
lyzed and pointed out places where a hypothetical
automated tool could possibly have been very use-
ful in the process of constructing the proof. In re-
sponse to this, recently researchers have proposed au-
tomated tools such as EasyCrypt (Barthe et al., 2011;
Barthe et al., 2013b), CryptoVerif (Blanchet, 2006),
CertiCrypt (Barthe et al., 2009), ZooCrypt (Barthe
et al., 2013a), and the more general-purpose proof as-
sistant Coq (labs,) augmented with the Foundational

Subramanian, L. and Vishwanathan, R.
Attribute Based Signatures: The Case for Automation.
DOI: 10.5220/0006901405370542
In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 2: SECRYPT, pages 537-542
ISBN: 978-989-758-319-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

537

Cryptography Framework library (FCF) (Petcher and
Morrisett, 2015). Most of these tools are proposed
for proof automation, not protocol construction. Cer-
ticrypt, EasyCrypt and FCF can be used to ver-
ify some primitives as well as most protocols, but
the proofs are non-intuitive and tedious to construct.
ZooCrypt could be used to verify proofs of crypto-
graphic primitives, but works only for a special class
of constructs: padding-based encryption schemes. In
the area of pairing-based proof automation, there has
been work in automating proofs in the generic group
model (Barthe et al., 2014; Ambrona et al., 2016; Am-
brona et al., 2017), and the standard model (Barthe
et al., 2015).

Most of these tools have been proposed for gener-
ating proofs for simple cryptographic primitives, such
as ElGamal (Barthe et al., 2011), padding-based en-
cryption schemes, etc. Automating constructions of
advanced cryptographic protocols such as attribute-
based signatures, or attribute-based encryption is a
non-intuitive and challenging task. But it is never-
theless useful, since many of the fundamental mathe-
matical constructs, and cryptographic operations used
in the design of ABS schemes are also used by other
important categories of cryptographic protocols, such
as zero-knowledge proofs, identity-based encryption,
and more. Hence, work in this area will be impactful
beyond just ABS schemes.

2.1 Contribution

In this position paper, we compare techniques used to
construct attribute-based signature schemes across the
literature, and identify those building blocks, assump-
tions, and primitives that are commonly used and
would be suitable candidates for automation. Also,
we explore possible ways to achieve this.

3 AUTOMATION SUPPORT

In this section, we give the common cryptographic
primitives, assumptions, and data types that are used
in the construction of ABS schemes, and propose tem-
plates for their automation.

3.1 Common Primitives

We now enlist some common functional primitives
that are used in the construction of ABS schemes; any
tool that automates the construction of ABS schemes
would need to provide templates and libraries that im-
plement these primitives.

A new generic primitive called credential bun-
dles (Maji et al., 2011) is widely used in ABS con-
structions. Credential bundles, intuitively tie in a
user’s identity to a set of attributes, and prevent col-
lusion among users potentially possessing the same
kind of attribute (e.g., employee), and hence model
the requirements of a set of publicly verifiable at-
tributes issued to a unique signer that resist collusion.
A credential bundle scheme has a message space m,
and consists of the following algorithms.

• CB.Setup: On input a security parameter, outputs
a verification key Vk and a secret key Sk.

• CB.Gen: On input (Sk,{m1,m2, ...,mn} ⊆M)
(where {m1, . . . ,mn} is a set of messages belong-
ing to message-space M), outputs a tag τ and sig-
natures σ1, ...,σn.

• CB.Ver: On input (Vk,mi,(τ,σi)), outputs a
boolean value.

This scheme is right if CB.Ver(Vk,mi,(τ,σi)) = 1 for
all i.
A credential bundle scheme can easily be instanti-
ated with any digital signature scheme where there is
a collection of signatures, of messages τ||mi, where
each mi is a bitstring representing an attribute and
τ is an identifier that is unique to each user. Also,
in the above scheme, one could remove some of the
σi’s from an existing credential bundle to create a
new bundle on a subset of messages/attributes. Hav-
ing an exclusive library for credential bundles in the
automation of an attribute-based signature scheme
would prove extremely useful since little effort would
be involved in creating attributes and bundles, such
as those required to align with the semantics of the
ABS scheme. Maji et al., (Maji et al., 2011) have
used the Boneh Boyen (Boneh and Boyen, 2004),
and Waters (Waters, 2005) signature schemes as the
credential bundle component in their ABS scheme.
The attributes in their credential bundle scheme are
simple Boneh Boyen/Waters signatures on messages
of the form “userid || attr”. Although only Boneh
Boyen, and Waters’ signature schemes have been
used in (Maji et al., 2011), we can essentially have
the general framework of ABS to support any other
signature schemes as the credential bundles, such as
Boneh-Boyen-Shacham signatures, and more (Boneh
et al., 2004; Boyen and Waters, 2006). Further-
more, creating a general template for credential bun-
dles is useful since, although existing ABS scheme
use a bundle which ties its attributes to a user iden-
tity, one could potentially imagine a bundle that ties
in a set of functions to a user identity. This gener-
alized version of a credential bundle would be very
useful in automating constructions of functional en-

SECRYPT 2018 - International Conference on Security and Cryptography

538

cryption (Datta et al., 2018).
Another primitive fundamentally used in the con-

struction of ABS schemes is non-interactive witness
indistinguishability (NIWI) proofs. NIWI proofs are
used to commit to a set of attributes that purportedly
satisfy a boolean predicate while creating an attribute-
based signature. The NIWI proof system is com-
prised of algorithm mentioned below (Groth and Sa-
hai, 2008).

• NIWI.Setup: On input a security parameter, this
outputs a reference string crs.

• NIWI.Prove: Given an input (crs,φ,x), where φ is
a boolean formula and φ(x) = 1, output a proof π.

• NIWI.Verify: On an input of (crs,φ,π), either ac-
cept or reject the proof.

3.2 Data Type/Function Support

Automating the construction of attribute based sig-
nature schemes involves creating abstract data types
for pseudo attributes and pseudo predicates, both of
which are used in the attribute generation and signing
phases.

• A type for a pseudo attribute A′ denoted as PA.

• A type for pseudo predicate, ϒ̃ denoted as PP.

The functions to support the new data types are:

• (τ,σa;a∈ A)← Parse(SKA): This function parses
a secret key, SKA as (τ,σa,(a ∈ A)), where a is an
attribute belonging to an attribute set A.

• ϒ̃← PPCreate(a ∈ A,ϒ): This function takes in
an attribute a, and a boolean predicate ϒ, and cre-
ates a pseudo predicate ϒ̃ ∈ PP.

• (amϒ)←PACreate(a∈ A,ϒ): This function takes
in an attribute a, a boolean predicate ϒ, and re-
turns a pseudo-attribute amϒ ∈ PA.

We envision the above functions as abstract data
types since the key feature of such data types is that
they are characterized by the operation that is per-
formed on them, and do not specify any concrete im-
plementation, thus giving us the flexibility to instanti-
ate them with any implementation of our choice. Ab-
stract data types are accessed through methods and
support multiple implementations too. In general the
widely used methods for an abstract data type may in-
clude initialization, addition or removal of data, and
of retrieval data.

Array, List, Map, Queue, Set, Stack, Table are
some of the most commonly used abstract data types
in high-level languages. A stack for example al-
lows the functions empty(), isEmpty(), push(), top(),

pop() to be performed (without specifying the im-
plementation) when defined as an abstract data type:
empty:: Stack a, isEmpty:: Stack a −→ Bool, push::
a−→ Stack a−→ Stack a, top :: Stack a−→ a, pop::
Stack a −→ (a,Stack a)

In a similar vein, defining PPCreate and
PACreate as abstract data types allows us to repre-
sent attributes and predicates as data structures, with-
out having to tie down an automated tool’s libraries
to a specific implementation. Possible implemen-
tations for a PPCreate data type include a 2-d ar-
ray/linked list, or a matrix. Possible implementa-
tions for a PACreate data type include a singly/double
linked list, or a 1-d array.

3.3 Monotone Span Programs

Consider a Monotone boolean function
ϒ : {0,1}n −→ 0,1. The Monotone Span Pro-
gram for ϒ over a field F is defined as a matrix
M containing the entries in F , alongside a labeling
function defined as a : [l] −→ [n] such that it relates
each row of M with an input variable of ϒ, for every
(x1, ...,xn) ∈ {0,1}n.

ϒ(x1, ...,xn) = 1⇐⇒∃~v ∈ F1×l :~vM = [1,0, ...,0]
(1)

and
(
∀i : xa(i) = 0⇒ vi = 0

)
.

With M being the monotone matrix of length l and
width of the span program as t, we propose to create
a data type called MSP, that represents a monotone
span program, which can be declared as follows:

MSP M[l× t] = new M[l][t]

where l and t denote the rows and columns of
the MSP matrix. We propose to create the following
functions for monotone span program matrix:

• M̃← set(M, i, j,ai j): This function is used to set
a value ai, j in the matrix of type MSP, where i and
j denote the row and column location respectively.
This function outputs M̃ with the updated values.

• {0,1} ← checkVector(M,v): This function is
used to check if a vector, v = [1, . . . ,0] is present
in the any of the l rows of the matrix M.

• ai, j ← get(M, i, j): This function is used to get a
value ai, j in the matrix of type MSP, where i and
j denotes the element in the matrix.

• {0,1} ← span(M,v): This function is used to
check if a vector v spans any of the columns of
the matrix M.

Attribute Based Signatures: The Case for Automation

539

4 GENERAL FRAMEWORK

Let A denote the universe containing the ABS at-
tributes. Let A∩A′ denote the pseudo attributes sets
where, A∩A′ = /0. For each message represented by
m, and a claim predicate ϒ, the pseudo attributes that
are associated with (m,ϒ) are represented by amϒA′.
Let CB denote a credential bundle scheme.

• Φ [Vk,m,ϒ] : This is the pairing expression which
represents part of the input of the non-interactive
witness indistinguishability proof, NIWI.Prove,
that goes into the construction of an attribute-
based signature, and typically needs to be encoded
into the Groth-Sahai proof system.

• Com(· · ·): This represents the commitment func-
tion that is defined in the Groth-Sahai proof sys-
tem to create a commitment to the values of wit-
nesses.

• SvCτ,Dτ: These are intermediate values to which
the prover commits to in the Groth-Sahai proofs.
Sv ∈H, Cτ,Dτ ∈G, where G,H are groups.

The generic construction of ABS with a single
attribute-issuing authority parameterized with a uni-
verse of possible attributes A and message space M,
consists of the following five algorithms as defined
by Maji et al. (Maji et al., 2011):

• ABS.TSetup: This step is to generate the public
reference information TPK.

• ABS.Setup: This algorithm generates a key pair
APK, ASK.

• ABS.AttrGen: This outputs a signing key SKA
corresponding to a set of attributes A.

• ABS.Sign: On input
(PK = (T PK,APK) ,SKA,m ∈M,ϒ), where
ϒ(A) = 1, outputs a signature σ.

• ABS.Ver: On input
(PK = (T PK,APK) ,m,ϒ,σ), outputs a boolean
value.

We propose in this paper, to create automated
libraries that would enable the signer and verifier
to perform the above mentioned functionalities se-
quentially. This entails creating a template library
that is agnostic of the specifics of the public-key
encryption scheme used for the ABS.TSetup, and
ABS.ASetup algorithms (can generate key-pairs for
any scheme), creating a credential bundle library
that is independent of the signature scheme used (ei-
ther Boneh-Boyen (Boneh and Boyen, 2004), Boneh-
Boyen-Shacham (Boneh et al., 2004), etc.), and
more ambitiously, creating a library defining a non-
interactive proof system, that can create commitments

to attributes used in ABS, using any non-interactive
witness indistinguishable proof system, e.g., Groth-
Sahai (Groth and Sahai, 2008).

4.1 Groth-Sahai Proof System

The Groth-Sahai proof system (Groth and Sahai,
2008) is the primary method for instantiating the non-
interactive witness indistinguishable argument in an
ABS scheme. While the Groth-Sahai method can be
used to prove witnesses to any general statement, we
are interested only in non-interactive proofs, where
the witness is an attribute that satisfies a Boolean
predicate. These proofs work by giving a commit-
ment to the witness values and then proving that
these committed values satisfy the pairing equations.
For generating Groth-Sahai commitments in an ABS
scheme, the statement Φ [Vk,m,ϒ] needs to be effi-
ciently encoded. Let us assume we need to commit
a group Z (which could be either G or H, and will be
clear from the context), Z becomes the formal vari-
able representing the commitment. In this section, we
briefly go over the Groth-Sahai proof system and its
application to ABS (Maji et al., 2011).

Let us consider the pseudo-predicate ϒ̃ to be a ma-
trix of data type MSP defined in section 3.3. Let the
size of ϒ̃ be l× t ,with the ith row corresponding to
the a(i)-th attribute. In order to establish the state-
ment Φ [Vk,m,ϒ],the following two equations should
be proved:

∃τ,σ1, . . . ,σn,v1,,vn :~vM = [1,0, ...,0] (2)

l∧

i=1

[
vi 6= 0⇒CB.Ver

(
vk,aa(i),

(
τ,σa(i)

))
= 1
]

(3)

In addition to the above equation, the signer would
have to commit to vector ~v which can be computed
from his assignment of ϒ̃. Once the signer commits
to vector ~v, the new boolean expression formed is a
combination of the two kinds of clauses. One kind of
clause has the following form

∃~v :~vM = [1,,0] (4)
Committing to the values gvi and proving the follow-
ing pair of equations for each j ∈ [t] will prove that
the boolean expression formed by committing to the
values is a combination of the clauses.

l

∏
i=1

e
(
Com(gvi) ,hMi, j

)
=

{
(g,h) if j = 1(
g0,h

)
otherwise

(5)

SECRYPT 2018 - International Conference on Security and Cryptography

540

The second clause has the following form:
∃τ,σ,v : [v 6= 0⇒CB.Ver (vk,m,(τ,σ)) = 1] (6)
The clause in Equation 6 can also be written as:
∃τ,σ,v : [v 6= 0⇒ DS.Ver (vk,τ||m,σ) = 1] (7)
If we have (τ,σ = (S,r) ,v) as a witness to the

above expression, the Groth-Sahai system then ex-
presses τ bitwise as τ = Σiτi2i,τ||m and r is expressed
as r = Σiri2i.

We create a commitment to both ri,τi in both
groups as gri ,hri ,gτi ,hτi , and then prove that each of
them is a single bit by using the following pairing
equations:

e(Com(gri) ,h) = e(g,Com(hri)) (8)

e(Com(gτi) ,h) = e((g,Com(hτi)) (9)

e(Com(gri),Com(hri)) = e(Com(gri) ,h) (10)

e(Com(gτi),Com(hτi)) = e(Com(gτi) ,h) (11)
The prover commits to some of the intermediate

values Sv ∈H and Cτ,Dr ∈G, since he cannot directly
compute BCτ||mDr or Sv given the committed values;
hence he proves the following equations:

e(Com(Dr) ,h) = ∏
i

e
(

D2i
,Com(hri)

)
(12)

e(Com(gv) ,Com(S)) = e(g,Com(Sv)) (13)

e(Com(Cτ) ,h) = ∏
i

e
(

C2i
,Com(hτi)

)
(14)

e(Com(gv) ,h) =e
(

BC2|τ|m,Com(Sv)
)

e(Com(Cτ) ,Com(Sv))e(Com(Dτ) ,Com(Sv))
(15)

The coefficients in the above equations are com-
puted publicly.

4.2 Automation of General Framework

Automating the general framework of ABS involves
creation of separate libraries for data types and core
functions. The next step would be to set up the cre-
dential bundles and use some signature scheme, e.g.,
the Boneh Boyen scheme for the construction of ABS.
This automated library can be named as CB. We pro-
pose the following core functions as a part of automat-
ing the general framework of ABS Scheme.This is ef-
ficiently encoded in the Groth-Sahai proof system by
using the ’commit’ operation defined in section 4.1

• ABS.TSetup: This library is created such that
it enables the signature trustee to run crs with
NIWI.Setup and (tvk, tsk) and publishes T PK =
(crs, tvk) as the outcome

• ABS.ASetup: This library is created to perform
the functions of the attribute issuing authority and
publishes APK as avk and sets ASK as ask.

• ABS.AttrGen: This library essentially outputs
the result of CB.Gen(ask,A).

• ABS.Sign: This library performs the sign-
ing operation by creating the boolean
expression Φ [Vk,m,ϒ] and computing
∃τ,σ1, . . . ,σn,v1,,vn. This template plays a
major part in computing π which is used in the
creation of the signature using NIWI scheme.
This is done by proving the the signature.
NIWI.Prove(crs,Φ [Vk,m,ϒ] ;(τ,σ1, ...,σn))

• ABS.Ver: This library uses the NIWI
proof to compute the output by verifying
NIWI.Verify(crs,Φ [Vk,m,ϒ] ;π) . This is verified
using the Groth-Sahai proof system as explained
in section 4.2 from bilinear pairing equations and
performing a commit operation.

The automation of Groth-Sahai proofs will in-
volve the following method of creating templates.
The major automation effort would be to perform
the commitment operations in the Groth Sahai NIWI
proofs. The envisioned tool is expected to make the
operation successful by involving a very little man-
ual effort in verifying the signature. It can be cor-
related to having a ”commit” button, and the system
performs the operation and verifies the signature once
the ”commit” button is pressed, returning 1 if true, 0
otherwise.

5 FUTURE WORK AND
CONCLUSION

In this paper, we have outlined the components of
a tool that we propose to build, that will assist in
the automation of the construction of attribute-based
signatures. Developing such a tool is a challenging
task, but will be very useful, given that the construc-
tion of ABS schemes is a tedious, error-prone task.
Furthermore, the fundamental mathematical assump-
tions and basic cryptographic constructs such as span
programs, and non-interactive witness indistinguish-
able proofs that are used in ABS, are used across the
spectrum of cryptographic protocols, well beyond the
realm of ABS. Hence, any effort towards this goal
is likely to benefit other areas within cryptography

Attribute Based Signatures: The Case for Automation

541

too. As a starting point, we have outlined the basic
data types, functions to manipulate those data types,
and proposed a general library template that can con-
struct ABS scheme automatically. Building upon this
preliminary work will require not just implementing
the ideas presented in this paper, but also borrowing
knowledge and theories from the logic and automated
reasoning communities to build a tool that not only
produces correct constructions, but is also grounded
in a rigorous theoretical framework.

REFERENCES

Ambrona, M., Barthe, G., Gay, R., and Wee, H.
(2017). Attribute-based encryption in the generic
group model: Automated proofs and new construc-
tions. In Proceedings of the 2017 ACM CCS, pages
647–664.

Ambrona, M., Barthe, G., and Schmidt, B. (2016). Auto-
mated unbounded analysis of cryptographic construc-
tions in the generic group model. In Advances in
Cryptology - EUROCRYPT 2016, pages 822–851.

Barthe, G., Crespo, J. M., Grégoire, B., Kunz, C.,
Lakhnech, Y., Schmidt, B., and Zanella-Béguelin, S.
(2013a). Fully automated analysis of padding-based
encryption in the computational model. In Proceed-
ings of the 2013 ACM CCS, CCS ’13, pages 1247–
1260.

Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt,
B., and Strub, P. (2013b). Easycrypt: A tutorial. In
Foundations of Security Analysis and Design FOSAD,
pages 146–166.

Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J. C., Sce-
drov, A., and Schmidt, B. (2014). Automated analysis
of cryptographic assumptions in generic group mod-
els. In Advances in Cryptology - CRYPTO, pages 95–
112.

Barthe, G., Grégoire, B., Heraud, S., and Béguelin, S. Z.
(2011). Computer-aided security proofs for the work-
ing cryptographer. In Advances in Cryptology -
CRYPTO, pages 71–90.

Barthe, G., Grégoire, B., and Schmidt, B. (2015). Auto-
mated proofs of pairing-based cryptography. In Pro-
ceedings of the 22nd ACM Conference on Computer
and Communications Security, CCS, pages 1156–
1168.

Barthe, G., Grégoire, B., and Zanella-Béguelin, S. (2009).
Formal certification of code-based cryptographic
proofs. In 36th ACM SIGPLAN-SIGACT POPL 2009,
pages 90–101. ACM.

Blanchet, B. (2006). A computationally sound mechanized
prover for security protocols. In 2006 IEEE Sympo-
sium on Security and Privacy (S&P), pages 140–154.

Boneh, D. and Boyen, X. (2004). Short signatures without
random oracles. In Eurocrypt, pages 56–73. Springer.

Boneh, D., Boyen, X., and Shacham, H. (2004). Short
group signatures. In Crypto, pages 41–55. Springer.

Boyen, X. and Waters, B. (2006). Compact group signature
without random oracles. In Eurocrypt, pages 427–
444. Springer.

Datta, P., Okamoto, T., and Tomida, J. (2018). Full-hiding
(unbounded) multi-inner product functional encryp-
tion from the k-linear assumption. In To appear in
PKC.

Dolev, D. and Yao, A. C. (1983). On the security of pub-
lic key protocols. IEEE Transactions on Information
Theory, 29(2):198–207.

El Kaafarani, A., Ghadafi, E., and Khader, D. (2014). De-
centralized traceable attribute-based signatures. In
Benaloh, J., editor, Topics in Cryptology – CT-RSA
2014, pages 327–348, Cham. Springer International
Publishing.

Escala, A., Herranz, J., and Morillo, P. (2011). Revocable
attribute-based signatures with adaptive security in the
standard model. In Nitaj, A. and Pointcheval, D., ed-
itors, Progress in Cryptology – AFRICACRYPT 2011,
pages 224–241, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Groth, J. and Sahai, A. (2008). Efficient non-interactive
proof systems for bilinear groups. In Eurocrypt, pages
415–432.

Halevi, S. (2005). A plausible approach to computer-aided
cryptographic proofs. Cryptology ePrint Archive, Re-
port 2005/181.

labs, I. The Coq proof assistant. https://coq.inria.fr/.
Maji, H. K., Prabhakaran, M., and Rosulek, M. (2011).

Attribute-based signatures. In Kiayias, A., editor, Top-
ics in Cryptology – CT-RSA 2011, pages 376–392,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Petcher, A. and Morrisett, G. (2015). The foundational
cryptography framework. In Principles of Security
and Trust - 4th International Conference, POST, Pro-
ceedings, pages 53–72.

Waters, B. (2005). Efficient identity-based encryption with-
out random oracles. In Eurocrypt, pages 114–127.
Springer.

SECRYPT 2018 - International Conference on Security and Cryptography

542

