
Graph Convolutional Matrix Completion for Bipartite Edge Prediction

Yuexin Wu, Hanxiao Liu and Yiming Yang
Carnegie Mellon University, 5000 Forbes Ave, 15213, Pittsburgh, PA, U.S.A.

Keywords: Matrix Completion, Graph Convolution, Deep Learning.

Abstract: Leveraging intrinsic graph structures in data to improve bipartite edge prediction has become an increasingly
important topic in the recent machine learning area. Existing methods, however, are facing open challenges in
how to enrich model expressiveness and reduce computational complexity for scalability. This paper addresses
both challenges with a novel approach that uses a multi-layer/hop neural network to model a hidden space, and
the first-order Chebyshev approximation to reduce training time complexity. Our experiments on benchmark
datasets for collaborative filtering, citation network analysis, course prerequisite prediction and drug-target
interaction prediction show the advantageous performance of the proposed approach over several state-of-the-
art methods.

1 INTRODUCTION

Many machine learning applications can be formula-
ted as the problem of predicting the missing edges in a
bipartite graph (Kunegis et al., 2010). For example, in
collaborative filtering users and items in a training set
form a bipartite graph with partially observed (rated)
edges, and the task is to predict the unobserved ones
in the graph. Another example is in the biomedical
domain, where we want to find out unknown pathogen
candidates for a new drug given the known effective
pathogens in the drug history (Yamanishi et al., 2008;
Yamanishi et al., 2010). We call those the bipartite
edge prediction (BEP) problems.

A large body of work has been devoted to sol-
ving the BEP challenge. Typical approaches treat it
as a matrix completion problem (Candes and Recht,
2012; Salakhutdinov and Mnih, 2007; Lee and Seung,
2001). By representing observed edges using an ad-
jacency matrix, the unobserved entries in the matrix
can be discovered by imposing a low-rank constraint
on the underlying model of the data. In other words,
by learning a low-dimensional vector representation
for each vertex, the missing entries (edges) in the ad-
jacency matrix can be approximated using the linear
combination of the observed edges. A primary draw-
back, or limitation, of such methods is that the pre-
diction is solely based on the observed edges, not
leveraging additional information about the vertices.
For example, users’ demographical information could
be useful for inference about the similarity among
users in collaborative filtering, and such similarity

would be informative for propagating our beliefs from
observed edges to unobserved edges. However, stan-
dard matrix completion methods do not leverage such
side information.

Recent efforts for addressing the above limitation
of BEP methods include the Graph Regularzied Ma-
trix Factorization (GRMF) method (Cai et al., 2011;
Gu et al., 2010) which adds a graph Laplacian regu-
larizer in its objective function for utilizing the ver-
tex similarities on both sides of a bipartite graph.
Transductive Learning over Product Graphs (TOP)
(Liu and Yang, 2015; Liu and Yang, 2016) is anot-
her remarkable approach, which projects the vertex-
similarity graphs on both sides of the bipartite graph
onto a unified product graph for semi-supervised be-
lief propagation. Namely, by representing bipartite
edges as the vertices in the product graph and by esta-
blishing the similarity among edges based on the side
information, TOP propagates its beliefs from obser-
ved edges to unobserved edges over the product graph
under smooth assumptions. Both GRMF and TOP im-
prove the performance of standard matrix completion
methods, according to the published evaluations; ho-
wever, both have their own limitations or weaknes-
ses. For instance, the Laplacian regularizer in GRMF
is equivalent to one-hop belief propagation from each
vertex to its neighbor vertices, which ignores the ef-
fects of multi-hop belief propagation as a natural phe-
nomenon. As for TOP, although it models multi-hop
propagation explicitly in various ways (using Kronec-
ker product and spectral transformation for example),
the hidden vector space of the graph product is re-
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stricted within the linear combination of the eigen-
vectors of the input similarity graphs, which could be
too restrictive for some applications. Moreover, TOP
requires the eigendecomposition of each input graph
and the multiplication of the eigenvectors as a neces-
sary step, which could be a computation bottleneck
for scalability (see Section 3.2).

In order to address the aforementioned limitati-
ons of existing BEP methods, we propose a novel ap-
proach which employs a neural network architecture
to model graph convolutions in a dimension-reduced
hidden space. Specifically, by allowing the hidden
representations of vertices to be located in the non-
linear space that combines the original bases of the
input similarity graphs, our method captures multi-
hop effects with a more flexible/expressive model,
and at the same time enjoys its simplicity and com-
putational efficiency by avoiding the eigendecompo-
sition step in TOP. We also demonstrate a simple
low-rank prior as the input of convolution for robust
prediction. In our experiments on BEP benchmark
datasets in the application domains of collaborative
filtering, citation network analysis, course prerequi-
site prediction and drug-target interaction prediction,
the proposed approach showed advantageous perfor-
mance over GRMF, TOP and other representative ba-
seline methods in most cases.

2 RELATED BACKGROUND

Let us introduce a generic formulation for graph-
convolution based matrix completions, based on that
of (Liu and Yang, 2015). We use bold upper cases for
matrices, and bold lower cases for vectors.

For graphs G and H , denote by B the bipartite
graph over the node sets of G and H with VB =
{VG ,VH } and EB = VG ×VH , and by m = |VG | and
n = |VH | the sizes of VG and VH , respectively. As-
sume Y is the set for edge values and edges EB ∈
Y m×n can be divided into the labeled part E l

B and the
unlabeled one Eu

B . Then, the BEP problem is defined
as:

Problem 1. given G , H and E l
B , find f : EB → Y

such that f predicts Eu
B as accurately as possible.

An illustration can be found in Figure 1.
Let us write GGG and HHH for the adjacency matrices

of G and H , respectively, and YYY ∈ R m×n as the com-
plete adjacency matrix of EB . Also we use indicator
matrix III ∈ {0,1}m×n for the observed edges in E l

B ,
and FFF ∈ R m×n for the predicted bipartite edges by
the system. Then we can formulate our objective in

Figure 1: Illustration of the BEP problem. Given the intrin-
sic structures of G (left) and H (right) about the similarity
information and partially observed edges (labeled in red),
we want to predict whether the missing edges are valid.

matrix completion as the following:

min
FFF

LIII(FFF ,YYY ) (1)

such that FFF =UUUVVV> (2)
UUU ,VVV ∈ΩGGG,HHH (3)

The objective denotes the empirical loss between pre-
diction FFF and ground truth YYY based on observed data
III. The first constraint assumes that FFF should have a
low-rank representation with UUU ∈ R m×d , VVV ∈ R n×d

and d < min{m,n}. This dimension constraint which
pushes the hidden space to focus only on the prin-
cipal components allows the possibility of projecting
two vertices into similar embeddings even if they have
minor disagreed linkages. The second constraint re-
quires the embeddings of vertices UUU ,VVV to lie within
the subspace which is induced by the manifold struc-
tures of GGG and HHH (i.e. ΩGGG,HHH ). Here we slightly
abuse the notation of GGG to refer to the structure of
G . This constraint basically influences the final pre-
diction through injecting similarity information into
the hidden representations, such that vertices have to
be close in the latent space if the vertices themselves
are similar based on the information from GGG,HHH.

It is important to notice that how to further spe-
cify Equation 3 would make fundamental differences
among methods and their performance in BEP tasks.
In TOP (Liu and Yang, 2016), for example, UUU ,VVV ∈
ΩGGG,HHH lies in the linear span of the (top-ranking) ei-
genvectors of GGG and HHH. In our approach in this paper,
UUU ,VVV ∈ ΩGGG,HHH lies in an enriched space which is both
more expressive in terms of modeling and more effi-
cient with respect to the training-time complexity (see
more discussions in Section 4).

3 RELATED MATRIX
COMPLETION METHODS

We outline several competing methods in matrix com-
pletion, focusing on their constraints in Equation 3.
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3.1 Hyper-ball Constraint

One common type of constraints is the ball-shape
constraint. In Probabilistic Matrix Factorization (Sa-
lakhutdinov and Mnih, 2007) (PMF), for instance, the
authors specify the priors of UUU and VVV to be Gaussian:

‖UUU‖2
F ≤ c1,‖VVV‖2

F ≤ c2 (4)

where ‖ · ‖F is the Frobenius norm and c1,c2 are ma-
nually set hyperparameters. This form suggests that
the columns of UUU and VVV reside within hyper-balls of
radii

√
c1 and

√
c2 respectively. Though effectively li-

miting the size of the factorized representations, such
constraints do not utilize any prior information from
the intrinsic structures of GGG and HHH, which makes it
unable to produce valid embeddings for vertices that
have cold-start problems (vertices having few or no
linkages).

One fix for this limitation is to employ a different
graph-related ball-shape constraint. Graph Regulari-
zed Matrix Factorization (Cai et al., 2011; Gu et al.,
2010) (GRMF), therefore, defines the constraint as
follows:

Tr
(

UUU>LLLGGGUUU
)
≤ c1,Tr

(
VVV>LLLHHHVVV

)
≤ c2 (5)

where Tr(·) denotes the trace, LLLGGG is the unnormali-
zed graph Laplacian defined as LLLGGG = DDDGGG−GGG, where
(DGGG)ii = ∑ j Gi j and LLLHHH has similar meanings. Since

Tr
(

UUU>LLLGGGUUU
)
= ∑i uuu>i LLLGGGuuui, it is meaningful to con-

sider the effect of each individual term in the summa-
tion. Actually, we can show that:

uuu>i LLLGGGuuui =
1
2 ∑

j j′
(U ji−U j′i)

2G j j′ (6)

This indicates that vertices j and j′ should have close
embeddings with respect to the i-th dimension. And
this graph Laplacian plays as a smooth measure along
such dimension.

Meanwhile, we can also relate this constraint to
Equation 4. It is easy to prove that LLLGGG and LLLHHH are
positive semi-definite, which means we can write the
constraint similarly as:

‖
√

LLLGGGUUU‖2
F ≤ c1,‖

√
LLLHHHVVV‖2

F ≤ c2 (7)

This suggests that the constraint is still of a hyper-
ball shape after a linear transformation of columns in
UUU and VVV .

One drawback of this constraint is that the pen-
alty is based on the one-hop similarity alone (i.e. j’s
coordinates are influenced only by its direct neighbors
as indicated by G j j′ ). The information may not be
enough to make effective regularization if the number
of a vertex’s neighbors is limited. e.g. in collaborative

filtering, a person is hard to get enough useful recom-
mendation if he/she has a short item-review history
and few similar friends.

3.2 Subspace Constraints

Other constraints can also be used to limit the sub-
space, instead of that on the hyper-balls. Transductive
Learning over Product Graphs (Liu and Yang, 2016)
(TOP), for example, imposes eigen-space related con-
straints:

uuui ∈ img(eigen(GGG)) ,vvv j ∈ img(eigen(HHH)) (8)

where uuui is any column of UUU and vvv j is any column
of VVV . Here img(eigen(GGG)) denotes the image or
equivalently the subspace spanned by the columns
of eigen(GGG). These constraints are imposed as a
result of the eigen-transformation in TOP. Different
from the one-hop penalty in Equation 7, TOP enables
multi-hop information propagation through spectral
transforming which generally amounts to exponen-
tial transformation of the eigen-space eigen(GGG) and
eigen(HHH). Eigen-vectors uuui and vvv j typically have
small coefficients within the coordinate system, simi-
lar to that with the hyper-ball constraint.

One drawback of TOP is the running time. That
is, it requires computation for eigen-decompositions
of GGG and HHH which are very costly when the graphs
are large. Evaluating uuui in Equation 8 is also expen-
sive, i.e. given a set of coordinates in the space of
eigen(GGG), the evaluation for uuui will take O(m2) since
the eigen-matrix is always dense even if GGG is sparse.
Another limitation of TOP is that it only takes a linear
transformation of the eigensystems, which may not be
sufficiently expressive. Our proposed approach (next
section) addresses both of the issues in TOP.

4 OUR APPROACH

In this section, we propose a new model which is
more flexible and expressive for multi-hop nonlinear
modeling of graph convolution. We start with a rather
simple linear constraint on the sub-spaces (Section
4.1), and then show how to generalize it to a richer
nonlinear multi-hop framework via graph convolution
(Section 4.2) and nonlinear transformation (Section
4.4), with the first order Chebyshev approximation for
efficient computation (Section 4.3). In addition, we
show how to construct the initial input signals for the
convolution in Section 4.5, and the over-all algorithm
in Section 4.6.

Graph Convolutional Matrix Completion for Bipartite Edge Prediction

53



4.1 Simple Subspace Constraints

Our method resides in the category of subspace con-
straints. Instead of requiring the embedding U and
V to lie within the eigen-spaces of GGG or HHH, we only
require it to be in the span of the column space. For-
mally, we define the constraint to be: for any column
uuui of UUU and column vvv j of VVV

uuui ∈ img(GGG),vvv j ∈ img(HHH) (9)

Alternatively, we can use a normalized version:

uuui ∈ img(DDD−1/2
GGG GGGDDD−1/2

GGG ),vvv j ∈ img(DDD−1/2
HHH HHHDDD−1/2

HHH )
(10)

We could observe that our method is computatio-
nally less costly than TOP. That is, given the coordi-
nates (e.g. xxx) for img(GGG), the multiplication of GGG and
xxx (i.e. uuui = GGGxxx) only costs O(nnz(GGG)) where nnz is
the number of non-zero entries. Besides, when GGG is
nearly fully-rank, the column space would have close
similarity as the eigen-space, which means our met-
hod could enjoy similar spectral transformation power
at less cost.

4.2 Generalization via Graph
Convolution

For more expressive embeddings, we can extend the
constraint in Equation 10 through graph convolution.

First, note that Equation 10 could be viewed as
a transformation over a given signal xxx ∈ R m (scaler
features on each node of of graph G):

uuui = DDD−1/2
GGG GGGDDD−1/2

GGG xxx (11)

=UUUGGGΛGGGUUUT
GGGxxx (12)

where UUUGGG and ΛGGG are the corresponding eigen-vector
matrix and eigen-value matrix for normalized GGG. The
ΛGGG part specifies the scaling factor, which is fixed for
a given GGG. It is thus beneficial to replace this factor
with a parameter to be learnt for more varied expres-
siveness:

uuui = gggθ ∗ xxx =UUUGGGdiag(gggθ)UUU
T
GGGxxx (13)

where diag(gggθ) denotes the diagonal matrix parame-
terized by vector gggθ ∈ R m (called filter in the later
literature).

This is called a one-hop generalized graph convo-
lution over GGG (Hammond et al., 2011).

The benefits for this replacement are two-fold.
First, by using a parameter diag(gggθ), we could go
beyond for a richer representation and even stack the
expressions for multi-hop convolutions (Section 4.4).
Second, the introduction of new parameter diag(gggθ)

separates the coordinate xxx and the learning parame-
ters, which enables our model to use xxx to represent
auxiliary information (Section 4.5).

However, before we continue with the benefits
of generalized graph convolution, we first do an ap-
proximation in order to drop the cost in decompo-
sing graph GGG, which keeps the time complexity to be
O(nnz(GGG)+m).

4.3 First Order Chebyshev
Approximation

The original definition of graph convolution (Equa-
tion 13) requires to solve the eigen-decomposition for
GGG in the first place (e.g. in TOP), which can be expen-
sive for large graphs. Even if GGG is sparse, its eigen-
matrix will not be sparse. Hence the evaluation of
Equation 13 will take time O(m2) for the dense matrix
multiplication. This will lead to a computation bottle-
neck, as for optimizing gggθ through gradient descent,
we need to perform this evaluation in every iteration.

In order to fix this problem, (Kipf and Welling,
2016) proposed a first order Chebyshev approxima-
tion for this calculation. Denoting by G̃GG = GGG+ III the
adjacency matrix of the graph with self-loops added,
and by D̃DDGGG the diagonal matrix with (D̃GGG)ii = ∑ j G̃i j,
the approximated convolution operation can be writ-
ten as:

uuui = gggθ ∗ xxx≈ gθ1D̃DD−1/2
GGG G̃GGD̃DD−1/2

GGG xxx (14)

where gθ1 is the first component of gggθ. We see
that this approximation no longer requires the eigen-
decomposition and the computation time is reduced
from O(m2) to O(nnz(G̃GG))≤ O(nnz(GGG)+m).

Moreover, we can naturally write a compact ma-
trix representation for UUU convoluting over multiple fil-
ters as:

UUU = D̃DD−1/2
GGG G̃GGD̃DD−1/2

GGG XXXΘΘΘ (15)

where XXX ∈ R m×c is a input signal matrix and ΘΘΘ ∈
R c×d is the concatenated filter parameter matrix.

Note this expression enjoys the advantage of
fast computation without doing decomposition on GGG
while approximately reserving the flexible representa-
tion power as in Equation 13. We can further enhance
such representation power through the following non-
linear multi-hop mechanisms.

4.4 Nonlinear Multi-hop Convolution

The formulation of Equation 15, can be regarded as
one linear layer of feed-forward neural networks if
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we view XXX as the input and UUU as the feature map con-
voluted through graph GGG. Therefore, natural exten-
sions will be to add in nonlinear activation functions
and stack multiple layers (LeCun et al., 2015), which
will enhance the expressiveness of the model. And
each layer can be regarded as an intermediate repre-
sentation. For simplicity, denote ĜGG = D̃DD−1/2

GGG G̃GGD̃DD−1/2
GGG .

Then, an example of the 2-layer model for the embed-
ding of UUU can take the form of:

UUU = tanh
(

ĜGGtanh
(

ĜGGXXXΘΘΘ1

)
ΘΘΘ2

)
(16)

where ΘΘΘ1 and ΘΘΘ2 are the filter parameters on each
layer. Note the final layer has to be tanh instead of
ReLU or sigmoid, as we need to allow the coordina-
tes of the hidden embeddings to have negative values
in order for the final product of UUUVVV> to predict ne-
gative entries (or zero entries). We denote the whole
structure of Equation 16 as NetGGG, that is,

UUU = NetGGG(XXX). (17)

The network NetHHH for VVV can be defined similarly. We
use such 2-layer structure in our experiments (Table
3).

In order to distinguish between the signals on GGG
and HHH, we use notations XXXGGG and XXXHHH in the following
literature. Similarly, ΘΘΘGGG and ΘΘΘHHH are used to repre-
sent parameters (concatenation of ΘΘΘ1 and ΘΘΘ2) in the
corresponding multi-layer networks.

4.5 Construction of Input Matrices

As shown in equation 16, graph convolution starts
with input signals. This means that for all the no-
des in G and H , we need to have input matrices XXXGGG
and XXXHHH whose rows are the feature vectors of the cor-
responding nodes. We construct these matrices using
the observed bipartite matrix YYY III = YYY ⊗ III, where ⊗ is
the Hadamard product 1.

One natural way is to use the rows (or columns) of
YYY III for XXXGGG (or XXXHHH ), which essentially views the edge
profiles as node features. Such an approach leverages
all given information in YYY III . However, the computa-
tion would be too expensive when GGG and HHH are very
large (e.g. with thousands of node). Moreover, this
would lead to over-fitting of our model as the obser-
ved edges are typically highly sparse in the bipartite
graph, not sufficient for robust estimation of models
with too many free parameters.

1Our framework allow the flexibility of using XXXGGG and
XXXHHH to represent other types of node features as well, such as
vectorized demographical information about users or meta
features about movies. However, in this paper we only focus
on the node features induced based on the observed bipartite
matrix.

Therefore, for robust induction of node features
and for efficient computation, we take a simple stra-
tegy: use the top left/right singular vectors (those cor-
responding to the largest singular values) of YYY III to con-
struct XXXGGG and XXXHHH , respectively. Since we only need
to compute the top few eigenvectors of a sparse matrix
instead of its full spectrum, the time/space complexi-
ties are linear in the non-zero elements in matrix YYY III .
The dimension-reduced representation of node featu-
res should also effectively avoid overfitting.

4.6 Overall Algorithm

We summarize the overall training procedure and ar-
chitecture in Algorithm 1 and Figure 2. Note that we
do not use any regularization tricks (dropout/L1 regu-
larization). The result shows that graph convolution
and constructed low-rank input matrices have such re-
gularization ability and performs robustly with regard
to the hidden dimension (Figure 3).

Algorithm 1 : Training procedure for Graph Convolution
Matrix Completion (GCMC) network.

Input: Bipartite Matrix YYY , Indicator Matrix III for training
set, Adjacency Matrices GGG and HHH
YYY III = YYY ⊗ III
Perform low-rank SVD on YYY III s.t. XXXGGGXXX>HHH ≈ YYY III
Initialize parameters ΘGGG, ΘHHH for NetGGG, NetHHH defined in
Eq. 16
Set learning rate α
while not converging do

UUU = NetGGG(XXXGGG)
VVV = NetHHH(XXXHHH)

FFF =UUUVVV>
ΘΘΘGGG = ΘΘΘGGG−α∇ΘΘΘGGG LIII(FFF ,YYY )
ΘΘΘHHH = ΘΘΘHHH −α∇ΘΘΘHHH LIII(FFF ,YYY )

end while

5 EXPERIMENTS

We used four benchmark datasets for evaluations in
bipartite edge detection, including the applications
to collaborative filtering, citation network analysis,
course prerequisite prediction and drug-target inte-
raction prediction.

5.1 Datasets

• Collaborative Filtering: MovieLens-100K2

(Harper and Konstan, 2016) is a collaborative
filtering benchmark where the intrinsic graphs are

2https://grouplens.org/datasets/movielens/100k/. We do
not use any larger MovieLens dataset since no user demo-
graphic features are provided.
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Figure 2: Architecture of the Graph Convolutional Matrix Completion (GCMC) network. The input bipartite graph B (equi-
valently observed bipartite matrix YYY III) is used to extract features/signals XXXGGG and XXXHHH on G and H . Graph convolutions are
performed to transform the signals into hidden representations UUU and VVV on G and H respectively. The prediction is made by
doing product between UUU and VVV : FFF =UUUVVV>. UUU = NetGGG(XXXGGG) is defined in Equation 16. NetHHH can be defined similarly.

within users and movies. Specifically, we have
VG with 943 users and VH with 1682 movies.
The task is to predict user-movie ratings ranging
from 1 to 5. Each user is provided with a binary
vector indicating the gender, occupation and zip
code; for each movie, the corresponding genres
are provided.

• Citation Networks: in Cora (Sen et al., 2008)
and Citeseer (Lawrence et al., 1999): Each dataset
uses the publications as its VG and VH , which are
identical. The task is to predict the missing citati-
ons for a given publication. Each publication has
a sparse binary feature vector, indicating whether
or not a specific word is present within the pu-
blication. Cora contains 2708 publication records
and 5429 citations and Citeseer contains a slig-
htly larger publication set with 3312 documents
and sparser citation records with 4715 links.

• Course Prerequisite Prediction: with the
Course dataset (Yang et al., 2015). This dataset
is comprised of course prerequisite data from the
course sites of Massachusetts Institute of Techno-
logy (2322 courses, 1173 links), California In-
stitute of Technology (1048 courses, 761 links),
Princeton University (56 courses, 90 links) and
Carnegie Mellon University (83 courses and 150
links). The task is to predict missing prerequisite
dependencies among courses. Similar to citation
network, VG and VH are identical, and for each
course, a bag-of-words vector from the course
description is provided.

• Drug-target Interaction Prediction: We use
Drug dataset (Yamanishi et al., 2008). This da-
taset contains drug-target interaction data, which
can be divided into 4 categories based on the cor-
responding target protein types: Enzymes (664
target proteins, 445 drugs), Ion Channels (204 tar-

get proteins, 210 drugs), GPCRs (95 target pro-
teins, 223 drugs) and Nuclear Receptors (26 target
proteins and 54 drugs). In this dataset, the task is
to predict missing interaction pairs between tar-
get proteins and drugs. Specifically, we use VG
to denote the target protein node set and VH for
the drug node set. The similarity measures bet-
ween target proteins/drugs are calculated by SIM-
COMP (Hattori et al., 2003) directly on their che-
mical structures.

Table 1 summarizes the detailed dataset statistics.

Table 1: Dataset Statistics. VG and VH are the vertex sets
and EB denotes the edge set of the bipartite graph.

Datasets |VG | |VH | |EB | Edge Value

MovieLens-100K 943 1,682 100,000 {1. . . 5}
Cora 2,708 2,708 5,429 {0,1}
Citeseer 3,312 3,312 4,715 {0,1}
Course-MIT 2,322 2,322 1,173 {0,1}
Course-CalTech 1,048 1,048 761 {0,1}
Course-CMU 83 83 150 {0,1}
Course-Princeton 56 56 90 {0,1}
Drug-Enzyme 664 445 2926 {0,1}
Drug-Ion Channel 204 210 1476 {0,1}
Drug-GPCR 95 223 635 {0,1}
Drug-Nuclear Receptor 26 54 90 {0,1}

5.2 Methods to Compare

We compare our method with other major matrix
completion methods from the categories of both
hyper-ball constraints and subspace constraints. Also,
two state-of-the-art neural network methods tailored
for collaborative filtering are added as baselines.

• GCMC: graph convolutional matrix completion.
This is our method3.

3Code available at https://github.com/CrickWu/GCMC
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• TOP (Liu and Yang, 2015; Liu and Yang, 2016):
transductive learning over product-graph. This
method adopts a subspace constraint in the span
of eigen-matrices of GGG and HHH. It utilizes spectral
transformation for multi-hop feature representati-
ons.

• GRMF (Cai et al., 2011): graph regularized ma-
trix factorization. This method employs a hyper-
ball constraint. The ball shape is induced by the
intrinsic structures of G and H , which projects si-
milar vertices into close proximity. This method
considers only one-hop relations.

• PMF (Salakhutdinov and Mnih, 2007): probabi-
listic matrix factorization. PMF uses a hyper-
ball constraint which is equivalent to imposing
uniform Gaussian priors to the final embeddings.
PMF does not utilize the information within G
and H .

• CF-NADE (Zheng et al., 2016): a state-of-the-art
neural network based method. This framework
uses a feed-forward, multilayer autoregressive ar-
chitecture for collaborative filtering with an ordi-
nal cost, which also uses nonlinear mechanism. It
embeds the vertices on G into a lower-dimension
representation. The embedding is then multiplied
with a weight matrix as the prediction scores for
new linkages. This method does not utilize the
information of G and H either.

• RGCNN (Monti et al., 2017): another state-of-
the-art neural network based method for collabo-
rative filtering. This framework only uses side
information as initialization embeddings through
graph convolution, which are then finalized by a
recurrent network. Side information is not utili-
zed during the updating process of the recurrent
network.

We summarize the detailed properties of compa-
ring methods in Table 2.

Table 2: Method comparison. Side-info denotes the ap-
proach uses side information (intrinsic information from G
and H ). Multi-hop/nonlinear denotes the approach sup-
ports multi-hop/nonlinear mechanisms. No-eigen denotes
the approach does not need to perform expensive eigen-
decomposition on GGG and HHH. * using side-info partially
through graph convolution as initialization.

Methods Side-info Multi-hop Nonlinear No-eigen

GCMC 3 3 3 3
TOP 3 3 7 7
GRMF 3 7 7 3
PMF 7 7 7 3
CF-NADE 7 7 3 3
RGCNN 3∗ 3 3 3

5.3 Evaluation Metrics

In the all datasets except MovieLens-100K, the ed-
ges to be predicted have a binary value. Therefore,
by treating each vertex in G as a query, we used the
standard metric of Mean Average Precision (MAP) to
measure the returned ranked list by the algorithm. On
the other hand, for the collaborative filtering task on
the MovieLens-100K dataset, MAP is no longer ap-
propriate for prediction with multiple values. Instead,
we used the Root Mean Square Error (RMSE) to me-
asure the performance, which has been widely used in
collaborative filtering evaluations (Zheng et al., 2016;
Bennett et al., 2007; Sedhain et al., 2015). We also
reported NDCG@3 on all datasets in order to evalu-
ate the ranking properties of high-scored prediction
for all methods.

We run a 5-fold cross validation for each method
on each dataset. Each time 20% of the data is used for
testing, 20% is used for hyper-parameter tuning, and
the remaining is used for training. The results on the
test sets are then averaged.

5.4 Empirical Settings and Parameter
Tunning

Using the features of vertices in each graph, we con-
struct sparse kNN graphs for both G and H , and fix
them for all methods to ensure they all utilize the same
information.

We use the regularized versions of TOP, GRMF
and PMFin our experiments. That is, instead of speci-
fying the size of the hyper-balls, we add the Lagran-
gian multiplier to the original loss function. The pa-
rameter for the ratio between the original loss (Equa-
tion 1) and the constraint (Equation 3) is tunned on
the validation set. Squared loss is adopted as the
objective function for these 3 methods. We report
the best performance from the set of {1e− 3,1e−
2,1e− 1,1e0,1e1}. For CF-NADE, we use the im-
plementation from the authors4. The learning rate
and weight decay are set by cross-validation among
{0.001,0.0005,0.0002} and {0.015,0.02} as sugge-
sted in the paper (Zheng et al., 2016). For RGCNN5,
we use default parameters for MovieLens-100K, and
tune the feature numbers on validation set in other da-
tasets.

For our proposed method (GCMC), we used the
major singular-vectors (singular vectors correspon-
ding to the largest singular values) from random SVD
as the input signals for XXXGGG and XXXHHH . We use squa-
red loss as the objective function and Adam (Kingma

4https://github.com/Ian09/CF-NADE
5https://github.com/fmonti/mgcnn
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Figure 3: Performance of methods vs. the model dimensions (matrix column sizes for UUU and VVV ). For MAP, higher scores
indicate better performances. For RMSE, lower scores indicate better performances.

and Ba, 2014) with default parameters (b1 = 0.1,b2 =
0.001 and ε= 10−8) for optimization. For binary edge
prediction tasks, (citation networks, course prerequi-
site prediction and drug-target interaction prediction),
we multiply the loss of positive edges by a factor of
10, which has a similar effect as negative sampling
strategy in most neural network algorithms and en-
courages more accurate prediction on the positive in-
stances.
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Figure 4: Result summary on all datasets when the hidden
dimension is set to 5. For MAP, higher scores indicate bet-
ter performances. For RMSE, lower scores indicate better
performances. GCMC outperforms all the other methods in
all binary prediction tasks (left sub-figure).

5.5 Main Results

The main results of our experiments are summarized
in Table 3 and Figure 4. Clearly, our approach strictly
outperforms all the other methods in the binary pre-
diction tasks on Cora, Citeseer, Course and Drug both
on MAP and NDCG@3. And the advantage is pro-
nounced when the dataset is large enough (Cora and
Citeseer), which justifies the expressiveness of our
framework in data-sufficient settings. On MovieLens-
100K, we see that our algorithm achieves compara-
ble second best result in RMSE (as collaborate filte-

ring tailored RGCNN), which is the metric all algo-
rithms choose to optimize except CF-NADE. Since
the similarity information between users and movies
is highly limited, it is reasonable that simpler method
GRMF which concentrates on combining major simi-
larity features performs better. And not surprisingly,
methods that utilize the intrinsic structures of graphs
(GCMC and TOP) dominate the performance of the
methods that do not use such information (PMF and
CF-NADE) in most cases.

5.6 Effect of Latent Dimensions

Figure 3 shows how the performance (in MAP or
RMSE) of all methods change when the hidden di-
mensions (i.e., the ranks of the matrices) vary. It can
be seen that GCMC consistently outperforms the ot-
her methods on Cora, Citeseer and Course data, and
performs as the second best method on Drug. Recall
that Cora and Citeseer have highly sparse networks,
i.e., with many unknown links. The excellent perfor-
mance of GCMC on these datasets suggests that our
approach successfully addresses the data sparse issue
by effectively leveraging graph-structure based know-
ledge and regulating the latent representations in the
model.

We also find that comparing with the other com-
plex multi-hop algorithm, TOP, our method is more
robust when the hidden dimension size changes. For
instance, in datasets Course and Drug, GCMC can al-
most get better performance when the hidden dimen-
sion increase, while TOP easily achieves the highest
score at a small dimension (40 for Course and 20 for
Drug) and drops quickly. Note this phenomenon is
justified since we introduce the low-rank prior in the
input signals, which is effective in preventing over-
fitting (Section 4.5).
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Table 3: Result summary on benchmark datasets. The hidden dimension was set to 5 for all the methods. The bold faces
indicate the approach with the best score on each dataset. We include the detailed statistics of Drug and Course in the
appendix.

Datasets Metric GCMC TOP GRMF PMF CF-NADE RGCNN

MovieLens-100K RMSE 0.9641 1.0276 0.9498 0.9907 0.9917 0.9600
NDCG@3 73.52 75.00 74.88 74.73 66.84 74.45

Cora MAP 18.34 13.89 5.38 8.62 12.85 9.94
NDCG@3 16.80 12.17 4.27 7.67 10.99 9.45

Citeseer MAP 15.14 11.20 3.53 7.22 8.97 7.00
NDCG@3 13.82 9.84 2.49 6.24 7.19 6.22

Course MAP 46.02 36.56 34.32 31.23 31.62 31.30
NDCG@3 44.62 34.09 31.00 27.82 26.77 26.67

Drug MAP 35.02 34.33 31.35 29.81 25.73 24.31
NDCG@3 30.96 30.03 26.77 24.78 20.97 19.27

6 CONCLUSION

In this paper we presented a new approach to the bi-
partite edge prediction problem, which uses a multi-
hop neural network structure to effectively enrich
the model expressiveness, and the first-order Chebys-
hev approximation to substantially reduce the com-
plexity of training time. We also employ a low-
rank prior in the input signals so as to make ro-
bust prediction. Our approach consistently outper-
formed several state-of-the-art methods in our expe-
riments on the benchmark datasets for collaborative
filtering, citation network analysis, course prerequi-
site prediction and drug-target interaction prediction
in most cases.
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APPENDIX

Statistics for the sub-tasks in Course and Drug data-
sets. Our method achieves the best performance on
all sub-tasks except Drug-GPCR.

Table 4: Results in MAP and NDCG@3 on the subsets of
the Course data: the hidden dimension was set to be 5 for
all the methods. The bold faces indicate the approach with
the best score on each dataset.

Datasets Metric GCMC TOP GRMF PMF CF-NADE RGCNN

Course-MIT MAP 35.39 33.64 31.12 26.10 30.76 24.16
NDCG@3 34.51 32.25 30.47 25.37 27.50 22.86

Course-CalTech MAP 45.17 31.70 33.48 29.12 32.79 23.66
NDCG@3 43.62 30.45 32.47 27.79 29.58 33

Course-CMU MAP 53.24 49.68 34.11 41.25 49.84 40.46
NDCG@3 51.26 46.65 26.92 37.43 48.29 33.68

Course-Princeton MAP 50.29 31.21 38.55 28.46 13.06 36.9
NDCG@3 49.08 27.01 34.16 20.68 1.71 27.11

Average MAP 46.02 36.56 34.32 31.23 31.62 31.30
NDCG@3 44.62 34.09 31.00 27.82 26.77 26.67

Table 5: Results in MAP and NDCG@3 on the subsets of
the Drug data: the hidden dimension was set to be 5 for all
the methods. The bold faces indicate the approach with the
best score on each dataset.

Datasets Metric GCMC TOP GRMF PMF CF-NADE RGCNN

Drug-Enzyme MAP 12.71 8.81 6.46 7.60 6.29 9.94
NDCG@3 6.72 5.79 2.23 4.61 2.98 4.35

Drug-Ion Channel MAP 24.90 21.34 14.86 13.53 13.36 12.26
NDCG@3 19.96 13.87 7.21 7.42 6.17 6.32

Drug-GPCR MAP 38.16 45.54 44.96 45.59 31.60 23.98
NDCG@3 33.95 44.78 44.58 44.72 28.97 21.18

Drug-Nuclear Receptor MAP 64.30 61.64 59.13 52.53 51.67 51.04
NDCG@3 63.21 55.68 53.07 42.36 45.74 45.24

Average MAP 35.02 34.33 31.35 29.81 25.73 24.31
NDCG@3 30.96 30.03 26.77 24.78 20.97 19.27
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