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Abstract: In this paper we investigate the viability, practicability and efficacy of eliciting P300 responses based on the 
P300 speller BCI paradigm (oddball) and the xDAWN algorithm, with five healthy subjects; while using a 
non-invasive Brain Computer Interface (BCI) based on low fidelity electroencephalographic (EEG) 
equipment. The experiments were performed in three distinctive environments: lab conditions, mild and 
controlled user distractions, and real world environment (realistic sound and visual distractions present). 
Our main contribution is the assessment of the ways and extents to which different degrees of user 
distraction affect the detection success achievable using low fidelity equipment. Our results demonstrate the 
applicability of using off-the-shelf equipment as a means to successfully and effectively detect P300 
responses, with different degrees of success across the three distinctive types of environment. 

1 INTRODUCTION 

In this paper we investigate the ability, practicability 
and efficacy of eliciting P300 responses using low 
fidelity equipment in three distinctive environments; 
lab conditions, mild and controlled user distractions 
and real world environment. Our research makes use 
of a non-invasive Brain Computer Interface (BCI) 
on the basis of Electroencephalography (EEG). The 
work presented here is part of a larger EEG based 
project and in continuation of our previous papers 
(Schembri et al., 2017) (Schembri et al., 2018). 

One of the main type of signals utilized in EEG, 
are the Evoked Potentials (EP) / Evoked Responses 
(ER) and/or Event-related Potentials (ERP). In 
general and for the purpose of this paper we will 
henceforth refer to these as Event-related Potentials 
(ERP) even though ERPs are considered the 
successors of EP where a set of robust potentials 
where identified to reflect higher order brain 
processing (Runehov et al., 2013). However in the 
scientific community these terms are commonly 
used interchangeably. 

ERPs are slow voltage fluctuations or electrical 
potential shifts recorded from the nervous system. 
These are time-locked to perceptual events 
following a presentation of a stimulus being either 
cognitive, sensor or motor stimuli. The term time-

locked implies that the time between the event and 
voltage fluctuation is relatively constant; for 
instance the P300 component is a positive wave that 
can appear anywhere from 300 to 800ms after the 
response (Stern et al., 2001). The major drawback of 
ERP is that its signal-to-noise ratio is typically quite 
low (Stern et al., 2001) (Ding and Ye, 2004) and 
signal averaging over a number of trials is required. 
ERP components are predominantly classified as 
either exogenous (reliant on the external stimulus 
characteristics) or endogenous (dependent on the 
subjects actions and intentions); however this should 
be considered as a dimension rather than a rigorous 
classification (Ward, 2015) (Näätänen, 1992). 

One of the most renowned ERP components is 
the aforementioned P300 (P3), which was first 
described by Sutton (Sutton et al., 1965) and has 
been used in a multitude of paradigms. The most 
prominent paradigm; the P300 speller BCI 
paradigm; was originally described by (Farwell and 
Donchin, 1988), where alphanumeric characters or 
1-word commands, 36 in total, are presented in a six 
by six grid as depicted in Figure 1 (the term symbol 
will refer to any alphanumeric character in this 
figure). The methodology used derives from the 
oddball paradigm; first used in ERPs by Nancy, 
Kenneth and Steven (Squires et al., 1975) where the 
subject is asked to distinguish between a common 
stimulus (nontarget) and a rare stimulus (target). In 
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addition and unless otherwise noted in this paper, the 
P300 will always refer to the P300b (P3b) which is 
elicited by task relevant stimuli in the centro-
parietal, rather than P300a (P3a) which is related to 
automatic detection of novelty and is task irrelevant, 
detected in the fronto-central. 

In this paper we report a study where five 
healthy subjects used a variation of Farwell and 
Donchin P300 speller paradigm; where we based the 
methodology on the xDAWN algorithm (Rivet et al., 
2009); to communicate nine alphanumeric characters 
in three distinctive environments, while using 
specific low fidelity equipment. Our aim is to assess 
the effects of the disturbances on the P300 signal 
and also on the signal detection accuracy. 

2 EXPERIMENTAL 
METHODOLOGY 

The work presented in this paper will make use of 
Farwell and Donchin’s P300 speller which uses 
visual stimuli, where each row and column of the 
spelling grid is augmented in a random order. The 
subject is asked to focus on the desired symbol 
(target) and mentally count (to heighten ERP) the 
number of times the row and column comprising the 
desired symbol is augmented. As a result of the 
(target) stimuli, an exogenous and spontaneous ERP 
potential known as P300; which is a positive 
deviation around 300ms after the stimuli; is evoked 
in the brain. The desired symbol is determined and 
predicted by the intersection of the (target) row and 
column. This prediction entails distinguishing 
between non-target i.e. rows/columns stimuli that 
does not generate a P300 component and target i.e. 
row/column stimuli that generate a P300 component. 

 

Figure 1: BCI “P300 Speller”. The screen as shown to the 
subjects with the 3rd row highlighted. 

In any recorded EEG signal, the P300 component 
which has a typical peak potential between 5-10µV 
(Peters and Skowron, 2006), is embedded and 

masked by other brain activities (typical EEG signal 
+-100µV) such as muscular and/or ocular artefacts 
(Schembri et al., 2017) leading to a very low Signal-
to-Noise Ratio (SNR) of the P300 component. This 
indicates that it would be very difficult to detect the 
target stimuli from a single trial, which is denoted by 
a series of augmentation, in random order, of each of 
the six rows and six columns in our matrix (i.e. 
twelve augmentations per trial). A popular way to 
address the limited SNR of EEG is for each symbol 
to be spelled numerous consecutive times and the 
respective column/row epochs be averaged over a 
number of trials, thus cancelling components 
unrelated to stimulus onset (Wittevrongel and Van 
Hulle, 2016). A trade-off exists between increasing 
the number of trials per symbol (increases 
classification accuracy) and the number of symbols 
spelled per minute.  

Apart from using low fidelity equipment, our 
experiments were performed in three distinctive 
environments which are explained in detail below. 

Lab Conditions: the experiments were performed 
in a sound-attenuated and air conditioned room. 
There were no distractions; 

Mild and Controlled User Distractions: the 
experiments were also performed in a sound-
attenuated and air conditioned room. The following 
distractions were introduced throughout the 
experiment: (1) a low volume radio; (2) the 
researcher walked around the subject in a methodical 
way however there were no vocal interactions; 

Real World Environment: the experiments were 
performed in an air conditioned room. The following 
distractions were introduced: (1) the room was not 
sound-attenuated, it had an open window leading 
onto the street and the internal door was kept open; 
(2) the same low volume radio used in the mild 
environment was kept running; (3) a television set 
was set-up in the room and a movie was played with 
medium volume; (4) the researcher walked around 
the subject unsystematically, throughout the whole 
experiment; (5) the researcher asked the subject two 
questions: (a) what is the date of birth of your 
father? and (b) what is the total of 55 + 12?; and the 
subject replied. While replying the subject did not 
make eye contact with the researcher and kept his 
focus on the desired symbol. A note was taken 
which target symbol was being spelled at the time 
the questions were asked.  

The training session (refer to Section 2.4) was 
always performed in lab conditions. 

The P300 speller was chosen for this study as our 
application domain since it gave us a well-structured 
defined and documented set of experiments i.e. a 
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structured experimental mechanism which is 
repeatable. Since using this equipment in non-lab 
conditions is a novel area of research, it was decided 
that P300 was a good basis for its institution due to it 
being an exogenous signal i.e. a stereotypical 
response, which can be produced without training. 

2.1 The xDAWN Spatial Filter 

The xDAWN process of spatial filtering is (1) a 
dimensionally reduction method that creates a subset 
of pseudo-channels (referred to as output channels) 
by a linear combination of the original channels and 
(2) it promotes the appealing part of the signal, such 
as ERPs, with respect to the noise. This is applied to 
the data before performing any classification such as 
LDA (Linear Discriminant Analysis) which was 
used in this paper. From an abstract point of view 
the xDAWN algorithm can be divided into (1) a 
least square estimation of the evoked responses and 
(2) a generalized Rayleigh quotient to estimate a set 
of spatial filters that maximize the SSNR. 

The following is adapted from (Rivet et al., 
2009) and (Woehrle et al., 2015). Let X ∈ ℝS x C be 
the EEG data that contain ERPs and noise, with S 
samples and C channels. Let A ∈ ℝE x C be the matrix 
of ERP signals, while E is the number of temporal 
samples of the ERP (typically, E is chosen to 
correspond to 600 ms or 1 s). Let N ∈ ℝS x C be the 
noise matrix which contains normally distributed 
noise. The ERPs position in the data is given by a 
Toeplitx matrix D ∈ ℝE x S. The data model is given 
by X = DTA+N. A is estimated by a least square 
estimate using a matrix inverse (pseudoinverse) as 
shown in formula (1). Â = min݃ݎܽ = ||ܺ − ଶଶ||ܣܦ = (1) ்ܺܦଵି(ܦ்ܦ)

Let W ∈ ℝS x F be the pseudo-channels while F 
represents the filters for projection. The result is the 
filtered data matrix X̃ = XW. According to (Rivet et 
al., 2009), the optimal filters W can be found by 
maximizing the SSNR as given by the generalized 
Rayleigh quotient: 

Ŵ = maxௐ݃ݎܽ (்்ܹܹܺܺ)ݎܶ(Âܹܦ்ܦÂ்்ܹ)ݎܶ =  (2)

The optimization problem is solved by 
combining a QRD (QR matrix decomposition) with 
an SVD (singular value decomposition). A more 
thorough explanation is found at (Rivet et al., 2009). 

2.2 Equipment Used 

The work reported herein is based on an OpenBCI 
32-bit board (called Cyton) connected with an 
Electro-Cap using the international 10/20 system for 
scalp electrode placement in the context of EEG 
experiments. This is illustrated in Figure 2. 

The Cyton board’s microcontroller is the 
PIC32MX250F128B with a 32-bit processor and a 
maximum speed of 50MHz; storage of 32KB of 
memory and is Arduino compatible. The board uses 
the ADS1299 IC developed by Texas Instruments, 
which is an 8-Channel, 24-Bit, simultaneous 
sampling delta-sigma, Analogue-to-Digital 
Converter used for bio potential measurements. The 
system comes with a pre-programmed USB dongle 
for wireless communication which communicates 
with the low cost RFDuino RFD22301 
microcontroller built on the OpenBCI board. An 
additional feature which is included in the OpenBCI 
board is a 3-axis accelerometer from ST with model 
LIS3DH. A more thorough explanation of the 
hardware components of the Cyton can be found in 
our previous paper1 (Schembri et al., 2017).  

 

Figure 2: Cyton Board and Electro-CAP. 

The Electro-Cap being used in our experiments 
has the fabric which is made from elastic spandex 
and has recessed pure tin wet electrodes directly 
attached to the fabric. The term wet electrodes type, 
implies that the use of an electrolyte gel is required 
to make effective contact with the scalp; otherwise it 
may result in impedance instability 

2.3 Subjects 

We enlisted five healthy subjects, three males and 
two females, aged 29-38 which voluntarily 
participated in this study. Four of the five subjects’ 
native language was Maltese and the fifth subject’s 
native language was English. All subjects spoke 
fluent English and were familiar with the symbols 
displayed on our screen as depicted in Figure 1. One 
                                                           
1http://www.scitepress.org/DigitalLibrary/PublicationsDet

ail.aspx?ID=OKHKQwhPuUs=&t=1 

The Feasibility and Effectiveness of P300 Responses using Low Fidelity Equipment in Three Distinctive Environments

79



 

of the subjects had previous experience using BCI 
and the P300 speller and will henceforth be referred 
as subject3 in the results (refer to Section 3). The 
other four subjects had never used or performed any 
BCI, nor have they ever seen a P300 speller. 

Three other subjects that assisted in the initial 
experimentation phase where we assessed the 
viability of our equipment with the P300 component; 
however they did not take part in the official 
experiments and hence aren’t included in the results. 

2.4 Experimental Procedure and 
Stimuli 

The EEG signals where sampled at 250Hz, while the 
sampling precision was 24-bit. The recordings were 
stored anonymously as raw data in OpenVIBE .ov 
format. These were later converted to a comma 
separated value (csv) files for offline analysis. Eight 
EEG electrodes where used in different regions of 
the scalp according to the International 10-20 
System. The equipment we are using supports a 
maximum of sixteen electrodes. The Cyton board 
supports eight electrodes and an extension module 
(called Daisy) supports an additional eight 
electrodes. After initial analysis we did not see a 
major improvement between eight and sixteen 
electrodes and we have opted to exclude the use of 
the daisy module, hence the extra eight electrodes. 

The electrode positions C3, Cz, C4, P3, Pz, P4, 
O1 and O2 were selected. This is because the spatial 
amplitude dispersal of the P300 component is 
symmetric around Cz and its electrical potential is 
maximal in the midline region (Cz, Pz) (Ogura et al., 
1995) as shown in Figure 3. It typically increases in 
magnitude from the frontal/occipital to parietal lobes 
(Johnson, 1993). The midline region is still widely 
used in almost all papers related to P300 detection 
such as (Venuto et al., 2017) and (Frey, 2016). 

 

Figure 3: P300 Amplitude Dispersal – from BCI2000.org. 

A referential montage was selected with the 
reference electrode being placed on the left earlobe 
A1 given that, in general, a mastoid or earlobe 
reference will produce a robust P300 response. The 

right ear lobe A2 is used as ground. The electrodes 
are referenced to electrode A1 as follows: Ch1: C3; 
Ch2: Cz; Ch3: C4; Ch4: P3; Ch5: Pz; Ch6: P4; Ch7: 
O1; Ch8: O2 as shown in Figure 4. Nonetheless and 
if required other types of montage can be 
reconstructed from the chosen montage by executing 
a simple mathematical operation (re-referencing) in 
the “offline” analysis, as explained in our previous 
paper (Schembri et al., 2017). 

 

Figure 4: Electrode placement following the 10-20 system. 

In the induction session, each subject was briefed 
on the hardware being used and was shown a 
demonstration of an online P300 speller. 
Subsequently, the subjects’ were informed on the 
following: (1) they would be performing the same 
experiment four consecutive times; in the training 
phase; in lab conditions; with mild distractions; and 
in a real world environment, (2) the symbols to spell 
were “P3SPELLER” respectively, (3) there might be 
some distractions and that they are an integral part of 
the experiment, (4) they should answer any 
questions asked throughout the experiments while 
trying to maintain focus on the desired symbol. Any 
subjects’ query was answered at this stage. 

Before the start of the experiments, each subject 
was asked to relax for a few minutes in a seated 
position. The subject was seated approximately one 
meter away from the display. The researcher and his 
equipment were situated on the left side of the 
subject. The experiment was started when the 
subject was able to properly perform the task at hand 
and had no additional questions. Prior to the start of 
every experiment, the electrodes impedance was 
confirmed to be less than 5KΩ. 

The display presented to the subjects is shown in 
Figure 1 where 36 symbols were presented in a 6x6 
matrix. The subjects’ task was to visually focus their 
attention on the requested symbol, which was 
preceded by a cue i.e. one of the symbols was 
highlighted in blue at the beginning of the trials as 
depicted in Figure 5. The subject was asked to count 
the number of times the required symbol flashed 
which is then determined and predicted by the 
intersection of the (target) row and column. This 
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prediction entails distinguishing between non-target 
i.e. rows/columns stimuli that does not generate a 
P300 component and target i.e. row/column stimuli 
that generate a P300 component. Each row and 
column in the matrix was augmented randomly for 
100ms and the delay between two successive 
augmentations was 80ms. This led to an 
interstimulus interval (ISI) of 180ms. For each 
symbol, six rows and six columns were augmented 
for fifteen repetitions and there was no inter-
repetition delay. However there was a 3s inter-trial 
period between the end of the trials of one symbol 
and the beginning of trials of the next symbol. This 
allowed the subject to focus the attention on the next 
symbol. At the end of each symbol run, the predicted 
symbol was highlighted in green which indicated 
whether the subject got the correct target symbol as 
depicted in Figure 5. The subjects were given a short 
break between experiments. 

  

Figure 5: Requested symbol highlighted in blue and, after 
trials, predicted symbol highlighted in green. 

The training phase consisted of one session with 
15 random symbols by 15 trials each (i.e. 12 flashes 
of columns/rows per trial * 15 trials = 180 flashes 
per symbol). This was done in lab conditions and 
without any distractions. In previous experiments 
with different subjects we have seen that there was 
no discernible difference in further increasing the 
number of trials per symbol or number of symbols, 
in the training phase. According to previous success 
in the usability of the P300 speller with low cost 
equipment such as (Frey, 2016); two criteria were 
established to evaluate the optimal number of 
symbols and trials in the training session which 
correspond to two desired accuracies of 80% - 90% 
in an online system in lab conditions. The recording 
of the training phase took approximately 9 minutes. 

The Lab Conditions, Mild and Controlled User 
Distractions and Real World Environment consisted 
of one session each with the aforementioned 
conditions and configurations while spelling the 
symbols “P3SPELLER” consecutively. Similarly to 
the training phase, each symbol had fifteen trials 
each. The recording of each environment session 
lasted approximately 6 minutes. 

In total, there were 15 symbols spelled in the 
training phase and 9 symbols spelled in each of the 
three environments per subject. Hence due to the 
matrix disposition there were in total 2700 flashes in 
the training phase, amongst which 450 were targets; 
and 1620 flashes in each environment (1620 * 3 
environments), amongst which 270 (270 * 3 
environments) were targets. These values are per 
subject. The data was stored anonymously by 
referring to the subjects as subject1-5 respectively. 

2.5 Signal Processing - Online 

The signal was acquired using OpenViBE 2.0.0 
which is a C++ based software platform designed for 
real-time processing of biosignal data. Its most 
distinguishable feature is its graphical language for 
designing signal processing chains and its main 
components include the acquisition server and the 
designer. The acquisition server interfaces with the 
Cyton board and generates a standardized signal 
stream that is sent to the designer which in turn is 
used to construct and execute signal processing 
chains stored inside scenarios. 

The signal was obtained via the acquisition 
server which does not communicate directly with the 
Cyton board. Instead it provides a specific and 
dedicated set of drivers that does this task. The 
signal was obtained at a sampling rate of 250Hz with 
8 EEG and 3 accelerometer (auxiliary) channels. 
The sample count per sent block was set to 32 which 
define how many samples should be sent per 
acquired channel in a single buffer with valid values 
being powers-of-two, from 22 to 29. The board reply 
reading timeout was set to 5000ms and the flushing 
timeout was set to 500ms. The drift tolerance was 
set to 20ms, even though OpenVibe version 2.0 
largely relies on TCP tagging to align stimulation 
markers to the EEG signal; which we have used in 
our experiments. The drift correction can introduce 
artefacts in the signal and mask other potential faults 
such as a driver bug; which however did not occur in 
our experiments. Nevertheless this makes the drift 
correction mechanism redundant and its use will be 
discontinued in future ERP papers. The experiment 
paradigm was controlled by the designer where a 
number of scenarios were executed in succession.  

The first scenario was the acquisition of the 
signal and stimuli markers for the training phase. 
The recordings included the raw EEG and stimuli. 

The second scenario entailed the pre-processing 
of the signal where it trained the spatial filter using 
the xDAWN algorithm. The subjects’ data recorded 
in the training session was utilized, with the 
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following configuration and modalities. Initially we 
have chosen to eliminate the last three auxiliary 
channels which stored the auxiliary data of the 
accelerometer since the board was firmly placed on 
the desk and this information was not required. 
Subsequently a Butterworth band pass filter of 1Hz-
20Hz was applied with an order of 5 and a ripple 
(dB) of 0.5 to remove the DC offset, the 50Hz (60Hz 
in some countries) electrical interference, any signal 
harmonics and unnecessary frequencies which are 
not beneficial in our experiments. Next, no signal 
decimation was used since the sampling rate and 
count per buffer previously used in the acquisition 
server were not compatible with the actual signal 
decimation factor due to the Cyton board’s sampling 
rate of 250Hz (no available value in the sample 
count per block is factorable with 250Hz). However 
we still passed the signal through a time based 
epoching which generated ‘epochs’ (signal slices) 
with duration of 0.25s and time offset of 0.25s 
between epochs (i.e. we created a temporal buffer to 
collect the data and forward them into blocks). This 
implies that there was no overlapping of data and 
that the inputs for the xDAWN spatial filter and the 
Stimulation based epoching were based on epochs of 
0.25s rather than the whole data. In simplest terms 
we had one point for every 0.25s of data which made 
our signal coarser. Subsequently we passed the time 
based epochs and stimulations to the Stimulation 
based epoching which sliced the signal into chunks 
of a desired length following a stimulation event. 
This had an epoch duration of 0.6s (p300 deviation 
around 0.3s after the stimuli) and no offset. Lastly, 
the stimulations, time based epochs and the 
stimulation based epochs were passed to the 
xDAWN trainer which in simplest terms trains 
spatial filters that best highlight ERPs. The xDAWN 
expression, utilized in OpenVIBE, which has to be 
maximized, varies marginally from the original 
xDAWN (Rivet et al., 2009) formula where the 
numerator includes only the average of the target 
signals. In addition, the implemented algorithm 
maximizes the quantity via a generalized eigenvalue 
decomposition method in which the best spatial 
filters are given by the eigenvectors corresponding 
to the largest eigenvalues (Clerc et al., 2016). This 
scenario created twenty-four coefficients values in 
sequence (i.e. 8 input channels by 3 output channels) 
that were used in the following scenario. 

The third scenario carried on the pre-processing 
of the signal where it trained the classifier, partially 
with the values from the previous scenario. Once 
again the subjects’ raw data which was recorded in 
the training session was utilized with the elimination 

of the last three aux channels, the omission of signal 
decimation and the application of a Butterworth 
band pass filter of 1Hz-20Hz; identical to the 
previous scenario. Subsequently the parameters of 
the xDAWN spatial filter that were generated in the 
second scenario which include the 24 spatial filter 
coefficients, 8 input channels and output 3 output 
channels were used. This spatial filter generated 3 
output channels from the original 8 input channels; 
each output channel was a linear combination of the 
input channels. The output channels were computed 
by performing the “sum on i (Cij * Ii )” as shown in 
formula (3), where Ii represents the input channel (n 
is set to 8), Oj represents the output channel and Cij 
is the coefficient of the ith input channel and jth 
output channel in the spatial filter matrix. 

ܱ݆ =  ݆݅ܥ ∗ ݅ܫ
ୀଵ  (3)

Subsequently the outputted signals (i.e. the 3 
output channels) and the stimulations were passed 
equivalently into two separate stimulation based 
epoching; for the target and the non-target selection. 
These had epoch duration of 0.6s and no offset. The 
output i.e. both epoch signals (target and non-target) 
were again separately computed with block 
averaging and passed through a feature aggregator 
that combined the received input features into a 
feature vector that was used for the classification. 
This implies that two separate feature vector streams 
were outputted; the target and non-target selections. 
Ultimately both vector streams and the stimulations 
were passed through our classifier trainer. We have 
opted to pass all the data through a single classifier 
trainer, hence the native multiclass strategy was 
chosen, which used the classifier training algorithm 
without a pairwise strategy. The algorithm chosen 
for our classifier is the regular LDA. The output at 
this stage is a trained classifier with the settings 
outputted to a file for use in the next scenario. 

The fourth scenario consisted of the actual online 
experiments and was more complex, since it was 
necessary to collect data, pre-process it, classify it 
and provide online feedback to the subject. The 
front-end consisted of displaying the 6x6 grid, 
flashing rows and columns and give feedback to the 
subject. The back-end consisted of a number of 
processes. Primarily, the data was acquired from the 
subject in real-time and similar to what was done in 
the previous scenarios, the last three aux channels 
were eliminated, signal decimation was omitted, a 
Butterworth band pass filter of 1Hz-20Hz was used 
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and the parameters of the xDAWN spatial filter that 
were generated in the second scenario which 
included the twenty-four spatial filter coefficients 
were used. Subsequently the output and the 
stimulations were passed in the Stimulation based 
epoching which had epoch duration of 0.6s and no 
offset. This was then averaged and passed through a 
feature aggregator to produce a feature vector for 
the classifier. Lastly the classifier processor 
classified the incoming feature vectors by using the 
previously learned classifier (classifier trainer). 

The fifth scenario allows us to replay the 
experiments by selecting the raw data file and re-
processing the functions of the fourth scenario. 

2.6 Signal Processing - Offline 

The captured raw data was converted from the 
proprietary OpenVIBE .ov extension to a more 
commonly used .csv format using a particular 
scenario aimed for this task. The outputs were two 
files in .csv format which contained the raw data and 
stimulations respectively. These were later imported 
into MATLAB R2014a tables called samples and 
stims and then converted to arrays. Subsequently any 
unnecessary rows and columns in the samples array 
were removed. These consisted of the first rows 
which contained the time header, channel names and 
sampling rate; the first column which contained the 
time(s) and the last three columns which stored the 
auxiliary data of the accelerometer. Next, we filtered 
out the stims array to include the target stimulations 
with code (33285); non-target stimulations (33286); 
visual stimulation stop (32780), which is the start of 
each flash of row or column; and segment start 
(32771), which is the start of each trial (12 flashes, 6 
rows and 6 columns make up 1 trial). Additional 
data such as the sampleTime, samplingFreq and 
channelNames variables were extracted from the 
data and stored in the workspace.  

The samples array was later imported into 
EEGLAB for processing and for offline qualitative 
and quantitative analysis. The first process was to 
apply a band pass filter of 1-20HZ to eliminate the 
environmental electrical interference (50Hz or 60Hz 
dependent on the country), to remove any signal 
harmonics and unnecessary frequencies which are 
not beneficial in our experiments and to remove the 
DC offset. Subsequently we import the event info 
(the stimulations – stim array) in EEGLAB with the 
format {latency, type, duration} in milliseconds. 

Next, the imported data was used in ERPLAB 
which is an add-on of EEGLAB, and is targeted for 
ERP analysis. Although the dataset in EEGLAB 

already contains information about all the individual 
events, we have created an eventlist structure in 
ERPLAB that consolidates this information and 
makes it easier to access and display; and also 
allows ERPLAB to add additional information 
which is not present in the original EEGLAB list of 
events. Subsequently we take every event we want 
to average together and assign that to a specific bin 
via the binlister. 

Subsequently we extracted the bin-based epochs 
via ERPLAB (not the EEGLAB version) and set the 
time period from -0.2s before the stimulus until 0.8s 
after the stimulus. We have also used baseline 
correction (pre) since we wanted to subtract the 
average pre-stimulus voltage from each epoch of 
data. We have opted not to include any artefacts 
rejection, since this was not present in our online 
system. Lastly, we averaged our dataset ERPs to 
produce the required results which are shown in 
section 3.2. 

3 RESULTS 

3.1 Online Analysis 

Following the online experiments, we achieved the 
following results per subject. The letters to be 
spelled were P3SPELLER consecutively, while all 
percentages shown are rounded to the nearest one. 
Figure 6 depicts the results acquired per subject per 
environment. 

 

Figure 6: Graph representing the success per letter and per 
subject in our three environments. 

Additionally, in the following Table 1, the colour 
red (bold and italic in grayscale) denotes a bad 
prediction in both the row and column, the colour 
blue (bold) denotes a bad prediction in the column, 
while the colour purple (bold and underlined) 
denotes a bad prediction in the row. 

For instance, consider the following results for 
Subject1 as summarized in Table 1. Lab Conditions: 
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the subject had an 89% success rate with the letter L 
predicted as letter G i.e. the row prediction was 
correct but not the column. Mild Distractions: the 
subject had a 67% success rate with the letters E, L 
and R predicted as Z, K and P respectively, i.e. for 
the letter Z we had both row and column prediction 
incorrect, while for letter K and P we had a correct 
row prediction and an incorrect column prediction. 
Real World: the subject had a 78% success rate with 
the symbols P and L predicted as K and N 
respectively. The other subject’s results follow the 
same detailed description as above. 

The average accuracy for all the subjects in lab 
condition was 95.6%; in mild distractions it was 
84.6% and in real world environment it was 80.2%. 
This was in par with our hypothesis that by 
increasing the distractions to the subject, the 
performance of the system would be reduced. The 
average accuracy per subject in all three 
environments is shown in Table 2. It is interesting to 
point out that the least successful subject was 
subject3 which had previous experience using the 
P300 speller. This is an indication that actual 
training on the system doesn’t seem to affect the 
performance, hence reinforcing that P300 is an 
exogenous (reflex) i.e. reliant on the external 
stimulus characteristics. 

Table 1: Subject Results. 

S Lab Conditions Mild 
Distractions 

Real World 
Environment 

S1 8 out of 9 
P3SPEGLER 

predicted 

89% success 

6 out of 9 
P3SPZKLEP 

Predicted 

67% success 

7 out of 9 
P3SKENLER 

predicted 

78% success 
S2 9 out of 9 

P3SPELLER 
Predicted 

100% success 

9 out of 9 
P3SPELLER 

Predicted 

100% success 

7 out of 9 
P3SPEXFER 

predicted 

78% success 
S3 8 out of 9 

P3SPELLEF 
Predicted 

89% success 

6 out of 9 
P3SPEIIEQ 

predicted 

67% success 

6 out of 9 
P3SNDLKER 

predicted 

67% success 
S4 9 out of 9 

P3SPELLER 
Predicted 

100% success 

9 out of 9 
P3SPELLER 

predicted 

100% success 

9 out of 9 
P3SPELLER 

predicted 

100% success 
S5 9 out of 9 

P3SPELLER 
predicted 

100% success 

8 out of 9 
P3SPELL3R 

predicted 

89% success 

7 out of 9 
P3SPEILEX 

Predicted 

78% success 
 95.6% 84.6% 80.2% 

Table 2: Average accuracy per subject in all environments. 

S1 S2 S3 S4 S5 
78% 93% 74% 100% 89% 

3.2 Offline Analysis 

The following figures represent a sample of the 
results that were processed in offline analysis. We 
have chosen to show the signals of subject3 and 
subject4 since they represent the lowest and highest 
success rate throughout the three environments.  

We have also opted to present the averaged raw 
signals of every environment i.e. 9 symbols with 15 
trials per symbol; with 12 flashes of columns/rows 
per trial. The presented results are only passed 
through a band pass filter (1-20Hz) since this is 
needed to reduce the noise and unwanted 
frequencies, but it does not change the P300 signal 
i.e. it is essentially a pre-processing / conditioning 
step, it does not contribute directly to the analysis of 
the P300. In addition we have decided to refrain 
from using any artefact rejection in our offline 
analysis since it wasn’t present in our online system. 

Furthermore we are not presenting the xDAWN 
spatial filters since our aim is to show the barest raw 
signal that is captured with our low fidelity 
equipment within our three distinctive environments. 
This work is part of a larger project where the 
available data will be scrutinized in depth and results 
will be published subsequently. 

Figure 7(a-d) represent subject3’s lab, mild, real 
world environment and training phase respectively 
and similarly figure 8(a-d) represents subject4’s lab, 
mild, real world environment and training phase. 

4 CONCLUSION 

The use of Electroencephalography (EEG) signals in 
the field of Brain Computer Interface (BCI) has 
gained prominence over the past decade, especially 
with the institution of low cost devices, which made 
it accessible to a wide variety of researchers. 
However, experimentation on this technology is still 
being restricted to lab conditions where the 
experiments are (1) targeted for and being performed 
in a noise-free environment and (2) without any 
interruptions to the subject. The aim of this paper is 
to steer away from perfect lab conditions and assess 
to which extent our low fidelity equipment is 
capable to function in a reliable and consistent 
manner in the afore environments. 
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a) b)  
 

c) d)  

Figure 7: Subject3’s averaged ERP over all trials in (a) lab environment (b) mild distractions and (c) real world 
environment. The averaged training ERP session is shown in (d). 

a) b)  
 

c)  d)  

Figure 8: Subject4’s averaged ERP over all trials in (a) lab environment (b) mild distractions and (c) real world 
environment. The averaged training ERP session is shown in (d). 
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In continuation of our previous papers (Schembri 
et al., 2017) (Schembri et al., 2018) and part of this 
paper’s scope; we have also resumed the validation 
of our equipment’s suitability and performance, 
presently, in the execution of the P300 speller 
domain. We have also improved performance upon 
(Frey, 2016) which was the last paper that utilized 
our equipment in conjunction with P300. In fact we 
have reduced the flashes per symbol from 24 down 
to 12 and have implemented the xDAWN algorithm 
which was not present in that study. Even though 
there are faster spellers, we have achieved the best 
published results using our specific equipment, and 
the aim was not the speed of the application but 
rather how it performs in our environments. Even 
though the success rate and speed might be related, 
we needed a basis for comparisons for future studies. 

Our main contribution is the assessment of the 
ways and extents to which different degrees of 
user’s distraction affect the detection success, 
achievable using low fidelity equipment. Our results 
demonstrate the applicability of using off-the-shelf 
equipment as a means to successfully and effectively 
detect P300 responses, with different degrees of 
success across the three distinctive types of 
environments. It is important to note that we are not 
implying that this technology can yet be used 
effectively in the real world environment but merely 
exposing the suitability and effectiveness we had in 
our controlled environments. 

In this paper, we have presented a novel 
approach in conducting EEG experiments by 
introducing three distinctive environments rather 
than limited to the traditional lab conditions. The 
promising results achieved show that we had an 
overall success rate of 95.6% in the lab conditions, 
84.6% success rate with mild distractions and 80.2% 
success rate in the real world environments, which 
falls between the original desired levels of between 
80-90%. This was a surprising result, since those 
desired levels where aimed for lab conditions. 
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