
DBStore: A TrustZone-backed Database Management System for
Mobile Applications

Pedro S. Ribeiro1, Nuno Santos1 and Nuno O. Duarte2

1INESC-ID / Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
2Max-Planck Institute for Software Systems, Saarbruecken, Germany

Keywords: Trusted Execution Environments, ARM TrustZone, Security, Android Applications, Mobile Ticketing.

Abstract: ARM TrustZone technology has been widely use to enhance the security of mobile devices by allowing for
the creation of Trusted Execution Environments (TEE). However, existing TEE solutions tend to struggle with
a trade-off between security and functionality: they either expose a larger attack surface to favor dynamic
code loading inside the TEE, or depend on the static deployment of trusted services inside the TEE which is
more cumbersome and error-prone to maintain. This paper proposes the deployment of a trusted service which
aims to serve a broad range of applications by offering secure database storage capability inside the TEE. We
present DBStore, a TrustZone-backed database management system for mobile applications. Applications can
create and operate DBStore databases inside a TEE that provides confidentiality and integrity protection of
databases and respective SQL queries without depending on the integrity of the mobile OS. We present a case
study where DBStore is used in order to thwart existing attacks in HCE-based mobile ticketing applications.

1 INTRODUCTION

Trusted Execution Environments (TEE) have played
an increasing role within the mobile security land-
scape. A TEE is an isolated execution environment
which can provide confidentiality and integrity pro-
tection of code and data. Its appeal comes from the
fact that these properties can be enforced against a
strong attacker with the ability to compromise the
OS (e.g., a rootkit). For this reason, a TEE can be
a very important resource for protection of sensitive
code and assets. In the mobile world, a TEE tends
to be created by special hardware available in ARM
processor-based devices: ARM TrustZone. Examples
of commercially deployed systems that use TrustZone
for protection of data and code inside a TEE include
Hardware-backed Android Keystore (Android, 2018)
and Samsung Knox (Samsung, 2013).

Both academia and industry have pushed the de-
velopment of TEE solutions that can be both func-
tionally rich and secure. Achieving both goals, how-
ever, is challenging. In one line of work, the idea
is to develop specific security services that reside in-
side the TEE (Liu and Cox, 2014; Sun et al., 2015b).
Hardware-backed Android Keystore is such an exam-
ple for storing cryptographic keys. Since the TEE
runtime system can be customized to offer a single

service, the resulting trusted computing base can be
very small, which favors security. Furthermore, since
it provides a narrow API to OS and mobile apps, the
attack surface is also reduced. A downside of this
approach is that it requires firmware changes for ev-
ery newly deployed service, which discourages their
wider adoption by device manufacturers.

At the other end, we find TEE runtime systems
which aim to allow application code to be loaded and
executed inside the TEE itself. Examples of such sys-
tems include Samsung Knox, the Trusted Language
Runtime (TLR) (Santos et al., 2014), and systems that
implement GlobalPlatform’s TEE specifications (opt,
). Because these systems allow dynamic code loading
at runtime, it means that new security services can
be deployed without the need to change the device
firmware. However, although the application code is
deployed inside independent TEE-hosted sandboxes,
the system’s attack surface increases. Furthermore,
in some cases, such as Samsung Knox’s, the trusted
computing base is very large. Both these factors may
weaken the overall security of the system.

Our goal is to devise an intermediate solution that
allows mobile applications to take advantage of the
benefits of TEEs without (i) allowing for dynamic
loading and execution of third-party application code
inside the TEE, and (ii) requiring frequent firmware

396
Ribeiro, P., Santos, N. and Duarte, N.
DBStore: A TrustZone-backed Database Management System for Mobile Applications.
DOI: 10.5220/0006883603960403
In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 2: SECRYPT, pages 396-403
ISBN: 978-989-758-319-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



upgrades to mobile devices. To this end, we pro-
pose a single trusted service aimed to provide general-
purpose database hosting inside the TEE. Such a ser-
vice would provide a narrow interface through which
mobile applications can preserve their databases se-
curely and issue database queries to be executed in-
side the TEE while preserving the confidentiality and
integrity of their execution state. With our solu-
tion, although mobile applications cannot run arbi-
trary code inside the TEE, they enjoy a great degree
of flexibility in managing their data securely through
the possibility to issue sophisticated database queries.

This paper develops this idea and presents the de-
sign and implementation of DBStore, a TrustZone-
backed database management system for mobile ap-
plications. DBStore provides an SQL interface to
application-custom databases. A simple-to-use API
masks the security protocols designed to defend
against rollback and replay attacks, and provide con-
fidentiality and integrity protection of both databases
and SQL commands, including inputs and outputs. In
our current prototype, we adopted SQLite as our SQL
engine running inside the TEE. By providing an SQL
interface, we aim to offer a programming model fa-
miliar to application developers. DBStore was care-
fully designed in order to provide secure remote ac-
cess to the databases. By leveraging TrustZone for
isolation purposes, DBStore can protect applications’
databases in the presence of a powerful attacker which
can control the local operating system.

To demonstrate our system, we present a case
study in which we apply DBStore in secure mobile
ticketing applications. We present the design of an
existing HCE-based mobile ticketing app based on
Android keystore, and analyze its vulnerabilities. We
then show how DBStore allows to mitigate such at-
tacks with simple DBStore SQL transactions. Al-
though we have focused on a single use case, we en-
vision DBStore to be used for a wide range of appli-
cations, e.g., e-health, mobile payments, etc.

2 BACKGROUND

First, we present some necessary background infor-
mation for both our threat model and system design.

2.1 ARM TrustZone Technology

ARM TrustZone is a security extension for ARM pro-
cessors that provides a hardware-level isolation be-
tween two execution domains: normal world (NW)
and secure world (SW). Compared to the NW, the SW
has higher privileges, as it can access the memory,

CPU registers and peripherals of the normal world,
but not the other way around. Isolation is enforced by
checking and controlling the state of the CPU through
a NS bit, and partitioning the memory address space
into secure and non-secure regions.

Interaction between worlds requires a world
switch operation triggered by the SMC instruction.
TrustZone devices equipped with a secure boot mech-
anism provide integrity and authenticity protection of
the SW software. The binary of the SW software must
be part of the device firmware and signed by the de-
vice manufacturer. When the device is powered, the
processor enters SW, jumps to the initialization proce-
dure of the SW software, which then switches to NW
and hands over control to the OS bootloader.

2.2 TrustZone-based TEE Systems

TrustZone is used in millions of ARM-based mobile
devices for the creation of Trusted Execution Envi-
ronments (TEE). A TEE consists of an isolation en-
vironment in which trusted applications can execute
without the interference of the local (untrusted) oper-
ating system. When based upon TrustZone technol-
ogy, the TEE typically resides in the secure world and
the rich operating system lives in parallel in the nor-
mal world. This strict separation between both envi-
ronments ensures that a potentially compromised OS
cannot access the TEE’s internal state.

We distinguish two types of TEE architectures:
TEE kernel (opt, ; Fitzek et al., 2015) or TEE ser-
vice (Sun et al., 2015a). In the first case, the TEE
provides an interface to the normal world that allows
for trusted applications to be installed and executed
inside the TEE. On the other hand, TEE services ex-
pose only a function call interface to the normal world
and implement a specific application. They do not al-
low for dynamic loading of third-party trusted appli-
cations inside the TEE, which reduce exposure of po-
tential vulnerabilities to an attacker when compared
to the TEE kernel architecture.

2.3 A Case for TrustZone-backed DBs

In spite of the security benefits of the TEE service ar-
chitecture, an important downside lies in its inflexibil-
ity: in order to deploy a new trusted application inside
the TEE, end-users’ devices need to be upgraded with
new firmware containing the application binary and
be rebooted so that the new application can be prop-
erly instantiated inside the secure world upon boot.
However, firmware upgrades tend to be error-prone
and quite cumbersome for the end-users. To alleviate
this problem, the question we raise is whether there

DBStore: A TrustZone-backed Database Management System for Mobile Applications

397



exists a class of applications that could benefit from
a common general trusted service so that the applica-
tions could be executed inside the normal world by
relying only on this single trusted service for protect-
ing this sensitive state.

To answer this question, we propose a new trusted
service – DBStore – aimed at maintaining and secur-
ing application databases inside a TrustZone-backed
TEE. With DBStore, we decouple the persistent state
of the application from the logic of the application,
and provide a way to secure its persistent state only.
As a result, the logic of the application can reside
in the normal world thereby precluding the need to
upgrade the devices’ firmware. On the other hand,
since databases are widely used, many different appli-
cations can benefit from DBStore. More specifically,
our goal is to serve a particular class of applications in
which a remote client may need to access and manip-
ulate application data stored locally while requiring
high level protection, such as secure mobile ticketing,
mobile payment, and e-health applications.

2.4 Security Goals and Threat Model

In the scenarios we envision, distributed applications
consist of two parts: a client side which is kept under
the control of an application provider, and a counter-
part mobile side which runs on users’ devices. De-
pending on the specific application, the remote client
can be implemented, e.g., by a remote cloud server, a
nearby embedded device, etc. The mobile application
can solicit storage space at the DBStore for storing
dabatases and should interact with its databases using
standard SQL statements.

DBStore must give application providers strong
assurances about the integrity and confidentiality of
the guest databases. It must prevent an adversary from
reading or altering not only the contents of database
records, but also the inputs / outputs of SQL trans-
actions issued by the clients. It must defend against
replay attacks allowing for the re-execution of past
legitimate SQL, and against rollback attacks, which
attempt to revert the database state to an old version.

The adversary can intercept and modify messages
exchanged between client and DBStore, either while
in transit over the network, or by controlling the mo-
bile application or the mobile OS. Such control can
be gained, e.g., through malware exploits, or device
routing. We assume, however, that the adversary can-
not perform physical attacks to the TrustZone-enabled
mobile platform. Hardware and cryptographic primi-
tives are considered to be correct and DBStore com-
ponents residing in the SW belong to the trusted com-
puting base. Side-channel attacks are not in scope.

Normal World

DBStore Manager

SQL
Engine

Secure World

DBStore

Mobile Device

Client Application

DBStore Lib

Remote Client

OS

Mobile Application

DBStore Lib

ARM TrustZone Hardware

Rich OS

DBStore Driver

Internet

DB

Figure 1: DBStore architecture: arrows represent invoca-
tion flow of an SRPC.

3 DESIGN

Figure 1 presents a high-level architecture of DB-
Store. The SW is used to implement a TEE where
the DBStore resides; OS and mobile applications run
in the NW. Thus, mobile applications and OS have no
direct access to the DBStore state. The client applica-
tion interacts with the mobile application by submit-
ting SQL commands to the remote databases hosted
inside the DBStore. The databases are securely main-
tained by the DBStore, which has exclusive access to
the databases’ state and is responsible for the execu-
tion of the SQL statements submitted by clients. The
DBStore ensures that the SQL commands issued by
the clients are securely forwarded to and executed on
the intended database and the results routed back to
the respective client.

SQL commands are issued to a database residing
on a remote DBStore by invoking SQL Remote Pro-
cedure Calls (SRPC). To this end, an API is provided
by the DBStore library. An SRPC comprises one or
more SQL statements, such as “create table”, “insert
into”, and ”select” commands, and are performed as a
single transaction. An SRPC can be parameterized by
inputs provided by the client application, and can op-
tionally return an output to the client application. The
DBStore library and DBStore manager implement se-
curity protocols which involve the exchange of infor-
mation in the form of specific Protocol Data Units
(PDUs). An SRPC is translated into PDUs that are
sent over the network to the mobile application. The
mobile application must then issue a request to a DB-
Store driver in order to forward the PDUs to DBStore.
This driver is required because the context switch to
SW needs kernel privileges. DBStore, then, handles
the PDUs, assigns the SRPC commands to the inter-
nal SQL engine, and returns the results all the way
back to the client. In our system, the SMC instruction
is invoked by the DBStore driver to enter the secure
world and by the DBStore to exit and return to the OS.

SECRYPT 2018 - International Conference on Security and Cryptography

398



Next, we provide additional details of our system.

3.1 Initialization Protocol

Before deploying databases on a remote DBStore, a
client must first verify that the remote peer runs a le-
gitimate DBStore inside a TrustZone-enabled device.
Conversely, the DBStore must be able to authenticate
the client and implement an authorization policy that
prevents other applications from accessing the remote
client’s databases. To obtain these guarantees, the
client and the remote DBStore must first perform an
initialization protocol by exchanging two PDUs: M1
and M2 (see Table 1).

To prove that the DBStore service is authentic
and resides inside a valid TrustZone-enabled environ-
ment, the first message (M1) contains a challenge, a
nonce n1, that the DBStore must sign with a valid
attestation key (T K). The attestation key is a key-
pair that the device manufacturer must embed into the
device firmware. The private part T K− is accessible
within the SW (if the secure boot passes). If DBStore
is able to sign n1 with such a key, then it means that
the DBStore software has not been tampered with and
runs inside the SW. The DBStore must then sign n1
with T K− and send the signature along with a certifi-
cate (CT K) that contains the public key T K+ required
to check the signature. This certificate is issued by the
device manufacturer in order to authenticate the attes-
tation key. Thus, by checking the signature against
a legitimately certified attestation key, the client can
verify the authenticity of the remote DBStore.

To authenticate the remote client and restrict ac-
cess to the local databases by alien applications, M1
contains nonce n1, an application ID and both are
signed with the private part AK− of application key-
pair (AK). This keypair must be generated by the ap-
plication provider and the private part must be kept se-
cret by the client. The public part AK+ is included in
the mobile application package. Upon receiving M1,
DBStore can validate the signature by obtaining AK+

from the mobile application thus authenticating the
client. To ensure that future interactions remain mu-
tually authenticated, a session key (SK) is exchanged
as a token of successful client authentication and ser-
vice remote attestation. This is reflected in message
M2 which includes a session key SK created by the
DBStore and encrypted with AK+. This result is also
included in the signature by T K−.

This way, the DBStore can ensure the authentic-
ity of the client endpoint, because only the legitimate
client application holds the private key AK− which
will enable the session key to be decrypted. On the
other hand, by checking the signature of M2, the

Table 1: DBStore protocols: C: remote client, S: DBStore.

Initialization Protocol
(M1) C→ S: 〈AppId,n1〉AK−

(M2) S→ C: 〈n1,{SK}AK+〉T K− , CT K

SRPC Invocation Protocol
(M3) C→ S: n2, {SrpcReq}Ki , hmac(Ki)
(M2) S→ C: (M4.a) S→ C: n2, Ok, {SrpcRes}Ki , hmac(Ki)
(M4.b) S→ C: n2, Fail

Resync Protocol
(M5) C→ S: n3, Resync, hmac(SK)
(M6) S→ C: n3, {i,salt}SK , hmac(SK)

client can be assured about the authenticity of that
session key (i.e., that it was issued within a legiti-
mate DBStore-enabled device) and of the freshness
of the session key (because the tuple includes nonce
n1 which has been chosen by the client itself). The
session key is then crucial in securing SRPCs.

3.2 SQL Remote Procedure Calls

After the initialization, the client can invoke SQL
Remote Procedure Calls (SRPC) on DBStore. Each
SRPC generates a message to the DBStore (M3),
which will then return one of two possible messages:
M4.a if the request message was well formed, or M4.b
otherwise (see Table 1). The SRPC request message
M3 includes field SrpcReq which contains the SQL
commands and inputs to be executed on the remote
DBStore. The SrpcRes field is included in message
M4.a and contains the execution output to be sent to
the client. For confidentiality protection, SrpcReq and
SrpcRes are encrypted with a symmetric key shared
between the client and the DBStore. For message in-
tegrity protection, the same key is used to generate
HMAC codes for the whole message. Nonce n2 helps
the client detect replay attacks of old M4 messages.

Although the symmetric key shared between both
endpoints is the session key SN, this key is not used
in messages M3 and M4.a. Instead, the client creates
a new symmetric key Ki for each invoked SRPC. Ki is
generated by calculating a hash of SK concatenated
with a counter value i, which is initialized to zero
and incremented for every SRPC request issued by
the client. To determine Ki, the DBStore must also
keep a local counter for the i value. To calculate the
key of an incoming SRPC message, all the DBStore
has to do is to append i to SK, and compute the hash
of the result, yielding Ki, which is then used to de-
crypt SRPC #i and encrypt the corresponding SRPC
response. After submitting the response to the client,
the DBStore increments its local i counter.

This mechanism serves two purposes. First, it pre-

DBStore: A TrustZone-backed Database Management System for Mobile Applications

399



vents replay attacks of old SRPC requests. Since the
DBStore uses a single key Ki for each request, then
old messages (i.e., corresponding to request numbers
less than i) cannot be decrypted. Furthermore, the i
counter of the DBStore is implemented using a Trust-
Zone monotonic counter, thereby preventing an ad-
versary from decrementing i. This mechanism also
avoids overuse of the session key SN. By generating
a new symmetric key Ki, we reduce the exposure of
SN thereby enhancing the overall system security.

If for some reason the client gets out of sync with
the DBStore about the current counter value, and the
legitimate client sends a request encrypted with K j
different than Ki expected by the DBStore (i.e., j 6= i),
the DBStore will not be able to properly decrypt the
SRPC request field of message M3 and then returns a
failure message (M4.b). To overcome this issue, the
client triggers a resync protocol by which the DB-
Store will return the current i value encrypted with
the session key (see M5 and M6 in Table 1).

3.3 Protection of DBStore Databases

To secure the DBStore databases at rest, we leverage
the secure storage allocated to the SW. We use addi-
tional TrustZone mechanisms to prevent rollback at-
tacks and protect data confidentiality. In particular,
we use secure monotonic counters to keep track of
the most updated version of DBStore databases. Ev-
ery time a database is updated, its version number is
incremented and written into the database, and the se-
cure monotonic counter is also incremented. If the
device is rebooted and the database is replaced with
an older version, the version number of the recovered
database and the current value of the counter will be
inconsistent, forcing DBStore to raise an exception.
To preserve confidentiality, the DBStore databases
(and associated version numbers) are encrypted with
a symmetric key which is then sealed, i.e., encrypted
with a key which is released only if the secure boot is
successful. This prevents an adversary from retriev-
ing the encryption key and decrypt the database.

3.4 Prototype Implementation

We implemented an initial DBStore prototype for the
Freescale NXP i.MX53 Quick Start Board. The DB-
Store runs inside the SW and consists of several com-
ponents. First, it comprises a small kernel responsi-
ble for memory management, thread execution, and
world switch operations. To this end, we adopted
the base-hw custom kernel from the Genode Frame-
work (gen, ), which comprises a 20 KLOC codebase.
The logic responsible for DBStore management is im-

plemented in C. It is also responsible for the manage-
ment of symmetric cryptographic keys, and provide
cryptographic functions. To maintain a reduced code
base, we used the AES-128 implementation from the
mbed TLS library as the symmetric key encryption al-
gorithms. We also adapted SHA-256 from mbed TLS
to calculate cryptographic hashes.

As for the SQL engine implementation, we ported
SQLite. For database persistence, we implemented
a secure storage service that mediates access to a
filesystem residing in the SW, through an API similar
to that used by user level programs and libraries such
as SQLite. More specifically, we configured a dedi-
cated partition as secure in Genode’s partition man-
ager (part blk). In order to manage files in this parti-
tion, we used Genode’s dde rump port of a rump ker-
nel, specially crafted with a filesystem driver.

For the NW, we took advantage of Genode’s Vir-
tual Machine Monitor (VMM) to run a paravirtualized
Android OS, which leverages a custom-made Linux
kernel for Genode. With respect to the interface be-
tween NW and SW, we created a Linux kernel mod-
ule offering an API that triggers the necessary world
switches through SMC invocations.

4 CASE STUDY

In this section, we study a proprietary HCE-based mo-
bile ticketing application for public transports with
the purpose of illustrating how DBStore can thwart
some of its fundamental security limitations. HCE,
which stands for Host Card Emulation, was intro-
duced in the Android OS and it allows mobile applica-
tions to maintain software emulated contactless cards
and communicate with NFC readers.

4.1 HCE-based Mobile Ticketing

HCE-based mobile ticketing is penetrating the realm
of public transports, such as trains and buses. In a
typical workflow, a passenger installs the application,
signs up with a username and password, logs in, and
purchases a virtual card with credits for an amount of
trips. This information is then downloaded and main-
tained inside an HCE-emulated card by the mobile
app. To perform a trip, the passenger must validate
the card by swiping the mobile device in front of the
NFC-enabled reader. The reader communicates via
NFC with the app, which checks if enough credits ex-
ist in the virtual card. If so, it decrements the credits
available and tells the reader to authorize the trip.

From a security point of the view, the main con-
cern is to prevent fraudulent passengers from travel-

SECRYPT 2018 - International Conference on Security and Cryptography

400



ing without credit. Thus, it is necessary to prevent
forging new virtual cards, stealing virtual cards from
other passengers, incrementing credits of legitimately
purchased virtual cards, and double spending credits
of valid virtual cards. Since the passengers’ mobile
device may be disconnected from the network, ticket
validation must be able to operate offline securely,
by relying only on NFC communication with nearby
readers and on the mobile devices’ local resources.

Card Purchase: When a ticket is purchased, the
server generates a secret serial number for the new
virtual card. This secret is cryptographically signed
and sent to the mobile application along with the num-
ber of associated trip credits over an authenticated
HTTP connection. The signature is checked against
the public key of the ticketing server, and the virtual
card’s data (serial number and credits) are written on
a private file owned by the application. This file is en-
crypted with a key K protected in Android keystore.

Card Validations: By means of a handshake between
card reader and mobile application, the card reader
is authenticated and a session key is exchanged. The
card reader sends a validation request message to the
mobile application via the Android’s HCE service.
The app decrypts the virtual card file with key K
(released by the Android keystore), and checks that
enough credits exist. If so, it sends to the reader the
serial number of the virtual card encrypted with the
session key and updates the local file with a decre-
mented credit. For every update, the file is encrypted
with a new key K that replaces the previous one.

Card Recharge: The mobile application connects to
the ticketing server over HTTPS. When the payment
is ended, the mobile application learns the amount
of credits just acquired and updates the local file se-
curely like in a card validation.

4.2 Existing Security Vulnerabilities

Despite the security mechanisms described above,
several attacks can be performed by an adversary with
the ability to control the operating system of a passen-
ger’s mobile device. This can be achieved by acciden-
tal rootkit infection or by intentional device rooting.
Next, we describe some critical attacks and their im-
pact to the overall application security. We consider
hardware-backed Android keystore implementations.

Attack 1 – Rollback keystore files and card data: The
encrypted key K is encrypted with the public part of
a keypair and persisted inside an Android keystore
file located in /data/misc/keystore/user 0. The key-
pair files are encrypted with a master key that is main-
tained inside the TEE and that cannot be retrieved by

typical means. Both encrypted items, ticket data and
key K are stored on the application data folder. Thus,
an adversary with root privileges can backup all these
files, and replace them with older copies. This attack
enables an attacker to travel using a single card for as
long as its serial number is not blocked.

Attack 2 – Steal keypair with rogue app: This attack
leverages the fact that Android keystore preserves the
keypairs of a given application in two files: “(App’s
User ID) USRPKEY (Key Entry Alias)” and “(App’s User
ID) USRCERT (Key Entry Alias)”. The owner of the
keypair is identified by the (App’s User ID) bit. To
launch the attack, the adversary starts by creating a
KeyStealer application aimed to retrieve the keypair
of the mobile ticket app from the keystore file and
write it elsewhere unencrypted; with that keypair, K
can be obtained and hence the raw card data. Then,
it is only necessary to change the User ID of files
generated for the HCE mobile ticketing app to match
KeyStealer’s. Android keystore will be tricked into
believing that the KeyStealer app owns that keypair
and will decrypt it using the master key.

Attack 3 – Reverse engineer the mobile app: By using
reverse engineering tools, an attacker can modify the
mobile app so as to prevent credit decrementation at
each validation. Since the card reader devices have
currently no means to authenticate the mobile end-
point, they would not be able to distinguish between
a correct and a modified application.

4.3 Overcoming Existing Limitations

The attacks described above are possible because the
security depends on the integrity of the OS. This sec-
tion describes how to thwart these attacks using DB-
Store. In our solution, rather than preserving the vir-
tual card data inside an encrypted file (and the respec-
tive encryption key secured in Android keystore), this
data will be secured inside a DBStore database. The
DBStore clients will be two: the ticketing server and
the validation reader devices. An application keypair
(see Section 3.1) must be generated: the public part
is included in the mobile app package and the private
part is secretly maintained by both ticket server and
reader devices. Then, the revised mobile ticketing app
works as follows.

First, upon user signing up, the ticketing server
runs the initialization protocol with the mobile end-
point. Next, the ticketing server issues a first SRPC
aimed at initializing the virtual card database inside
the DBStore (see Listing 1). The DB contains a table
of card records. Each record has a card type, a serial
number, and current credits.

DBStore: A TrustZone-backed Database Management System for Mobile Applications

401



-- SQL code to intialize a mobile ticketing DB
DROP TABLE IF EXISTS Tickets;
CREATE TABLE Tickets(SN INT, Type TEXT , Credits

INT);

-- SQL instructions for card purchasing
INSERT INTO Tickets VALUES(@sn, @cardtype ,

@credits);

-- SQL instructions for card validation
UPDATE Tickets

SET Credits = CASE
WHEN Credits > 0 THEN (Credits - 1) ELSE

-1 END
WHERE Type = @cardtype;

SELECT SN, Credits FROM Tickets WHERE Type =
@cardtype;

--SQL instructions for card recharging
UPDATE Tickets SET Credits = (Credits + @amount)

WHERE Type = @cardtype;

Listing 1: SQL instructions for mobile ticketing app.

For card purchase and card recharge, the ticketing
server only needs to issue SRPC calls for inserting
and updating the DB, respectively. This is shown in
Listing 1. For the validation operation, the reader is-
sues a transaction that decrements the current credit of
the virtual card if the current credit value is positive.
Otherwise it sets its value to -1, indicating that credit
has been exhausted. The second SQL command reads
the current credit value along with the card’s serial
number so that the client—i.e., the reader—can deter-
mine if passage can be granted or not: -1 means it is
not. Since DBStore protects against rollback attacks,
Attack 1 is no longer possible. Attack 2 fails because
DBStore keeps all relevant key material secured in-
side the TrustZone-enabled TEE. Lastly, Attack 3 is
not possible because, through the initialization proto-
col, all SRPCs run inside the DBStore, hence outside
the adversary’s reach.

4.4 Performance Evaluation

To study the performance overhead of DBStore in
the HCE-based mobile ticketing application, we mea-
sure the execution time of three main card opera-
tions tested on our DBStore prototype. We performed
comparative measurements both in NW and SW. The
reported numbers exclude network communication
costs. We use an i.MX53 Quick Start Board, 1 GHz
ARM Cortex-A8 Processor, and 1 GB of DDR3 RAM
memory. For each experiment, we do 50 runs and we
report the mean and standard deviation.

Figure 2 presents the execution time in both NW
and SW of the tested card operations: purchase,
recharge, and validation. The standard deviations are
found atop each bar. The execution time is broken up
into two phases: “operation” refers to the core logic
of all three cases, which is common in NW and SW;

 0

 2

 4

 6

 8

 10

NW SW NW SW NW SW

E
xe

cu
tio

n 
tim

e 
(m

s)

Context-Switch
Operation

0.64ms

0.57ms

0.51ms

0.4ms

0.51ms

0.35ms

ValidationRechargePurchase

Figure 2: Card operation execution times.

“context-switch” refers to the logic associated with
world context switch and exists in the SW alone.

The results show that purchase queries are faster
since they consist of a simple insertion in the ticket
table. The card recharge query is slower since it in-
volves a write operation on the table to update the
card balance. The card validation query is the slowest
since it must first read the table to get the balance and
validate the operation, and only then write the new
updated card balance to the table. The SW setting in-
curs a constant performance penalty of roughly 3ms
associated with the context switches. Considering the
brought about security benefits, this overhead causes
little usability impact in mobile ticketing.

5 RELATED WORK

There is significant work on the protection of user
data on mobile devices. Aquifer (Nadkarni and
Enck, 2013) employs application workflow control
to prevent accidental information disclosures. Taint-
Droid (Enck et al., 2010) leverage information flow
control to trace user data movements within the op-
erating system. MOSES (Russello et al., 2012) en-
forces contextual security profiles, e.g. Work, Pri-
vate, etc. Another group of systems that protect data
within an OS aim to enforce Digital Rights Manage-
ment (DRM) (Ongtang et al., 2010). While these sys-
tems provide effective mechanisms to protect data in
a mobile device, their main downfall is their depen-
dence on the integrity of the OS.

Some existing work has focused on the secu-
rity of the Android keystore. Sabt et al. (Sabt and
Traoré, 2016) formally prove the failure of the key-
store’s encryption scheme in providing integrity guar-
antees, and exploit this flaw to define a forgery attack
to breach its security. Cooijmans et al. (Cooijmans
et al., 2014) assess the keystore’s security, particularly
in mobile devices where keystores are protected by

SECRYPT 2018 - International Conference on Security and Cryptography

402



ARM TrustZone. Given the importance of Android
keystore for mobile security, we propose an analo-
gous TrustZone-backed service for the protection of
sensitive user-level databases.

The research on ARM TrustZone for mobile se-
curity has been prolific. Some systems provide pro-
vide specific secure services, such as secure authenti-
cation (Liu and Cox, 2014), one-time-password (Sun
et al., 2015b), and trusted I/O channels (Li et al.,
2014). Others allow for the execution of application
code instantiated inside SW-hosted sandboxes (San-
tos et al., 2014). In contrast, DBStore does not al-
low for the execution or arbitrary code inside the SW,
therefore reducing a potential attack surface, and yet
provides a rich SQL interface that allows for secure
database hosting.

The idea of using a TrustZone-based TEE for pro-
tection of ticket data has appeared in prior work.
In one case, this idea was sketched at a very high-
level in a position paper (Hussin et al., 2005) with-
out any actual implementation. In other cases, a soft-
ware component of the mobile ticketing application
must run inside a TEE sandbox, which is either sup-
ported by some small trusted kernel (Tamrakar and
Ekberg, 2013) or by a TEE-emulated HCE environ-
ment (Merlo et al., 2016). We demonstrate an alter-
native and yet more general way for securing mobile
ticketing based on TEE-backed SQL commands.

6 CONCLUSIONS

This paper presented DBStore, a system that allows
mobile applications to create and operate databases
inside a TrustZone-backed TEE. It preserves the con-
fidentiality and integrity of the data against a powerful
adversary that can control the OS. To foster portabil-
ity, applications interact with DBStore through a stan-
dard SQL interface. We show that DBStore can be
easily adopted in order to secure an HCE-based mo-
bile ticketing application for public transports.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their com-
ments and suggestions. This work was partially
supported by Fundação para a Ciência e Tecnolo-
gia (FCT) via projects UID/CEC/50021/2013 and
SFRH/BSAB/135236/2017, and by COMPETE 2020
/ Portugal 2020 / União Europeia via project Mobile
Security Ticketing (#11388), which is presented by
Link Consulting Tecnologias de Informação SA.

REFERENCES

OP-TEE. https://www.op-tee.org.
The Genode OS Framework. http://genode.org.
Android (2018). Android Key Store. https://developer.

android.com/training/articles/keystore.html.
Cooijmans, T., de Ruiter, J., and Poll, E. (2014). Analysis

of Secure Key Storage Solutions on Android. In Proc.
of SPSM.

Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., Mc-
Daniel, P., and Sheth, A. N. (2010). TaintDroid: An
Information-Flow Tracking System for Realtime Pri-
vacy Monitoring on Smartphones. In Proc. of OSDI.

Fitzek, A., Achleitner, F., Winter, J., and Hein, D. (2015).
The ANDIX Research OS – ARM TrustZone Meets
Industrial Control Systems Security. In Proc. of IN-
DIN.

Hussin, W. H. W., Coulton, P., and Edwards, R. (2005). Mo-
bile ticketing system employing trustzone technology.
In Proc. of ICMB.

Li, W., Ma, M., Han, J., Xia, Y., Zang, B., Chu, C.-K.,
and Li, T. (2014). Building Trusted Path on Untrusted
Device Drivers for Mobile Devices. In Proc. of APSys.

Liu, D. and Cox, L. P. (2014). VeriUI: Attested Login for
Mobile Devices. In Proc. of HotMobile.

Merlo, A., Lorrai, L., and Verderame, L. (2016). Efficient
Trusted Host-based Card Emulation on TEE-enabled
Android Devices. In Proc. of HPCS.

Nadkarni, A. and Enck, W. (2013). Preventing accidental
data disclosure in modern operating systems. In Proc.
of SIGSAC.

Ongtang, M., Butler, K., and Mcdaniel, P. (2010). Porscha:
Policy Oriented Secure Content Handling in Android.
In Proc. of ACSAC.

Russello, G., Conti, M., Crispo, B., and Fernandes, E.
(2012). Moses: Supporting operation modes on smart-
phones. In Proc. of SACMAT.

Sabt, M. and Traoré, J. (2016). Breaking Into the Key-
Store: A Practical Forgery Attack Against Android
KeyStore. In Proc. of ESORICS.

Samsung (2013). White Paper: An Overview of
Samsung KNOX. http://www.samsung.com/es/
business-images/resource/white-paper/2014/02/
Samsung KNOX whitepaper-0.pdf.

Santos, N., Raj, H., Saroiu, S., and Wolman, A. (2014).
Using ARM Trustzone to Build a Trusted Language
Runtime for Mobile Applications. In Proc. of ASP-
LOS.

Sun, H., Sun, K., Wang, Y., and Jing, J. (2015a). Reli-
able and Trustworthy Memory Acquisition on Smart-
phones. Transactions on Information Forensics and
Security, 10(12):2547–2561.

Sun, H., Sun, K., Wang, Y., and Jing, J. (2015b). TrustOTP:
Transforming Smartphones into Secure One-Time
Password Tokens. In Proc. of CCS.

Tamrakar, S. and Ekberg, J.-E. (2013). Tapping and Trip-
ping with NFC. In Proc. of TRUST.

DBStore: A TrustZone-backed Database Management System for Mobile Applications

403


