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Abstract: This paper proposes a fractional order model reference adaptive control (FO-MRAC) design in order to com-
mand the level of a conical tank system. The FO-MRAC is based on the choice of a fractional reference model
which specifies the closed loop desired performances. Also, the control strategy adopted introduces fractional
integration in the phase of corrector parameters updating. Model reference adaptive controller of integer or-
der and of fractional order are applied to the non linear system and compared. From the simulation results,
we concluded that FO-MRAC is the controller presenting the best performances, and especially in case of
measurements noise, and parametric variations.

1 INTRODUCTION

Fractional order systems are attracting more and more
researchers in different domains of science and engi-
neering (Mathieu et al., 2003; Ma et al., 2009; El-
sayed and Gaafar, 2003). Fractional order control is a
generalization of the classic control theory of integer
order, its major interest is to improve the control sys-
tem performances using the concepts of non-integer
derivation and fractional order systems. Dynamic
Systems and Fractional Order Controllers, which are
based on the fractional calculation, have gathered the
attention of several researchers. The most known
fractional order control structures are: CRONE con-
troller (Outsaloup, 1991), Fractional PIλDµ controller
(Podlubny, 1999), and fractional adaptive control
(Ladaci et al., 2008).
Adaptive control is one of the popular control tech-
niques applied in industrial applications. This com-
mand consists in adapting the regulator on line with
the variations of the regulated process to ensure a
constant quality of performances. The main reason
which have encouraged researchers to move toward
fractional order adaptive control and essentially to
the fractional order model reference adaptive control
(FO-MRAC) is that The MRAC command is based
on the choice of a reference model that specifies the

desired performances in closed loop, and many re-
search works proved the very good performances of
fractional systems relatively to those of integer order
(Outsaloup, 1995; Ladaci and Bensafia, 2016).
Many fractional order control structure based on
MRAC have been developed in literature (Ladaci and
Charef, 2012). An indirect model reference adaptive
control is used to control a class of fractional order
systems was introduced in (Chen et al., 2016). In
(Vinagre et al., 2002; Ladaci and Charef, 2003), the
authors investigated the use of fractional order pa-
rameter adjustment rule and the employment of frac-
tional order reference model. The use of a fractional
model and the introduction of fractional derivative fil-
ter at the plant output was introduced in (Ladaci and
Charef, 2006).
In this paper, we propose to control a nonlinear
dynamical plant with fractional order model refer-
ence adaptive control to improve the system perfor-
mances. We will deal with the problem of conical
tank level control, which has been widely studied and
several control techniques have been employed, even
with model predictive control (Warier and Venkatesh,
2012) and fractional order PIλDµ controllers (Jauregui
et al., 2016).
This work is organized as follows: Section 2 presents
some theoretical concepts on fractional order systems.
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The proposed FMRAC strategy is presented in Sec-
tion 3, and the conical tank modelization is given in
Section 4. Section 5 shows the simulation results.
Section 6 is dedicated to the main conclusions and
future researches.

2 FRACTIONAL ORDER
SYSTEMS

Fractional calculus is the domain of analytical math-
ematics which deals with the study and application of
arbitrary order of integrals and derivatives.

2.1 Definitions

The commonly used definitions of the fractional or-
der integrals and derivative are the Riemann-Liouville
(R-L) and Grünwald-Letnikov (G-L) definitions (Old-
ham and Spanier, 1974; Bourouba et al., 2018).
The R-L fractional order integral of orderλ > 0 is de-
fined as:

Iλ
RLg(t) = D−λ

RLg(t) (1)

=
1

Γ(λ)

∫ t

0
(t − τ)λ−1g(τ)d(τ)

and the expression of the R-L fractional order deriva-
tive of orderµ> 0 is:

Dµg(t) = Dm[
D−νg(t)

]
, µ> 0, (2)

whereΓ(.) is the Euler’s gamma function and the inte-
germ is such that(m−1)< µ< mandν = m−µ> 0.
The GL fractional order integral of orderλ > 0 is
given by:

Iλ
GLg(t) = D−λ

GLg(t) (3)

= lim
h→0

k

∑
j=0

(−1) j
(
−λ

j

)
g(kh− jh)

Whereh is the sampling period and the coefficients

andω(−λ)
0 =

(
−λ
0

)
the coefficients of the following

binomial:

(1− z)−λ =
∞

∑
j=0

ω(−λ)
j zj (4)

The GL fractional order derivative of orderµ> 0
is also given by

Dµ
GLg(t) =

dµ

dtµ
g(t) (5)

= lim
h→0

h−µ
k

∑
j=0

(−1) j
(

µ
j

)
g(kh− jh)

whereh is the sampling period and the coefficients

ω(µ)
j =

(
µ
j

)
= Γ(µ+1)

Γ( j+1)Γ(µ− j+1) ,

with ω(µ)
0 =

(
µ
0

)
= 1,

are those of the polynomial:

(1− z)µ =
∞

∑
j=0

(−1) j
(

µ
j

)
zj =

∞

∑
j=0

ω(µ)
j zj (6)

2.2 Linear Approximation of Fractional
Order Transfer Functions

For the purpose of our approach we need to use an in-
teger order model approximation of the fractional or-
der model reference in order to implement the adapta-
tion algorithm. For this aim, we use the so-called sin-
gularity function method proposed by (Charef et al.,
1992), and precisely for fractional first order system
of the form:

H(s) =
1

(1+ s pT)
β (7)

with β a positive real number such that 0< β < 1.
The approximation is given by:

H(s)≈
∏L−1

v=0

(
1+ s

zv

)

∏L
v=0

(
1+ s

pv

) (8)

Where the singularities are given by:

{
pv = (ab)vp0 v= 1,2,3, ...,L−1
zv = (ab)vap0 v= 1,2,3, ...,L−1 (9)

with,

p0 = pT 10
ε

20β (10)

a = 10
ε

10(1−β)

b = 10
ε

10β

β =
log(a)
log(ab)

ε is the tolerated error indβ. L+1 is the total num-
ber of singularities that can be determined by the fre-
quency band of the system.

2.3 Numerical Approximation of
Riemann Fractional Integral

In our work, we need to use a numerical approxima-
tion for the analytical formulas of the fractional order
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Figure 1: Block Diagram for MRAC approach.

operator and more precisely for the integral of Rie-
mann introduced in (Ladaci and Charef, 2006):
Putting:

t = k∆
Wheret is the current time,k an integer, and∆ sam-
pling period. We obtain:

Iλg(k∆) =
∆

Γ(λ)

k−1

∑
τ=0

(k∆− τ∆)λ−1g(τ∆) (11)

=
∆λ

Γ(λ)

k−1

∑
τ=0

(k− τ)λ−1g(τ∆)

3 FRACTIONAL ORDER MODEL
REFERENCE ADAPTIVE
CONTROL

3.1 Model Reference Adaptive Control

It’s one of the most used adaptive control approaches,
in which the desired performances are specified by the
choice of a reference model.
A block diagram representing the principle of this ap-
proach is given in the figure 1.

The reference model adaptive control system has
an ordinary feedback loop composed of the process
and the regulator and another feedback loop which al-
lows the change of the regulator parameters.
We consider a single input single output system
(SISO) described by the equation:

Ay(t) = Bu(t) (12)

Whereu is the control signal andy is the output signal.
A andB represent polynomials functions of either the
differential operatorp= d/dt, or the shift operator in
advanceq.
The desired closed-loop response is specified by the
reference model outputym.

Amym(t) = Bmur(t) (13)

A general linear regulator can be described by:

Ru(t) = Tur(t)−Sy(t) (14)

whereR, S, andT are polynomials. And we get the
closed-loop system:

y(t) =
BT

AR+BS
ur(t) (15)

The mechanism of adjustment of the regulator param-
eters can be obtained using the law of MIT, which is
the original approach for the MRAC.
To represent the MIT law, we consider a closed-loop
system in which the regulator has a vectorθ of ad-
justable parameters. Lete be the error between the
outputy of the closed loop and that of the reference
modelym. The adjustment of the parameters is done
in such a way as to minimize a cost function defined
by

J(θ) =
1
2

e2 (16)

To minimizeJ, we have to change the parameters in
the direction of the negative gradient ofJ, and we
have the famous MIT law:

dθ
dt

=−γ
δJ
δθ

= γϕe (17)

ϕ =− δe
δθ , andγ is the adaptation gain.

The following standardized algorithm is less sensitive
to signal levels:

dθ
dt

= γ
ϕe

α+ϕTϕ
(18)

The control signal is computed using the following
relation:

u= ϕTθ (19)

Where,ϕ is the regression vector containing the mea-
sured input and output signalsu andy and the input
reference signalur .

3.2 Fractional approach

In this work we will consider a fractional order refer-
ence model which will be implemented using the sin-
gularity approximation method proposed by (Charef
et al., 1992). Also, in the phase of updating the pa-
rameters of the corrector, we will use the fractional
order parameter adaptation law proposed in (Ladaci
and Charef, 2006) instead of equation (18) given by:

dmθ
dtm

= γ
ϕe

α+ϕTϕ
(20)

And we will use the numerical Riemann approxima-
tion (11) to obtain fractional order integral of the re-
lation (20).
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4 CONICAL TANK SYSTEM

The layout of the conical tank system is shown in Fig-
ure 2. The water is pumped from the bottom of the
recirculating tank to the upper part of the conical tank
by means of a pump driven by an induction motor of
variable speed driven by a variable frequency drive.
From (Jauregui et al., 2016), the nonlinear model for

 

Figure 2: Conical tank configuration.

the conical tank is represented by the following equa-
tion:

ḣ=
5.43f −78.23+µ

√
h

0.65h2+11.4h+17.1
= g(h, f ) (21)

With µ = −20.63, f is the input and represent the
electrical network frequency expressed in % as a per-
centage of the nominal frequency (50Hz) and ranges
in the interval 0%−100%,h is the output and repre-
sent the water level inside the conical tank expressed
in cm, g(h, f ) is a non linear function of these two
variables showing clearly the nonlinearities of the
conical tank system.
The system is linearized around 3 operating points
(hop, fop). These approximations are given by:

ḣ=W(h−hop)+Z( f − fop) (22)

With W = δg(h, f )
δh

∣∣∣(hop, fop) andZ = δg(h, f )
δ f

∣∣∣(hop, fop) .

To determine the operating points the whole operation
range 15cm−60cmis divided into three segments, as
illustrated in Table 1.

Table 1: Operating points and parameters of linearized
models.

Low Medium High
level level level

Interval(cm) 15-30 30-45 45-60
hop(cm) 22.5 37.5 52.5
fop(%) 32.42 37.66 41.92
W -0.0036 -0.0012 -0.0006
Z 0.009 0.004 0.0022

In our work, we try to control the nonlinear sys-
tem around only one operation point (Low level).

So, the linearized system is represented by equation
(22), withW = −0.0036, andZ = 0.009, By posing:
y(t) = h− hop, andu(t) = f − f op, we obtain the
following transfer function (Deghboudj and Ladaci,
2017):

G(s) =
0.009

s+0.0036
(23)

5 SIMULATION RESULTS

In this Section, we will apply the proposed fractional
order adaptive control technique to the tank level
control, with the transfer function given in equation
(23).Let us chose reference model transfer functions
of integer order and fractional order respectively:

Gm(s) =
1

1+20s
(24)

and

Gm f(s) =
1

(1+20s)0.6 (25)

Gm f is approximated to an integer order model using
the singularity function method (Charef et al., 1992).
The sampling period is∆ = 0.1sec.

The step response of the fractional order refer-
ence model is compared with that of the integer order
model and with the open loop system step response in
Figure 3.
Figure 4 illustrates the bode plot of the open loop
system, of the integer order reference model, and the
fractional order reference model.
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Figure 3: Open loop step response of the tank system (red),
step response of the integer order reference model (green),
step response of the fractional order reference model (blue).

From Figure 3, we clearly see that the fractional
order model is faster than the integer order model,
which is confirmed also in Figure 4, where we see
that the fractional reference model has the largest pass
band.
In order to test the effectiveness and the performances
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of each controller (MRAC and FO-MRAC), a stan-
dard reference signalur(t) is applied, consisting of
steps with different amplitudes described in table 2.

Table 2: Reference signal.

t (sec) [0 500] [500 1000] [1000 1500]
r(t) 20 29 15

Also, to evaluate and compare the performances
of each control method, we choose the performance
index given by the sum of the absolute error (SAE) de-
fined in the expression (26), and the sum of the square
input (SSI) defined in (27):

Je =
N

∑
k=0

|e(k∆)| (26)

Ju =
N

∑
k=0

u(k∆)2 (27)

where N is the samples number,e(k∆) = y(k∆)−
r(k∆).

5.1 Study in the Ideal Case (Without
Disturbances)

Respectively, the real output of the system and the
control signal of the classical MRAC and the FO-
MRAC are shown in Figure 5 and Figure 6.

From obtained results, we remark that the output
of the system follows the referential signal, even the
sudden change of the set point signal.
Better results are obtained when using the FO-MRAC
method, where we have the lowest cost function of
error, whereas the MRAC strategy presents the lowest
energy consumption by the control signal. The sys-
tem is faster and more precise with the FO-MRAC
strategy.
In order to study the influence of the fractional order
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Figure 5: The system response with classical MRAC and
with FO-MRAC (m= 1.1).
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Figure 6: The control signal of the classical MRAC and the
FO-MRAC (m= 1.1).

mvalue on the performance of the control system, we
vary its value from 0.1 to 1.5; the results are grouped
in the following Table 3.

Table 3: Cost functions Versus the fractional orderm.

m Je Ju

0.1 5.6025 103 1.6313 107

0.2 5.6011 103 1.6313 107

0.3 5.5988 103 1.6313 107

0.4 5.5948 103 1.6314 107

0.5 5.5879 103 1.6315 107

0.6 5.5758 103 1.6318 107

0.7 5.5550 103 1.6322 107

0.8 5.5207 103 1.6331 107

0.9 5.4667 103 1.6346 107

1 5.6484 103 1.6096 107

1.1 5.3649 103 1.6424 107

1.2 5.5223 103 1.6332 107

1.3 5.4757 103 1.6348 107

1.4 5.4264 103 1.6377 107

1.5 5.4376 103 1.6369 107

From the results, the minimum cost of the error is
obtained form= 1.1, where the control energy con-
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sumption is the greatest. The error cost function is
better for FO-MRAC whereas the criterionJu is better
for integer order MRAC, which means that the frac-
tional order MRAC improves the reference tracking
by mean of a greater input energy effort.
From the Table 3, there exists a trade off between
the control energy consumption and the tracking error
cost. The FO-MRAC strategy allows the resolution of
this trade off by choosing the properm value.
It is also worthy to notice that the adaptation gainγ is
very small for all fractional ordersm (less than 10−6)
comparatively to the integer order MRAC (γ = 0.01)
which improves the relative stability of the adaptive
control system.

5.2 Study in the Presence of
Measurement Noises

In order to test the robustness of these controllers in
the case where the measurement is tainted with noise,
we have injected a noise to the output (random signal)
of zero average and standard deviation equal to 0.03.
We study the influence of the fractional ordermvalue
on the performance of the FO-MRAC system in pres-
ence of measurement noise by varying its value from
0.1 to 1.5, the results are grouped in Table 4.

Table 4: Cost functions Versus the fractional orderm in
presence of noises.

m Je Ju

0.1 7.0855 103 1.6168 107

0.2 7.0839 103 1.6168 107

0.3 7.0812 103 1.6168 107

0.4 7.0763 103 1.6169 107

0.5 7.0673 103 1.6170 107

0.6 7.0509 103 1.6173 107

0.7 7.0215 103 1.6177 107

0.8 6.9698 103 1.6185 107

0.9 6.8811 103 1.6201 107

1 8.1872 103 1.5961 107

1.1 6.5166 103 1.6305 107

1.2 6.9527 103 1.6186 107

1.3 6.8560 103 1.6202 107

1.4 6.6940 103 1.6235 107

1.5 6.7269 103 1.6226 107

From Table 4, we see that the FO-MRAC is more
robust against noise than the classical MRAC strat-
egy, for the reason that with FO-MRAC, we obtain
always the lowest error cost and that for any value of
the fractional order of integrationm. The lowest error
cost is obtained form= 1.1.
Figure 7 and Figure 8 illustrate respectively the sys-

tem output and the control signal for the two applied
strategies.

0 500 1000 1500
14

16

18

20

22

24

26

28

30

Time (sec)

S
ys

te
m

 o
ut

pu
t

 

 

Classical MRAC
FO−MRAC (m=1.1)
Setpoint signal

Figure 7: The system response with classical MRAC and
with FO-MRAC (m = 1.1) in presence of measurement
noises.
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Figure 8: The control signal of the classical MRAC and the
FO-MRAC (m= 1.1) in presence of measurement noises.

5.3 Study in Case of Model Parametric
Variations

No let us test the robustness of the proposed control
law with respect to model parametric variations. We
consider a set of variation on the parameter values
in equation (23) from the instant 1500sec. Results
obtained with the classical MRAC and with the FO-
MRAC strategy are exposed in Table 5.

Table 5: Cost functions Versus the parameter variation rate.

Param Classical FO-MRAC
var. MRAC m= 1.1
% Je Ju Je Ju

05 7.07103 1.65 107 5.13103 1.67107

10 7.55103 1.68 107 5.28103 1.72107

20 8.61103 1.76 107 5.67103 1.79 107

40 1.07104 1.92 107 8.40103 1.94 107

60 1.23104 2.10 107 1.00104 2.12 107
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The system responses for the two control strate-
gies applied in case of 20% parameter variation and
the control signal of the classical MRAC and the FO-
MRAC controllers are exposed in Figure 9 and Fig-
ure 10.
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Figure 9: The system response with classical MRAC and
with FO-MRAC (m = 1.1) in presence of measurement
noises.
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Figure 10: The control signal of the classical MRAC and the
FO-MRAC (m= 1.1) in presence of measurement noises.

From the simulation results, we see that w the sys-
tem is affected by the change of parameter value at
the instant of 1500sec, after that we observe that the
system tries to follow the consign signal, and at the
end maintains the desired performance. However, it
is also remarkable that with an FO-MRAC strategy,
the error signal has the lower amplitude.
From the Table 5, we see that the FO-MRAC has al-
ways the lowest error cost, even for sudden parameter
variations. So, we conclude that the FO-MRAC is
much more robust than the classical MRAC.

6 CONCLUSIONS

A fractional order model reference adaptive control
has been designed in order to command a conical tank
level with nonlinear dynamics. The reference model

is set to be a fractional model system approximated by
rational transfer function using the singularity func-
tion approach; also a fractional order parameter adap-
tation law is used to update the controller parameters.
Simulation results illustrate the effectiveness of the
proposed control scheme and confirm its robustness
and especially in the presence of measurement noises
and parametric variations.
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