
Finding Regressions in Projects under Version Control Systems

Jaroslav Bendı́k, Nikola Beneš and Ivana Černá
Faculty of Informatics, Masaryk University, Brno, Czech Republic

Keywords: Version Control Systems, Regressions, Regression Points, Code Debugging, Bisection.

Abstract: Version Control Systems (VCS) are frequently used to support development of large-scale software projects.
A typical VCS repository can contain various intertwined branches consisting of a large number of commits.
If some kind of unwanted behaviour (e.g. a bug in the code) is found in the project, it is desirable to find the
commit that introduced it. Such commit is called a regression point. There are two main issues regarding the
regression points. First, detecting whether the project after a certain commit is correct can be very expensive
and it is thus desirable to minimise the number of such queries. Second, there can be several regression points
preceding the actual commit and in order to fix the actual commit it is usually desirable to find the latest
regression point. Contemporary VCS contain methods for regression identification, see e.g. the git bisect
tool. In this paper, we present a new regression identification algorithm that outperforms the current tools by
decreasing the number of validity queries. At the same time, our algorithm tends to find the latest regression
points which is a feature that is missing in the state-of-the-art algorithms. The paper provides an experimental
evaluation on a real data set.

1 INTRODUCTION

Version Control Systems (VCS) have become ubiqui-
tous in the area of (not only) software development,
from small toy projects to large-scale industrial ones.
The recent years saw a rise in the popularity of Dis-
tributed VCS such as git (Git, 2018), bazaar (Bazaar,
2018), Mercurial (Mercurial, 2018) and many others.
These allow for almost seamless cooperation of a large
number of developers and support extensive project
branching and merging of branches. After a project
has been in the development process for some time,
the commit graph of its repository may grow to be very
large.

As projects grow larger, the appearance of bugs
(i.e. unwanted behaviour of the developed product) is
going to be inevitable. Software bugs can be usually
caught early if the development teams employ exten-
sive testing techniques (unit tests, performance regres-
sion tests, etc.); however, from time to time a bug, or
a commit that changed properties of the project, may
creep into the VCS repository and lie there undetected
for some time. Such bug is usually discovered by
e.g. extending the coverage of the tests or by employ-
ing some other verification technique such as model
checking (Clarke et al., 2001). In order to fix the bug
it is very useful to identify the commit that introduced
the bug as this commit typically contains a relatively

small set of source code changes. It is much easier to
properly understand and fix a bug when you only need
to check a very small set of changes of the source code.
Sometimes we are not looking for the commit that
introduced a bug, but rather for a commit that caused
a change between some “old” and “new” state of the
project. As an example, we might be looking for the
commit that introduced a particular fix. In such cases
it can seem confusing to use the terms “correct” and
“buggy” to refer to the state before and after the change,
respectively. We thus instead use the terms valid and
invalid commit; we further use the term regression
point to denote the point where the property of interest
has been changed.

The problem of finding regression points has been
addressed before and there have been developed tools
for solving this problem, such as git bisect (Git bi-
sect documentation, 2018). These tools have proved
themselves to be very useful and are commonly used
during software development nowadays. Yet, there are
several issues related to finding regression points and
only some of them are targeted by the state-of-the-art
tools.

First, the search for regression points consists of
several queries of the form: “Given a certain commit,
is the bug present in the system after this commit?”
Such queries, which we call validity queries, may con-
sist of several expensive tasks like running tests, model

152
Bendík, J., Beneš, N. and Černá, I.
Finding Regressions in Projects under Version Control Systems.
DOI: 10.5220/0006864401520163
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 152-163
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

checking, code inspection, or other forms of verifica-
tion. It is thus desirable to minimise the number of
these queries. Second, the validity of commits does
not, in general, have to be monotone. Perhaps a bug
was introduced in a certain commit, inadvertently fixed
several commits later, and then reintroduced in a yet
later commit. This means that there are possibly sev-
eral regression points preceding the actual invalid com-
mit, but only the identification of the latest regression
point can usually help us to fix the bug. The third issue
concerns large projects with many branches. If, for
example, a new test case is employed, then more than
just one active branch can fail the test case and it is de-
sirable to identify a regression point for each of these
branches. We can find the regression point for each
branch separately. However, dealing with all branches
simultaneously can save some validity queries and thus
optimise the search.

The state-of-the-art tools target the need to min-
imise the number of validity queries that are performed.
However, they do not tend towards identification of lat-
est regression points, and they deal with only a single
invalid branch at a time.

The goal of this paper is to provide a novel algo-
rithm, called the Regression Predecessors Algorithm
(RPA), that solves the problem of finding regression
points in VCS repositories. The algorithm minimises
the number of validity queries and at the same time
tries to find the latest regression points both for single
and multiple invalid branches. RPA has several vari-
ants which we compare on a set of real open-source
projects. Moreover, we compare the RPA algorithm
with the state-of-the-art tool git bisect and demonstrate
that our algorithm outperforms git bisect in all of the
three above-mentioned criteria: in the number of per-
formed validity queries, in finding the latest regression
points, and in finding regression points for multiple
invalid branches.

1.1 Example Use Case

Let us describe a common situation from the area of
web development in which RPA can be used. Assume
a small company that develops a content management
system (CMS) for eCommerce. Such a CMS typi-
cally consists of several features, e.g. product man-
agement, discount system, or customer management.
Many of these features are furthermore divided into
sub-features; for example the discount feature can be
divided into buy one, get one free discounts, coupon
based free shipping discounts, order-specific discounts,
and seasonal discount. At the beginning, only basic
features are available and the remaining features are
gradually developed. The company uses a version con-

trol system, e.g. git, and uses branching to separate
development of individual features.

Some parts of the CMS are based on JavaScript,
e.g. an interactive shopping cart page. The usage
of JavaScript provides several advantages, but it also
brings some disadvantages. One of the major disad-
vantages is that different web browsers may interpret
JavaScript code differently which may result in unac-
ceptable inconsistencies in terms of functionality and
interface. At the end of the day, the company has to
ensure that all recent versions of all the major web
browsers provide the same functionality.

The problem is that JavaScript envolves, i.e. new
versions are released, and it usually takes months till
all the major web browsers support a particular ver-
sion of JavaScript. Some features of JavaScript even
never get supported by some browsers. Assume that
a developer used a JavaScript directive in a moment
when some browsers support the directive and the oth-
ers ignore it, i.e. it helps in some browsers and it
does no damage in the others. Several months later,
a browser from the latter group starts to support the
directive, however it interprets it in a different way
than the other browsers, which causes a bug. It is very
likely that the developer used the directive repeatedly
in different pieces of code and that these pieces were
subsequently adopted by some of the features that are
currently being developed, i.e. the bug is presented in
several active branches. It is also easy to imagine that
this particular bug was introduced in a certain commit,
fixed several commits later during code refactoring,
and then maybe reintroduced in a yet another commit.

The rest of the paper is organised as follows. Sec-
tion 2 defines basic notions and states the problem
formally. Section 3 presents the Regression Predeces-
sors Algorithm and illustrates its behaviour on a small
example. Section 3.5 reviews the related work and
compares RPA with other known algorithms. Section 4
gives an experimental evaluation of different variants
of RPA and compares RPA with the state-of-the-art
tool git bisect on a set of real benchmarks.

2 PRELIMINARIES AND
PROBLEM FORMULATION

Definition 1. A rooted directed acyclic graph is
a directed graph G = (V,E) with exactly one root
(i.e. a vertex with no incoming edges) and with no
cycle (i.e. there is no path 〈v0,v1, · · ·vk〉 in the graph
such that v0 = vk and k > 0). A rooted annotated di-
rected acyclic graph (RADAG) is a pair (G,valid),
where G is a rooted directed acyclic graph with root r

Finding Regressions in Projects under Version Control Systems

153

a b c n i

d
e

h

o p

j

k

l m

f g

Figure 1: An example of a RADAG, the dashed vertices
are invalid. There are three invalid leaves in this example:
k, m, p, and four regression points: (c,d),(e,h),(n, i) and
(o, p). The first three regression points are regression prede-
cessors of invalid leaves k,m; the fourth regression point is
the regression predecessor of the invalid leaf p.

and valid : V →Bool is a validation function satisfying
valid(r) = True.

We use RADAGs to model structures which arise
from using version control systems (VCS). Each vertex
in G corresponds to a commit in VCS repository. An
edge between two vertices represents two subsequent
commits. The root corresponds to the initial commit
and the leaves (vertices with no outgoing edges) corre-
spond to the latest commits of individual branches.

The validation function expresses whether a partic-
ular commit has the desired property that the system
after this commit is correct (i.e. does not contain the
bug). We call the vertices with this property (for which
the validation function evaluates to True) valid vertices
and the others invalid ones. Note that we assume that
the graph has only one root and that the root is valid.
If this is not the case, the graph can be easily modified
by adding a dummy initial valid commit.

Definition 2. A regression point of a RADAG
((V,E),valid) is a pair of vertices (u,v) such that
(u,v)∈E, valid(u)= True, and valid(v)=False. A re-
gression point (u,v) is a regression predecessor of
a vertex w ∈V if w is equal to v or w is reachable from
v.

We are now ready to formally state our problem.
Regression Predecessors Problem: Given

a RADAG (G,valid) and a set of invalid leaves L of G,
find at least one regression predecessor for each leaf
from L.

Note that one invalid leaf can have several regres-
sion predecessors and one regression point can be a re-
gression predecessor of several invalid leaves. There-
fore, the regression predecessors problem may have
several different solutions. For an example of such
a RADAG see Figure 1.

3 REGRESSION PREDECESSORS
ALGORITHM (RPA)

A naive solution to the regression predecessors prob-
lem would be to evaluate the function valid for each
vertex, identify all regression points in G, and find a
regression predecessor of each invalid leaf using the
reachability relation. Because this approach identifies
all regression points we can choose the latest regres-
sion predecessor of every invalid leaf. However, the
price is crucial; the function valid is evaluated for
every vertex which is assumed to be extremely time-
consuming.

In this section we present a new algorithm, the
Regression Predecessors Algorithm (RPA), that sub-
stantially decreases the number of vertices for which
the function valid is evaluated and tends to find the
latest regression points at the same time.

3.1 Basic Schema

The main idea of RPA is based on the observation
that if a leaf l is invalid then every path starting in
a valid vertex and leading to l must contain at least one
regression predecessor of l. This reduces the problem
to two tasks: finding a path and detecting a regression
point on the path.

For the basic description of RPA see Algorithm 1.
The algorithm maintains the set UnprocessedLeaves
which consists of those invalid leaves for which a re-
gression predecessor has not been computed yet. The
set KnownValid consists of those vertices for which
the function valid has been evaluated and are valid
(initially only the root is known to be valid). In each
iteration, the algorithm chooses a leaf l from the set
UnprocessedLeaves. A regression predecessor of l is
acquired by building a path pl which connects a valid
vertex x ∈ KnownValid with l and by finding a regres-
sion point (u,v) on this path. While searching for
the regression point (u,v), the function valid is eval-
uated for some vertices on the path pl . The newly
detected valid vertices form a set NewValid and the set
KnownValid is updated accordingly.

The algorithm also exploits the fact that one regres-
sion point can be a regression predecessor of several
invalid leaves. Therefore, every time a regression point
(u,v) is found, it is propagated to every invalid leaf
m ∈ UnprocessedLeaves such that m reachable from
v. Every such m is removed from UnprocessedLeaves.
After this propagation step, the procedure also removes
from the graph all vertices reachable from v. By re-
moving vertices we avoid propagation of regression
points to leaves for which a regression predecessor has
already been found and avoid unnecessary traversal of

ICSOFT 2018 - 13th International Conference on Software Technologies

154

1 function RPA(G, L)
input: a RADAG G = ((V,E),valid : V → Bool) with root r
input: a set of invalid leaves L
output: a regression predecessor for each leaf l ∈ L

2 UnprocessedLeaves← L
3 KnownValid←{r}
4 while UnprocessedLeaves 6= /0 do
5 l← a leaf from UnprocessedLeaves
6 UnprocessedLeaves← UnprocessedLeaves\{l}
7 pl ← a path 〈x, . . . , l〉 such that x ∈ KnownValid
8 (u,v)← find a regression point on pl
9 KnownValid← KnownValid∪NewValid

10 output (u,v) is a regression predecessor of l
11 propagateRegressionPoint(v,(u,v)) // optional, Alg. 2

Algorithm 1: Regression predecessors algorithm (basic schema).

1 function propagateRegressionPoint(k, (u,v))
input: a regression point (u,v)
input: a vertex k reachable from v (or v = k)

2 for (k, l) ∈ E do
3 propagateRegressionPoint(l, (u,v))

4 if k ∈ UnprocessedLeaves then
5 output (u,v) is a regression predecessor of k
6 UnprocessedLeaves← UnprocessedLeaves\{k}
7 remove k from the graph

Algorithm 2: Regression point propagation.

the graph. For a complete description of the procedure,
see Algorithm 2.

On the one hand, the propagation can result in sav-
ing some validation calls. On the other hand, the use
of propagation may be in conflict with the desire to
identify the latest regression predecessors. Therefore,
the usage of propagation is optional. Section 4 demon-
strates the behaviour of the algorithm both with and
without the propagation step.

There are further three key aspects that affect the ef-
ficiency of the algorithm: the order in which leaves are
chosen from the set UnprocessedLeaves, the method
of building the path connecting a valid vertex with
the invalid leaf, and the method of regression points
identification. We focus on these three aspects in the
following text.

3.2 Identification of Regression Points

In this subsection we give the details of our solution
to the problem of finding a regression point on a given
path p = 〈v0,v1, . . . ,vl〉 connecting a valid vertex v0
with an invalid vertex vl .

Linear Search. The simplest solution to the task is
to evaluate the function valid for each vertex on the
path, starting with vl and going backwards. As soon
as a valid vertex vi is found, the algorithm outputs
(vi,vi+1) as a regression predecessor of vl . By start-
ing with vl and going backwards we guarantee that
(vi,vi+1) is the nearest regression point of vl along this
path. The disadvantage of this approach is that in the
worst case all vertices on the path are tested for validity.
Because the commit graphs of VCS usually contain
hundreds or thousands of commits and the evaluation
of the function valid is assumed to be very expensive,
the linear search is practically unusable.

Binary Search. Provided that the first vertex of the
path is valid and the last is invalid (which is always
our case) we can use binary search to find a regression
point. Let p = 〈v0,v1, . . .vmid , . . . ,vl〉 be a path such
that v0 is valid, vl is invalid, and vmid is the middle
vertex of this path. If vmid is valid then there is a re-
gression point on the path 〈vmid , . . . ,vl〉. Otherwise,
there is a regression point on the path 〈v0, . . .vmid〉. We
can thus always reduce pl into half and recursively re-

Finding Regressions in Projects under Version Control Systems

155

1 function multSearch(p)
input: a path p = 〈v0, . . . ,vl〉 with valid v0 and invalid vl
output: a regression point contained in p

2 if l = 1 then
3 return (v0,v1)

4 k = 1
5 while l− (2k−1)> 0 do
6 if valid(vl−(2k−1)) then
7 return multSearch(〈vl−(2k−1), . . . ,vl−(2k−1−1)〉)
8 k = k+1

9 return multSearch(〈v0, . . . , l− (2k−1−1)〉)
Algorithm 3: Multiplying search.

peat the procedure. Eventually, we end up with a path
of length 2, thus a regression point is found.

Contrary to the linear search it is not guaranteed
that the binary search finds the regression point which
is nearest to vl . The main advantage of the binary
search is that it always performs logarithmically many
checks, since the path is in each iteration reduced
by half. Its efficiency is not much affected by the
position of the regression points on the path.

Multiplying Search. The so-called multiplying
search approach combines the advantages of both
binary and linear search approaches as it performs
asymptotically fewer validity checks than the linear
search and at the same time tends to find a regres-
sion point which is closer to the last vertex vl than the
regression point found by the binary search.

Let p = 〈v0,v1, . . . ,vl〉 be a path such that v0 is
valid and vl is invalid. The multiplying search first
evaluates the function valid for the vertex vl−1. If vl−1
is not valid, then the function is stepwise evaluated
for vertices vl−(22−1), vl−(23−1), vl−(24−1), . . . forming
exponentially large gaps between individual vertices.
The procedure eventually finds an i such that the ver-
tex vl−(2i−1−1) is invalid and either vl−(2i−1) is valid
or l− (2i− 1) < 0. If the former happens, then the
procedure recursively continues with the new path
p = 〈vl−(2i−1),vl−(2i−2), . . . , vl−(2i−1−1)〉. In the latter
case the procedure recursively continues with the path
p = 〈v0,v1, . . . ,vl−(2i−1−1)〉. The procedure converges
to a path containing only two vertices such that the
first vertex of the path is valid and the second invalid,
i.e., a regression point is found. For the complete
description see Algorithm 3.

The number C(n) of vertices on which the function
valid is evaluated on a path of length n is bounded by
the recurrence equation C(n)≤C(n

2)+ logn. In each
recursive call the number of evaluations is at most

logn and the length of the path is decreased at least by
half. The solution of the recurrence equation (using
the Master theorem (Verma, 1994)) gives an upper
bound O(log2 n) on the number of vertices on which
the function valid is evaluated.

Note that multiplying search can significantly out-
perform binary search in many cases. Its perfor-
mance depends on the distance of the regression points
from the leaf. The closer are the regression points to
the leaf, the more likely multiplying search outper-
forms binary search. For example, assume two paths
p1 = 〈v0,v1, . . . ,v1023〉, p2 = 〈v0,v1, . . . ,v1023〉, where
(v1007,v1008) is the only regression point of p1 and
(v512,v513) is the only regression point of p2. The bi-
nary search approach performs 9 validity queries on
both paths whereas the multiplying search approach
performs 6 queries on p1 and 17 queries on p2.

3.3 Leaf Selection and Path
Construction

Our next goal is to specify the order in which unpro-
cessed leaves are chosen and determine the method
of building a path connecting a valid vertex with the
chosen leaf.

We assume that the directed acyclic graphs induced
by VCS are represented using adjacency lists (see (Cor-
men et al., 2009)) in which every vertex is equipped
both with a list of its direct successors and a list of its
direct predecessors. In the initialisation phase of RPA
we compute the length of the shortest paths from v to l
for each vertex v ∈V and invalid leaf l ∈ L. For every
pair (v, l) ∈V ×L we maintain a successor of v so that
the chain of successors originating at the vertex v runs
forward along a shortest path from v to l. This com-
putation is done by running a backwards breadth-first
search from each l ∈ L using the list of predecessors,
for details see e.g. (Cormen et al., 2009).

ICSOFT 2018 - 13th International Conference on Software Technologies

156

1 function priorityBasedRPA(G, L)
input: a RADAG G = ((V,E),valid : V → Bool) with root r
input: a set of invalid leaves L
output: a regression predecessor for each leaf l ∈ L

2 for each (v, l) ∈V ×L compute the value dist(v, l)
3 for each l ∈ L do
4 dist(l)← dist(r, l)
5 start(l)← r

6 UnprocessedLeaves← L // priority queue
7 while UnprocessedLeaves 6= /0 do
8 l← UnprocessedLeaves.dequeueMinimum()
9 pl ← a shortest path 〈x, . . . , l〉 such that x = start(l)

10 (u,v)← find a regression point on pl
11 KnownValid← KnownValid∪NewValid
12 output (u,v) is the regression predecessor of l
13 propagateRegressionPoint(v,(u,v)) // optional, Alg.2
14 updatePriorities(NewValid) // Alg.5

Algorithm 4: Regression predecessor algorithm.

In what follows we use dist(v, l) to denote the
length of the shortest path leading from the vertex
v to the leaf l; we further define:

dist(l) = min{dist(u, l) | u ∈ KnownValid}
start(l) = u such that u ∈ KnownValid

and dist(u, l) = dist(l).

In other words, dist(l) denotes the length of a shortest
path leading to l from a vertex u for which the function
valid has been evaluated and is valid (i.e. belongs to
the set KnownValid). The first vertex of such a path
is denoted start(l). As the set KnownValid changes
during the computation, so may the values dist(l) and
start(l). Initially, only the root r of the graph is known
to be valid, therefore dist(l) = dist(r, l) and start(l) =
r for each l ∈ L.

The way in which RPA fixes the order in which in-
valid leaves are processed and determines which paths
should be used for identification of regression points is
based on the following observation. The shorter path
we process the fewer number of evaluations of the
function valid is performed, independent on the regres-
sion finding approach. For a complete description of
the RPA algorithm see Algorithm 4, for an illustrative
example see Section 3.4.

The RPA algorithm maintains the set
UnprocessedLeaves as a priority queue where
each l ∈ UnprocessedLeaves is assigned the priority
dist(l). In every iteration the algorithm extracts the
leaf l with minimum priority from UnprocessedLeaves
and constructs the shortest path leading to l. More-
over, each iteration is supplemented by the method
updatePriorities(newValid) that updates the dist(l)
and start(l) values (see Algorithm 5).

1 function updatePriorities(NewValid)
input: A set of valid vertices NewValid

2 for each v in NewValid do
3 for each lea f ∈UnprocessedLeaves

do
4 if dist(v, lea f)< dist(lea f) then
5 start(lea f)← v
6 dist(lea f)← dist(v, lea f)

Algorithm 5: Priority update.

3.4 Example

Figure 2 demonstrates the execution of RPA with mul-
tiplying search and propagation. In this example, the
RADAG has only invalid leaves, L = {g,k,m, p}, and
the task is to find the regression predecessors for all
leaves. The computation consists of 3 iterations. The
function valid is evaluated only for 7 out of 16 vertices
and 3 regression points are found. We list the values of
control variables in each iteration and illustrate them
on the graph. The vertices on which the valid function
has been evaluated are filled with green or red color de-
pending on their validity. The vertices removed from
the graph are shaded.

3.5 Related Work

To the best of our knowledge, the first tool for find-
ing regression points was the git bisect tool (Git bi-
sect documentation, 2018) which is a part of the dis-
tributed VCS git (Git, 2018). The method used in
the git bisect tool is called bisection and it was sub-

Finding Regressions in Projects under Version Control Systems

157

I. iteration
– Removed vertices = /0
– KnownValid = {a}
– Priority queue = 〈p,g,k,m〉
– dist(p) = 5, dist(g) = 6,
dist(k) = 6, dist(m) = 7
– start(p) = a
– path pp = 〈a,b,c,n,o, p〉
– Tested vertices: o,c,n
– Regression point of pp = (n,o)
– Propagated to: {p}

a b c n i

d

e

h

o p

j

k

l m

f g

II. iteration
– Removed vertices = {o, p}
– KnownValid = {a,c,n}
– Priority queue = 〈k,m,g〉
– dist(k) = 3, dist(m) = 4, dist(g) = 4
– start(k) = n
– path pk = 〈n, i, j,k〉
– Tested vertices: j, i
– Regression point of pk = (n, i)
– Propagated to: {k,m}

a b c n i

d

e

h

o p

j

k

l m

f g

III. iteration
– Removed vertices = {o, p, i, j,k, l,m}
– KnownValid = {a,c,n}
– Priority queue = 〈g〉
– dist(g) = 4
– start(g) = c
– path pg = 〈c,d,e, f ,g〉
– Tested vertices: f
– Regression point of pg = (f ,g)
– Propagated to: {g}

a b c n i

d

e

h

o p

j

k

l m

f g

Figure 2: An illustrative example.

sequently adopted by other VCS like Mercurial (Mer-
curial, 2018), Subversion (Pilato et al., 2008), and
Bazaar (Bazaar, 2018).

The bisection algorithm takes as an input a sin-
gle invalid commit and finds a regression point that
precedes this commit. We provide only a brief de-
scription of the bisection algorithm here, for a more
elaborated description please refer to (Git bisect algo-
rithm overview, 2018). The algorithm represents the
commits using a directed acyclic graph and assumes
that the function valid is monotone, i.e. that every suc-
cessor of an invalid commit is also invalid. It starts by
taking as an input a single invalid commit called “bad”
together with a one or more commits which are known
to be valid. Then, it iteratively repeats the following
steps:
(i) Keep only the commits that: a) precede “bad” com-

mit (including the “bad” commit itself) and b) do
not precede a commit which is known to be valid

(excluding the commits which are known to be
valid).

(ii) Associate to each commit c a number r = min{(x+
1),n− (x+1)} where x is the number of commits
that precede the commit c and n is the total number
of commits in the graph. Roughly speaking, this
number represents the amount of information that
can be obtained by evaluating the function valid
on c. If c is valid then all of its predecessors are
necessarily also valid (based on the assumption
that the function valid is monotone). In the other
case, if c is invalid, then all of its successors are
necessarily also invalid.

(iii) Evaluate the function valid for the commit v with
the highest associated number. If v is invalid then
it becomes the “bad” commit.

Eventually there will be only one invalid commit
left in the graph with one of its predecessors in the

ICSOFT 2018 - 13th International Conference on Software Technologies

158

original graph being valid. This pair of vertices forms
the regression predecessor of the original “bad” com-
mit. Although the main idea of the bisection method is
based on the monotonicity of the function valid, it is
guaranteed that the algorithm finds a regression prede-
cessor of the “bad” commit even if the function valid
is not monotone.

There are two main drawbacks of git bisect com-
paring to RPA. First, the bisection algorithm does not
tend to find the latest regression predecessor. Second,
experiments (see the following section) demonstrate
that git bisect evaluates more commits than RPA. The
reason of this behaviour is that RPA prefers shortest
paths while git bisect prefers vertices with the high-
est associated number. To demonstrate the difference
let us consider a graph with one leaf and two paths
connecting the root with the leaf. If one path is very
short and the second one very long, then RPA prefers
the short path while git bisect evaluates vertices on the
long one. If a graph contains only one path leading to
an invalid leaf, git bisect evaluates the same vertices
as RPA combined with binary search.

There is also further related work that deals with
problems similar to ours. Heuristics for automated
culprit finding (Ziftci and Ramavajjala, 2015) are used
for isolating one or more code changes which are
suspected of causing a code failure in a sequence of
project versions. They assume that the codebase is
tested/validated regularly (e.g. after every n commits)
using some test suit. If a bug is detected, they search
for the culprit only among the changes to the codebase
that have been made since the latest appliance of the
test suite. The individual versions are rated accord-
ing to their potential to cause the failure (e.g. versions
with many code changes are rated higher) and versions
with high rate are tested as first. The culprit finding
technique (Ziftci and Ramavajjala, 2015) is efficiently
applicable only for searching in a short term history
and it assumes that there is only one culprit.

Delta debugging (Zeller, 1999) is a methodology
to automate the debugging of programs using the ap-
proach of a hypothesis-trial-result loop. For a given
code and a test case that detects a bug in the code, the
delta debugging algorithm can be used to trim useless
functions and lines of the code that are not needed
to reproduce to bug. The delta debugging cannot be
used for finding regression points in VCS. However,
we believe that it can be incorporated into RPA and
improve its performance by reducing the portion of
code that need to be validated by the function valid.

A regression testing (Agrawal et al., 1993) and con-
tinuous integration testing (Duvall, 2007) are types of
software testing that verifies that software previously
developed and tested still performs correctly even af-

ter it was changed or interfaced with other software.
These two techniques are suitable for fixing bugs that
are detected right after they are introduced. However,
if a bug that lied in a codebase for some time is de-
tected, e.g. because of extending the coverage of the
tests, a technique like RPA need to be used. That
is, RPA and regression testing/continous integration
testing are mutually orthogonal techniques

SZZ (Sliwerski et al., 2005; Kim et al., 2006) is
an algorithm for identifying commits in a VCS that
introduced bugs, however it works in a quite different
settings. It assumes, that the bug has been already fixed
and that the commit that fixed the bug is explicitly
known or can be found in a log file. This allows to
identify particular lines of code that fixed the bug and
this information is then exploited while searching for
the bug-introducing commit. In our settings, the bugs
are not fixed yet, thus SZZ cannot be used.

In our previous work (Bendı́k et al., 2016), a struc-
ture similar to RADAG appears. However, that struc-
ture is monotone and therefore, the problem formu-
lated in (Bendı́k et al., 2016) substantially differs from
the regression predecessors problem and the algorithm
presented in that work cannot be used for finding re-
gression points in RADAGs.

Finally, we relate the regression predecessors prob-
lem with well known problems from graph theory. The
latest regression point can be found using the breadth-
first-search (BFS) algorithm (Jungnickel, 1999). As
our goal is to minimize the number of validity queries,
BFS is not suitable as it queries every vertex. There-
fore, we come with a new, specialized, algorithm.

4 EXPERIMENTAL RESULTS

We demonstrate the performance of the variants of
RPA on two types of use cases. We first focus on the
problem of finding a regression predecessor of a single
invalid leaf. We then focus on the problem of finding
regression predecessors of a set of invalid leaves. We
also compare the performance of the RPA variants to
that of the git bisect tool (Git bisect documentation,
2018; Git bisect algorithm overview, 2018).

As benchmarks we use large real open source
projects, taken from the GitHub open source show-
cases (Github Showcases, 2018), with at least 8 ac-
tive branches or at least 1000 commits. Due to the
size of the projects it would be intractable to build
and test all commits in these projects. Therefore we
use those projects from (Github Showcases, 2018)
that employ TravisCI (Travis CI, 2018). Travis CI
is a service used to build and test projects hosted at
GitHub and the results of all tests that were run on

Finding Regressions in Projects under Version Control Systems

159

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000

N
um

be
r

of
 v

al
id

ity
 q

ue
rie

s

Number of instances

RPA binary search
RPA multiplying search

RPA linear search
git bisect

Figure 3: Cumulative distribution plot of performed validity
queries for each evaluated algorithm. A point with coordi-
nates [x,y] can be read as “x instances were solved by using
at most y validity queries”.

these projects are publicly available. Whenever our
algorithm needs to validate a commit, it acquires the
results of the tests from the publicly available Travis
CI database instead. Overall we selected 84 projects
with 1069 invalid leaves in total. Our selection in-
cludes for example the Rails web-application frame-
work (Ruby on Rails, 2018; Bächle and Kirchberg,
2007), the PHP Interpreter (PHP interpreter, 2018), or
the ArangoDB (ArangoDB, 2018).

We do not provide any details about the architec-
ture of the computer on which we run the experiments
because the computation time is not a relevant crite-
rion in our study. It took a few seconds to run all the
experiments because we didn’t actually run the tests.
As a main criterion for measuring the efficiency of
evaluated algorithms we use the number of performed
validity queries and the distance between identified
regression points and corresponding invalid leaves (in
order to measure the tendency to find the latest regres-
sion points). Complete results of all measurements are
available at https://tinyurl.com/y7ps4yyl.

4.1 Single Invalid Leaf Instances

We first analyse how variants of RPA and git bisect
perform while searching for a regression predecessor
of a single invalid leaf. In the case of finding a re-
gression predecessor of a single invalid leaf, it makes
no sense to use propagation. Therefore, we always
build the shortest path from a valid vertex and employ
either binary or multiplying search. We also include
the naive linear search approach that builds a path and
checks one by one individual commits on the path.

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000

D
is

ta
nc

e
of

 a
 r

eg
re

ss
io

n
po

in
t f

ro
m

 th
e

le
af

Number of instances

RPA binary search
RPA multiplying search

RPA linear search
git bisect

Figure 4: Cumulative distribution plot of distance between
regression predecessor and corresponding invalid leaf for
each evaluated algorithm. A point with coordinates [x,y] can
be read as “in x instances the distance was at most y”.

Table 1: The number of instances on which the algorithm
named in the row performed strictly less validity queries than
the other algorithms. We use the following abbreviations:
mult = RPA with multiplying search, bin = RPA with binary
search, git = git bisect.

< mult bin git
mult — 736 (69%) 759 (71%)
bin 313 (29%) — 824 (77%)
git 294 (28%) 25 (2%) —

The results comparing the number of the performed
validity queries are shown in Fig. 3. In this plot, we
show the cumulative distributions of the performed
validity queries for each evaluated algorithm. The per-
formance of git bisect and binary search was quite
stable on all instances since they always perform log-
arithmically many validity queries. In particular, git
bisect and binary search needed to perform at most 17
and 16 validity queries, respectively, to solve the hard-
est instances. The performance of multiplying search
was less stable, since the number of performed valid-
ity queries depends on the position of the regression
points as we have discussed in Section 3.2. Multiply-
ing search needed to perform from 1 to 101 validity
queries. Linear search was negligibly better than mul-
tiplying search on instances where the regression point
was quite close, however it needed to perform up to
3458 validity queries on the harder instances.

In addition to the plot of cumulative distribution we
show in Table 1 the number of instances on which one
algorithm performed strictly less validity queries than
its competitors. The table shows that binary search was
superior to git bisect on most of the instances. This

ICSOFT 2018 - 13th International Conference on Software Technologies

160

Table 2: The number of instances on which the algorithm
named in the row found a strictly closer regression predeces-
sor than the other algorithms. We use the following abbrevi-
ations: mult = RPA with multiplying search, bin = RPA with
binary search, git = git bisect.

< mult bin git
mult — 717 (67%) 843 (79%)
bin 26 (2%) — 511 (48%)
git 27 (3%) 328 (30%) —

is caused by the nature of these two algorithms. Both
of them need to perform just logarithmically many
validity queries, but git bisect searches the whole graph
whereas binary search traverses only a single path.
Moreover, RPA always chooses the shortest usable
path which might lead to a significant improvement to
git bisect. In particular, in some instances, git bisect
performed 3 times more validity queries than RPA with
binary search. On the other hand, RPA with binary
search needed to perform only 1.14 times more validity
queries than git bisect in the worst case. Multiplying
search was strictly better then its competitors on about
70 percent of instances. It was worse on the instances
with large paths where regression points are relatively
far from the leaves.

Besides the number of performed validity queries,
we also measure the tendency of the algorithms to find
the latest regression predecessors. So far we have not
precisely defined which regression predecessor is the
latest one and there is more than one suitable defini-
tion. In the case of binary, multiplying, and linear
search we look for a regression predecessor on a path;
thus, we can say that the latest regression predecessor
is the regression point which is closest to the end of
the path (i.e., closest to the leaf). In our experiments,
multiplying search found the closest regression prede-
cessor on the path in 86 percent of instances whereas
binary search only in 29 percent of instances. This
notion of latest regression predecessor is not applica-
ble to git bisect because git bisect does not operate on
paths. In order to compare RPA with git bisect, we
measured the distance between the found regression
predecessor and the corresponding invalid leaf, i.e. the
shortest path between these two vertices in the commit
graph. Fig. 4 shows a plot of cumulative distributions
of distance between regression predecessors and cor-
responding leaves for each evaluated algorithm. The
results demonstrate that multiplying search substan-
tially outperforms binary search and git bisect, and
that binary search is better than git bisect. The naive
linear search is just negligibly better than multiplying
search.

In addition, Table 2 shows the number of instances
on which one algorithm found strictly closer regression

point than its competitors. The multiplying search
strictly dominates both its competitors; the regression
predecessor found by multiplying search was closer to
the leaf than the one found by git bisect in 79 percent
of instances. Binary search performed slightly better,
it was dominated by multiplying search only in 67
percent of instances.

4.2 Sets of Invalid Leaves

We now demonstrate the performance of the RPA vari-
ants on the problem of finding regression predecessors
for a set of invalid leaves. In particular, we evaluate
both proposed approaches for finding regression points,
i.e., the binary and multiplying search. Moreover, we
evaluate both these approaches in two variants: with
and without regression point propagation (the optional
part of RPA).

We also compare the variants of RPA to the git bi-
sect tool. As mentioned in Section 3.5, git bisect deals
with the problem of finding a regression predecessor
of a single invalid leaf. Therefore, in order to solve the
problem of regression predecessors for a given set of
invalid leaves L, git bisect has to be run once per each
leaf from L. As all these runs are independent, it might
happen that some commits are evaluated repeatedly.
In order to avoid the repeated evaluations, we supple-
ment git bisect with a cache saving the results of the
previous evaluations. Thus, every commit is evaluated
at most once.

As benchmarks we used the 84 projects from
GitHub showcases; the goal was to find a regression
predecessor for every invalid leaf in every project. In
this part of experimental evaluation we focus solely on
the number of performed validity queries. Figures 5
and 6 show the cumulative distribution plots of the per-
formed validity queries for the variants of RPA with
and without propagation, respectively. In both plots we
also include the results achieved by git bisect. More-
over, we include the cumulative distribution of the
number of invalid leaves (solid black line), i.e. a point
with coordinates [x,y] means that x instances have at
most y invalid leaves.

In general, the regression point propagation signifi-
cantly reduces the overall number of performed valid-
ity queries. Considering the difference in performance
between variants of RPA with multiplying and binary
search, respectively, we observe the same behaviour as
in the case of finding regression predecessors for sin-
gle invalid leaves. There are some instances on which
multiplying search outperformed binary search, and
some instances on which binary search outperformed
multiplying search. The improvement to git bisect is
for both variant of RPA even more significant than in

Finding Regressions in Projects under Version Control Systems

161

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 v

al
id

ity
 q

ue
rie

s

Number of instances

RPA binary search
RPA multiplying search

git bisect
#inv. leaves

Figure 5: Cumulative distributions of number of performed
validity queries for git bisect and variants of RPA without
propagation. The black line is the cumulative distribution of
number of invalid leaves.

the case of single leaves instances since in this case
the priority queue of RPA fully manifested. Note, that
all plots are in a logarithmic scale.

4.3 Recommendations

We have presented several variants of the RPA algo-
rithm and the experimental results show that the vari-
ants are in general incomparable. There is no variant
that would beat all the others independently of the com-
parison criteria. In the case where the user searches
for a regression predecessor of a single invalid leaf it
makes no sense to use propagation. If the user prefers
finding the closest regression points, we suggest her
to use multiplying search. In the other case, where
the user rather prefers to minimize the number of per-
formed validity queries, the choice of algorithm de-
pends on the size of the commit graph and also on the
(assumed) distance of regression points from the leaf.
For large commit graphs with no assumptions about
position of regression points we suggest the user to
use RPA with binary search since it guarantees that
only logarithmically many validity queries will be per-
formed. For small commit graphs or graphs where
regression points are assumed to be relatively close to
leaves, we suggest the user to use RPA combined with
multiplying search.

In the other case, where the user searches for re-
gression predecessors of several invalid leaves, it might
be worth to use propagation. If the user prefers finding
the closest regression points to minimizing the number
of performed validity queries, we suggest her not to
use regression point propagation and employ multiply-

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 v

al
id

ity
 q

ue
rie

s

Number of instances

RPA binary search
RPA multiplying search

git bisect
#inv. leaves

Figure 6: Cumulative distributions of number of performed
validity queries for git bisect and variants of RPA with prop-
agation. The black line is the cumulative distribution of
number of invalid leaves.

ing search. In the opposite case, when the user focus
mainly on minimizing the number of validity queries,
we suggest her to use regression point propagation
and employ either binary search or multiplying search
(based on the size of the commit graph and assumed
positions of regression points as discussed above).

5 CONCLUSION

We have presented a new algorithm, called the Re-
gression Predecessors Algorithm (RPA), for finding re-
gression points in projects under version control. The
algorithm has several variants, the choice of which
depends on whether the user prefers to minimise the
number of performed validity queries or to find the
latest regression points. We have experimentally com-
pared the variants among themselves as well as against
the state-of-the-art tool git bisect. The results show
that the variants of RPA are in general incomparable
as there is no variant that would beat all the others in-
dependently of the criteria. The main strength of RPA
lies in the ability to minimise the number of validity
queries while respecting the requirement to find the
latest regression point. In all cases the RPA algorithm
is superior to the algorithm used in git bisect.

ACKNOWLEDGEMENT

This project has received funding from the Elec-
tronic Component Systems for European Leadership

ICSOFT 2018 - 13th International Conference on Software Technologies

162

Joint Undertaking under grant agreement No 692474,
project name AMASS. This Joint Undertaking receives
support from the European Union’s Horizon 2020 re-
search and innovation programme and Spain, Czech
Republic, Germany, Sweden, Austria, Italy, United
Kingdom, France.

REFERENCES

Agrawal, H., Horgan, J. R., Krauser, E. W., and London, S.
(1993). Incremental regression testing. In ICSM, pages
348–357. IEEE Computer Society.

ArangoDB (2018). ArangoDB. https://github.com/arangodb/
arangodb. Accessed: 2018-04-03.

Bächle, M. and Kirchberg, P. (2007). Ruby on rails. IEEE
Software, 24(6):105–108.

Bazaar (2018). Bazaar. http://bazaar.canonical.com/. Ac-
cessed: 2018-04-03.

Bendı́k, J., Benes, N., Barnat, J., and Cerná, I. (2016). Find-
ing boundary elements in ordered sets with application
to safety and requirements analysis. In SEFM, volume
9763 of Lecture Notes in Computer Science, pages
121–136. Springer.

Clarke, E. M., Grumberg, O., and Peled, D. A. (2001). Model
checking. MIT Press.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2009). Introduction to Algorithms (3. ed.). MIT Press.

Duvall, P. M. (2007). Continuous integration. Pearson
Education India.

Git (2018). Git. https://git-scm.com/. Accessed: 2018-04-03.
Git bisect algorithm overview (2018). Git bisect algo-

rithm overview. https://git-scm.com/docs/git-bisect-
lk2009.html. Accessed: 2017-04-03.

Git bisect documentation (2018). Git bisect documentation.
https://git-scm.com/docs/git-bisect. Accessed: 2018-
04-03.

Github Showcases (2018). GitHub Showcases. https://github.
com/showcases. Accessed: 2018-04-03.

Jungnickel, D. (1999). Graphs, networks and algorithms,
volume 5 of algorithms and computation in mathemat-
ics.

Kim, S., Zimmermann, T., Pan, K., and Jr., E. J. W. (2006).
Automatic identification of bug-introducing changes.
In ASE, pages 81–90. IEEE Computer Society.

Mercurial (2018). Mercurial. https://www.mercurial-
scm.org/. Accessed: 2018-04-03.

PHP interpreter (2018). PHP interpreter. https://github.com/
php/php-src. Accessed: 2018-04-03.

Pilato, C. M., Collins-Sussman, B., and Fitzpatrick, B. W.
(2008). Version control with subversion - the standard
in open source version control. O’Reilly.

Ruby on Rails (2018). Ruby on Rails. https://github.com/
rails/rails. Accessed: 2018-04-03.

Sliwerski, J., Zimmermann, T., and Zeller, A. (2005). When
do changes induce fixes? ACM SIGSOFT Software
Engineering Notes, 30(4):1–5.

Travis CI (2018). Travis CI. https://travis-ci.org/. Accessed:
2018-04-03.

Verma, R. M. (1994). A general method and a master theo-
rem for divide-and-conquer recurrences with applica-
tions. J. Algorithms, 16(1):67–79.

Zeller, A. (1999). Yesterday, my program worked. today, it
does not. why? In ESEC / SIGSOFT FSE, volume 1687
of Lecture Notes in Computer Science, pages 253–267.
Springer.

Ziftci, C. and Ramavajjala, V. (2015). Heuristics for auto-
mated culprit finding. US Patent 9,176,731.

Finding Regressions in Projects under Version Control Systems

163

